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Matching Methods – Basic Idea [Part 1]

▶ Matching provides an intuitive way to estimate causal effects
when treatment is not randomly assigned.

▶ Core idea:
▶ For each treated unit, find one (or several) comparable untreated

units that look similar in observed characteristics X .

▶ These untreated “matches” serve as the counterfactual outcomes
that the treated units would have experienced had they not been
treated.

▶ The treatment effect is then the difference in outcomes y between
treated units and their matches.
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Matching Methods – Basic Idea [Part 2]

▶ More formally:
▶ For each value (or neighborhood) of X where both treated and

untreated units exist:
▶ Pair each treated unit with one or more untreated units that have

the same (or very similar) X .

▶ Compute the difference in outcomes y within each matched
pair/group.

▶ Averaging these within-X differences gives an estimate of the
Average Treatment Effect on the Treated (ATT).

▶ Key point: Matching replaces the missing counterfactual
outcome with outcomes from observational “clones” based on X .
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Matching Methods – Intuition

▶ What assumptions does matching rely on?
▶ (1) Treatment is not randomly assigned in the raw data.

▶ If treatment were random, treated and untreated groups would be
comparable without matching.

▶ Matching is needed precisely because treated units differ
systematically from untreated units.

▶ (2) Conditional on X , treatment is “as good as random.”
▶ Also known as Conditional Mean Independence (CMI) or

Selection on Observables.

▶ Formally: E [Y (0) | D = 1,X ] = E [Y (0) | D = 0,X ].

▶ This means untreated outcomes after conditioning on X provide
valid counterfactuals for treated units.
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Matching is a “Control Strategy”

▶ Matching is simply one way to “control for” observable
differences X between treated and untreated units.

▶ By conditioning on X , matching attempts to create treated and
untreated groups that are comparable, mimicking a randomized
experiment.

▶ What is another way to control for observable characteristics
when estimating treatment effects?
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Matching and OLS: Not That Different

▶ Another way to estimate the treatment effect while controlling
for covariates is simply:
▶ Run a regression of y on the treatment indicator and the

relevant X ’s.

▶ If Conditional Mean Independence (CMI) holds given X , then OLS
delivers a valid causal effect.

▶ To mimic matching very closely:
▶ Include dummy variables for each value (or group) of X in the

regression.

▶ Then OLS estimates a treatment effect by comparing treated and
untreated units within each X -cell.

▶ This is essentially “parametric matching”: OLS restricts
comparisons to units that share the same X .

▶ So how are matching and OLS different if they both control
for X?
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Matching versus Regression

▶ A useful way to think about the difference:
▶ OLS is a weighted matching estimator.

▶ Both methods compare treated and untreated observations with
the same covariates.

▶ The key difference lies in how the comparisons are weighted
across different values of X .

▶ The weighting details can get technical:
▶ See Angrist & Pischke (Mostly Harmless Econometrics), Section

3.3.1.

▶ But the basic idea: matching and OLS emphasize different parts
of the data.
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Matching vs Regression – Example [Part 1]

▶ Consider an example with discrete covariates X :
▶ Step 1: Compute a simple matching estimator:

▶ For each treated unit, find untreated units with the same X .
▶ Compute average differences in their outcomes.

▶ Step 2: Run OLS:
▶ Regress y on the treatment indicator.
▶ Add a full set of indicator variables for every value of X .

▶ Including X -indicators makes the OLS comparisons within each
X -cell—just like matching.

▶ This version of OLS is extremely flexible (nonparametric in X )
and conceptually close to matching.
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Matching vs Regression – Example [Part 2]

▶ Even in this setup, the matching and OLS estimates will
generally differ:
▶ Matching weights cells according to where the treated units

are.
▶ If many treated units share a particular value of X , that cell

receives more weight.

▶ OLS weights cells based on the amount of treatment
variation within each cell.

▶ Cells with an equal mix of treated and untreated observations
receive more weight.

▶ Cells with only treated or only untreated observations contribute
little or nothing.

▶ OLS and matching use the same comparisons but
emphasize different parts of the data.
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Matching vs Regression – Numerical Illustration
▶ Consider two covariate cells, X = 0 and X = 1, each with 100 observations:

Counts Mean outcomes
Cell Treated Control Treated ȳ1(X ) Control ȳ0(X )

X = 0 80 20 10 8
X = 1 20 80 6 3

▶ Within-cell treatment effects:

τ̂(X=0) = 10− 8 = 2, τ̂(X=1) = 6− 3 = 3.

▶ Matching (ATT) weights by where treated units are:

wM
0 =

80

80 + 20
= 0.8, wM

1 = 0.2,

ÂTT
M

= 0.8 · 2 + 0.2 · 3 = 2.2.

▶ OLS with X -dummies weights by treatment variation within cells:

p0 = 0.8, p1 = 0.2, wOLS
j ∝ Nj pj (1− pj ).

Here,

wOLS
0 ∝ 100 · 0.8 · 0.2 = 16, wOLS

1 ∝ 100 · 0.2 · 0.8 = 16 ⇒ wOLS
0 = wOLS

1 = 0.5,

τ̂OLS = 0.5 · 2 + 0.5 · 3 = 2.5.

▶ Matching emphasizes cells with many treated units (X=0), while OLS emphasizes
cells with more balanced treatment variation, giving equal weight to X=0 and X=1.

13 / 77



Matching vs Regression – Bottom Line

▶ Angrist & Pischke emphasize that:
▶ In most applications, the numerical differences between matching

and OLS tend to be small.

▶ Both rely critically on the same identifying assumption:
selection on observables (CMI).

▶ However, both approaches share a key limitation:
▶ They only control for observed covariates X .

▶ If unobserved variables jointly affect treatment and outcomes,
both matching and OLS are biased.
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Matching – Key Limitation [Part 1]

▶ What distinguishes matching from research designs such as IV,
natural experiments, or regression discontinuity?
▶ Matching does not introduce any new exogenous variation.
▶ It simply reweights or reorganizes the existing data based on

observable characteristics X .

▶ Implication:
▶ If the original OLS regression suffers from endogeneity, matching

will generally suffer from the same endogeneity.
▶ Matching does not “solve” the bias—it only attempts to make

treated and untreated units more comparable conditional on
observed covariates.
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Matching – Key Limitation [Part 2]

▶ Why did we worry about OLS in the first place?
▶ When treatment is not randomly assigned, simply controlling for a

set of covariates X often does not restore exogeneity.

▶ Many important omitted variables may be unobserved, so
matching cannot adjust for them.

▶ Self-selection, anticipation effects, and reverse causality all remain
threats.

▶ Matching inherits all of these concerns.
▶ It improves balance in observables, but not in unobservables.

▶ (Regression discontinuity is different: treatment assignment is locally as
good as random by design.)
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Matching – Key Limitation [Part 3]

▶ Important reminders:
▶ Matching cannot fix:

▶ Simultaneity or reverse causality.

▶ Measurement error biases in treatment or outcome variables.

▶ Omitted variable bias caused by unobservables.

▶ Matching only controls for the variables you match on.
▶ “You cannot match on what you cannot measure.”
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Matching – So, What Good Is It? [Part 1]

▶ Given its limitations, one might think matching is not very useful:

▶ It is essentially another “control strategy,” similar in spirit to OLS.
▶ It does not create quasi-experimental variation or solve

identification problems.
▶ It does not overcome unobserved confounding.

▶ But matching does have several practical advantages.
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Matching – So, What Good Is It? [Part 2]

▶ Matching can still be valuable in empirical practice:
▶ Robustness checks: Matching provides a nonparametric

benchmark against the regression estimate.

▶ Improved covariate balance: Matching helps reduce extreme
extrapolation and ensures treated and untreated units are
compared only where support overlaps.

▶ Finite-sample improvement: Matching sometimes performs
better than OLS when the functional form of the regression is
misspecified.

▶ Diagnostic tool: Identifies regions of poor overlap (common
support problems) that OLS masks.

▶ More on these benefits later.
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First, Some Notation

▶ We study the causal effect of a binary treatment d :
▶ d = 1: treated
▶ d = 0: untreated (control)

▶ Potential outcomes:
▶ y(1): outcome unit would experience under treatment
▶ y(0): outcome unit would experience under control

▶ Observed outcome:

y = d · y(1) + (1− d) · y(0)

▶ Observable covariates:

X = (x1, . . . , xk)

These are variables we will match on.
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Identification Assumptions

▶ To estimate treatment effects using matching, we need two key
assumptions:
▶ Assumption 1: Unconfoundedness (Selection on

Observables)

▶ Assumption 2: Overlap (Common Support)

▶ These assumptions together ensure that:
▶ Treated and control units are comparable within levels of X
▶ There exist control units “similar enough” to every treated unit
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Assumption #1 – Unconfoundedness

▶ Formal statement:

(y(0), y(1)) ⊥⊥ d | X

▶ Interpretation:
▶ Once we condition on observable covariates X , treatment behaves

“as if random.”

▶ No remaining unobserved selection into treatment after
conditioning on X .

▶ Implication:
▶ Within each value of X , the untreated group can stand in for the

unobserved counterfactual for the treated group.

▶ This makes matching possible.
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“Unconfoundedness” Explained

▶ Stronger than Conditional Mean Independence:

E [y(0) | d = 1,X ] = E [y(0) | d = 0,X ].

▶ Equivalent regression statement:

y = β0 + β1x1 + · · ·+ βkxk + γd + u,

where d is independent of error u, i.e., d ⊥ u | X .

▶ Propensity score matching and several other matching estimators
require this stronger version.

▶ This assumption is untestable.
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Assumption #2 – Overlap

▶ For all covariate values X ,

0 < P(d = 1 | X ) < 1.

▶ Interpretation:
▶ Every type of unit has a positive chance of being treated and

untreated.

▶ Treated units must have “neighbors” in the control group with
similar X .

▶ Why necessary?
▶ Without overlap, matching cannot produce valid counterfactuals.
▶ If no untreated units exist for a treated X -type, the effect is not

identified for them.
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“Overlap” in Practice

▶ Exact overlap is rare—especially when:
▶ X contains continuous variables,

▶ X is high-dimensional, or

▶ there is strong selection into treatment.

▶ In practice:
▶ We match on units with similar values of X , not identical ones.

▶ This introduces small-sample bias.

▶ Abadie and Imbens (2008) show:
▶ Nearest-neighbor matching is biased but can be bias-corrected.

▶ They provide analytical corrections and variance formulas.
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Average Treatment Effect (ATE)

▶ Under unconfoundedness + overlap:

ATE (X = x) = E [y(1)− y(0) | X = x ]

= E [y | d = 1,X = x ]− E [y | d = 0,X = x ].

▶ This means ATE for each X = x is just the difference in means.

▶ To obtain the population ATE:

ATE =

∫
ATE (X = x) fX (x) dx ,

i.e., a weighted average over the distribution of X .

(See Roberts & Whited, p. 68.)
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Difficulty with Exact Matching

▶ Exact matching requires:

Xi = Xj for a treated-control pair.

▶ Problems:
▶ In high-dimensional X , cells become very sparse (“curse of

dimensionality”).

▶ With continuous variables, exact equality almost never occurs.

▶ Result:
▶ Many treated units may have no valid matches.

▶ Matching estimators become biased or undefined without
smoothing / nearest-neighbor methods.
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Matching on Covariates – Step #1
▶ The first step in matching: decide how to measure “closeness”

between two observations in terms of their covariates.

▶ We choose a distance metric:

∥Xi − Xj∥
▶ Intuition:

▶ This quantifies how similar observation i is to observation j based
on their covariate vectors.

▶ Observations with small distance are considered “good matches.”

▶ Example: Euclidean distance√
(Xi − Xj)′(Xi − Xj).

▶ (We will later discuss why Euclidean distance can be problematic
when covariates have different scales and why Mahalanobis
distance is sometimes preferred.)
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Matching on Covariates – Step #2

▶ For each observation i , find the M closest observations with the
opposite treatment status.

▶ More precisely:
▶ If di = 1 (treated), match to the M nearest untreated units.

▶ If di = 0 (control), match to the M nearest treated units.

▶ Interpretation:
▶ These M observations form our estimate of what i ’s outcome

would have been under the opposite treatment status.

▶ Using multiple neighbors instead of just one (i.e., M > 1) reduces
noise and variance.
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Matching on Covariates – Step #3: Notation

▶ Let lm(i) denote the index of the m-th closest match to unit i
among observations with d ̸= di .

▶ Example:
▶ Suppose i = 4 is treated.

▶ l1(4): closest control observation to unit 4.

▶ l2(4): second closest control unit to 4, etc.

▶ Define the set of the M closest matches:

LM(i) = {l1(i), l2(i), . . . , lM(i)}.

▶ This notation keeps track of which units we use to construct the
counterfactual outcomes.
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Matching on Covariates – Step #4

▶ For each unit i , construct estimates of the two potential
outcomes:

ŷi (0) =

{
yi if di = 0 (we observe y(0)),
1
M

∑
j∈LM(i) yj if di = 1 (impute y(0)).

ŷi (1) =

{
1
M

∑
j∈LM(i) yj if di = 0 (impute y(1)),

yi if di = 1 (we observe y(1)).

▶ In words:
▶ If unit i was treated, we observe y(1) but must impute y(0) using

its matched controls.

▶ If unit i was untreated, we observe y(0) but must impute y(1)
using its matched treated units.
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Interpretation...

ŷi (0) =


yi if di = 0,

1

M

∑
j∈LM(i)

yj if di = 1

If observation i is treated: we ob-
serve its treated outcome y(1), but
we never observe its untreated out-
come y(0), so we construct it using
the average outcome of the M closest

ŷi (1) =


1

M

∑
j∈LM(i)

yj if di = 0,

If observation i is untreated: we ob-
serve its untreated outcome y(0), but
must impute y(1) using the closest
treated units.

yi if di = 1

Matching constructs a “synthetic twin” for each unit based on
similarity in covariates.
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Matching on Covariates – Average Treatment Effect (ATE)

▶ Once all missing potential outcomes are imputed, the ATE is:

ÂTE =
1

N

N∑
i=1

[ŷi (1)− ŷi (0)] .

▶ Interpretation:
▶ For each unit: (observed outcome under actual treatment) minus

(constructed counterfactual under the alternative).

▶ Then simply average across all units.

▶ Under assumptions of unconfoundedness + overlap, this is a
consistent estimator of the ATE.
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Matching on Propensity Score – Step #1

▶ Another way to implement matching is to first estimate a
propensity score and then match on it.

▶ The propensity score is:

ps(X ) = P(d = 1 | X ) = E [d | X ].

▶ Intuition:
▶ Instead of matching on the full k-dimensional covariate vector X ,

▶ we match on a single number summarizing the likelihood of
treatment.

▶ Estimation:
▶ Can use Logit, Probit, OLS, machine learning models, etc.

▶ Typically: Logit with flexible terms (polynomials, interactions).
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Propensity Score – Step #2

▶ The key Rosenbaum–Rubin (1983) theorem:

(y(1), y(0)) ⊥⊥ d | X ⇒ (y(1), y(0)) ⊥⊥ d | ps(X ).

▶ Meaning:
▶ If treatment is unconfounded after conditioning on X ,

▶ then conditioning on the single number ps(X ) is sufficient for
identification.

▶ So we can:
▶ Match using only ps(X ), instead of the entire covariate vector.

▶ Or run a regression of y on d and include the propensity score as
a control.
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Propensity Score – Step #3

▶ Estimate ps(Xi ) = P(di = 1 | Xi ) for every observation.

▶ Common approaches:
▶ Logit (most common), Probit, or even OLS.

▶ Add nonlinear or interaction terms for continuous covariates.

▶ In large samples: ML methods

▶ The fitted value p̂s(Xi ) gives the predicted probability of
treatment for unit i .
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Tangent About Step #3

▶ Include only covariates that predict treatment d .

▶ Why?
▶ Variables unrelated to treatment assignment only add noise to the

model.

▶ Excluding irrelevant variables can improve the finite sample
performance of matching.

▶ Practical implication:
▶ Economic logic, institutional knowledge, and theory should guide

which variables enter the propensity score.

▶ This is not necessarily the same set of covariates that predict
outcomes y .
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Matching on ps(X) – Remaining Steps. . .

▶ After estimating ps(X ), repeat the matching procedure but use
the difference in propensity scores as the distance metric.

▶ Example:
▶ If unit i is untreated,

▶ choose M treated observations whose propensity scores are closest
to ps(Xi ).

▶ This creates a one-dimensional matching problem that avoids the
curse of dimensionality associated with high-dimensional X .
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Propensity Score – Advantage #1

▶ Propensity scores reduce subjective choices in covariate
matching.
▶ No need to choose a multivariate distance metric.

▶ No need to standardize or rescale variables.

▶ No need to decide how to weight each covariate.

▶ Because matching is done on a single dimension, it is more
transparent and easier to implement.

▶ Also helps avoid the “curse of dimensionality”: Matching in
high-dimensional X becomes sparse; matching on ps(X ) does
not.
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Propensity Score – Advantage #2

▶ Instead of matching, we can directly estimate the ATE using the
inverse probability weighting (IPW) formula:

ATE = E

[
di − ps(Xi )

ps(Xi )(1− ps(Xi ))
yi

]
.

▶ This uses the propensity score to reweight observations so treated
and untreated groups “look like” each other.

▶ See Angrist–Pischke (Section 3.3.2) for an intuitive interpretation
based on residuals and orthogonality.
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Why the IPW Estimator Works
▶ Key identity under unconfoundedness:

E [y(1)] = E

[
di

ps(Xi )
yi

]
, E [y(0)] = E

[
1− di

1− ps(Xi )
yi

]
.

▶ Intuition:
▶ Treated units are “rare” when ps(X ) is small, so they receive larger weights.
▶ Untreated units are “rare” when 1− ps(X ) is small, so they receive larger

weights.
▶ Weighting by the inverse propensity score constructs a pseudo-population

where treatment is as-good-as random.
▶ ATE = E [y(1)]− E [y(0)].
▶ Combine the two expressions:

ATE = E

[
di

ps(Xi )
yi

]
− E

[
1− di

1− ps(Xi )
yi

]
.

▶ Rearranging:

ATE = E

[
di − ps(Xi )

ps(Xi )(1− ps(Xi ))
yi

]
.

▶ IPW reweights each unit so that treated and untreated groups replicate the
distribution of X in the population.

▶ After weighting, treatment is independent of X — just like a randomized
experiment.
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But There Is a Disadvantage (Sort of)?

▶ Sometimes variables do not predict treatment d but do improve
prediction of the outcome y .

▶ Including these variables in covariate matching (or in regression)
improves precision:
▶ Same logic as adding controls in OLS to reduce residual variance.

▶ But if such variables do not affect treatment, they should not
enter the propensity score.

▶ Angrist and Hahn (2004) show:
▶ Using ps(X ) and not adding irrelevant covariates can yield better

finite-sample properties.

▶ Matching on the full set of X may actually increase noise.
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Practical Considerations

▶ Matching involves a large number of choices that meaningfully
affect results:
▶ Distance metric: How do we measure similarity in X?

▶ Number of matches: 1 nearest neighbor or several?

▶ With or without replacement: Can the same unit be reused?

▶ Which covariates X to match on?

▶ Covariate vs. propensity score matching: Which dimension to
match on?

▶ These decisions directly affect bias, variance, and overlap—so
matching requires careful design.
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Choice of Distance Metric [Part 1]

▶ Simple Euclidean distance:

∥Xi − Xj∥ =
√
(Xi − Xj)′(Xi − Xj).

▶ Downside:
▶ Variables with larger numeric scales dominate the distance.

▶ Example: income measured in dollars swamps age measured in
years.

▶ Therefore Euclidean distance is rarely appropriate without
standardization.

▶ So which variables have more influence?
▶ Those with larger variance or measured in larger units.
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Choice of Distance Metric [Part 2]

▶ Common improvements standardize by variances or covariance
structure:
▶ Abadie–Imbens (2006) metric:

∥Xi − Xj∥ =
√
(Xi − Xj)′diag(Σ

−1
X )(Xi − Xj),

which rescales each variable by its variance.

▶ Mahalanobis distance (most widely used):

∥Xi − Xj∥ =
√
(Xi − Xj)′Σ

−1
X (Xi − Xj).

▶ Mahalanobis accounts for both scale differences and covariances
between covariates.

▶ Σ−1
X : inverse of covariance matrix of covariates.
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Choice of Matching Approach

▶ Should you match directly on covariates or on the propensity
score?
▶ Covariate matching preserves “local” similarity in each dimension.

▶ Propensity score matching collapses all covariates into one
probability.

▶ But propensity scores require assuming a model for treatment.

▶ No single best choice:
▶ Both have strengths and weaknesses depending on overlap,

dimensionality, and sample size.

▶ Best practice: check that results are robust across multiple
matching strategies.
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And How Many Matches? [Part 1]

▶ No universal rule; this is a classic bias–variance tradeoff:
▶ 1 nearest neighbor � minimal bias, but high variance.

▶ More neighbors � more stable (lower variance), but possibly
more biased.

▶ Why bias increases with more matches?
▶ Additional neighbors are usually further away in X -space.
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And How Many Matches? [Part 2]

▶ Two main matching rules:
▶ Nearest-neighbor: pick the M closest matches regardless of

distance.

▶ Caliper matching: pick all matches within a distance threshold.

▶ Example of caliper:
▶ Using a propensity score caliper of 0.01 means only matches with

scores within 1 percentage point are allowed.

▶ Question: What is advantage of caliper matching?
▶ It avoids “bad matches” even if they are the nearest neighbors.
▶ Ensures matching only when overlap is meaningful.
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And How Many Matches? [Part 3]

▶ Practical guidance:
▶ Try several numbers of matches.

▶ If results change substantially as radius or number of matches
increases:

▶ Matching quality is poor � bias risk high.

▶ If estimates remain stable but precision improves:
▶ Using more matches is acceptable.
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With or Without Replacement? [Part 1]

▶ With replacement:
▶ A control unit can be used as a match more than once.

▶ Produces the best (closest) possible matches � lower bias.

▶ But reusing units reduces precision and increases variance.

▶ Without replacement:
▶ Each unit can be used only once.

▶ Ensures more diverse comparison units.

▶ But potentially increases bias when the best control is “used up.”
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With or Without Replacement? [Part 2]

▶ Roberts–Whited recommend:
▶ Use matching with replacement.

▶ Bias is the primary concern; precision can be improved later.

▶ Matching without replacement depends on order of matching,
which introduces randomness and instability.
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Which Covariates?

▶ Include all covariates that:
▶ affect the outcome y , and
▶ are correlated with treatment d .

▶ Why?
▶ Omitting an X that drives both treatment and outcome �

omitted variable bias.

▶ But avoid covariates affected by the treatment:
▶ These are “bad controls” and would block part of the treatment

effect.
▶ Use lagged covariates instead when possible.
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Matches for Whom?

▶ ATE: match both treated and untreated units, imputing both
counterfactuals.

▶ ATT: match only for treated units.
▶ Appropriate when you care about the treatment effect for the

treated population.

▶ ATU: match only for untreated units.
▶ Rarely used but conceptually symmetric.

▶ Thus: your matching strategy determines the estimand.
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Testing the “Overlap” Assumption
▶ Overlap (common support) requires:

0 < P(d = 1 | X = x) < 1 ∀x .
▶ If matching on a single covariate or on the propensity

score:
▶ Plot the distribution of X (or ps(X )) for treated vs. control units.

▶ Look for regions where one group has no support.

▶ If matching on multiple covariates:
▶ Examine how “far apart” matched pairs are along each covariate.

▶ For each covariate x , identify the worst matches:

|xi − xl(i)|
sd(x)

.

▶ Large standardized differences � poor overlap for that variable.

▶ Goal:
▶ Ensure there exist plausible counterparts for each treated unit.
▶ Detect whether the matching estimator is extrapolating.
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If There Is Lack of “Overlap”

▶ Lack of overlap means some treated observations have no
comparable controls (or vice-versa).

▶ Remedies are somewhat subjective but widely used:
▶ Trim or discard units with no good match (“common support

trimming”).

▶ Switch to caliper matching to avoid poor matches.

▶ Use propensity score matching or IPW to reduce dimensionality.

▶ Consider redefining the estimand: perhaps the ATE is not
identified, but the ATT is.

▶ Key principle:
▶ Better to estimate a credible effect for a smaller population than a

biased ATE for the full sample.
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Testing the “Unconfoundedness” Assumption

▶ Unconfoundedness requires:

(y(1), y(0)) ⊥⊥ d | X .

▶ This is fundamentally untestable because:
▶ We never observe both potential outcomes for any unit.

▶ We never observe the error term u.

▶ Therefore, we cannot check whether treatment is independent of
unobserved determinants of outcomes.

▶ Thus:
▶ Any matching or propensity-score estimate is causal only if the

assumption is believed to hold.
▶ No statistical test can confirm this.
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But There Are Other Things to Try. . .
▶ Although unconfoundedness is untestable, we can perform

robustness and falsification checks analogous to natural
experiments:

▶ 1. Timing tests
▶ Effects should appear only after treatment, not before.
▶ A pre-trend or placebo effect suggests selection bias.

▶ 2. “Placebo” outcomes
▶ Test whether treatment affects variables that should not change.
▶ Significant effects imply omitted variables or selection.

▶ 3. Heterogeneity tests
▶ Look at subsamples where theory predicts stronger or weaker

effects.
▶ If patterns are inconsistent with theory, matching may be invalid.

▶ These tests do not prove unconfoundedness, but they increase
confidence in the credibility of the design.
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Weaknesses Reiterated [Part 1]

▶ Matching requires many subjective researcher choices:
▶ choice of distance metric,
▶ number of matches,
▶ calipers,
▶ replacement vs. no replacement,
▶ covariate set,
▶ choice of propensity score model (Logit? Probit? ML?).

▶ Different seemingly “reasonable” choices may yield different
matches � and therefore different treatment effect
estimates.

▶ In practice, matching methods lack the clear empirical guidance
provided by approaches based on clean quasi-experimental
variation (RD, IV, DiD).
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Weaknesses Reiterated [Part 2]

▶ Matching does not solve the fundamental identification problem:
▶ It does not solve simultaneity bias.

▶ It does not eliminate omitted variable bias from unobservables.

▶ It does not correct for measurement error.

▶ Matching is simply a control strategy—just like OLS:
▶ OLS: controls through functional form.

▶ Matching: controls by local comparisons.

▶ OLS and matching differ mainly in how they weight comparisons,
but both require unconfoundedness to identify causal effects.
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Tangent – Related Problem

▶ Researchers sometimes estimate:

y = β0 + β1d + β2ps(X ) + u,

where:
▶ d : treatment indicator,
▶ ps(X ): estimated probability of treatment.

▶ They then claim:
“Including the propensity score controls for selection bias, so
β1 is a causal effect.”

▶ This claim is incorrect. Why?
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Tangent – Related Problem [Part 2]

▶ The assumption behind propensity scores is:

(y(1), y(0)) ⊥⊥ d | X .

▶ But the researcher regresses on only ps(X ), not on the full
covariate vector X .

▶ Problem:
▶ Controlling for ps(X ) in regression is not equivalent to matching

or reweighting.

▶ It does not eliminate bias from unobserved confounders.

▶ It assumes X includes every variable that jointly affects d and y .

▶ Bottom line:
▶ A complicated Logit does not magically create exogeneity.
▶ Without unconfoundedness, neither propensity score matching nor

regressions using ps(X ) identify causal effects.
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Another Weakness – Inference

▶ Matching estimators often have complicated sampling
distributions.

▶ Why inference is difficult:
▶ Matching induces dependence between observations (matched

units reused).

▶ The matching algorithm itself creates additional randomness.

▶ Analytic formulas for standard errors exist but are complex
(Abadie & Imbens 2006, 2008).

▶ Bootstrapping often fails because matching is a non-smooth
estimator.

▶ This makes inference less straightforward than regression or DiD.
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Use as a Robustness Check

▶ Matching provides a nonparametric benchmark for OLS results:
▶ It removes functional-form assumptions.

▶ It forces comparisons only among similar units.

▶ If matching and OLS agree:
▶ The OLS estimate is more credible.

▶ If they differ sharply:
▶ OLS may be relying heavily on extrapolation or model

assumptions.

▶ But Angrist–Pischke note:
▶ With good covariates and flexible controls, differences are often

small.
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Use as Precursor to Regression [Part 1]

▶ Matching can help define a sample where overlap holds.

▶ Example:
▶ Estimate the propensity score first.

▶ Restrict sample to observations with:

0.10 < ps(X ) < 0.90.

▶ Then run OLS, DiD, or panel regressions on the trimmed sample.

▶ Purpose:
▶ Avoids using observations with almost no comparable

counterparts.
▶ Ensures treatment and control units come from similar regions of

the covariate space.
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Use as Precursor to Regression [Part 2]

▶ Another example:
▶ Suppose firms in Industry X experience a shock.

▶ Build a control group by matching only firms with similar size,
leverage, profitability, etc.

▶ Then estimate treatment effects on the matched sample.

▶ Matching provides a principled way to construct an economically
comparable control group before running the main regression.
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Matching – Practical Advice

▶ Stata’s psmatch2 (Leuven & Sianesi) is widely used:
▶ Supports nearest-neighbor matching, kernel matching, radius

(caliper) matching.

▶ Provides matching diagnostics and estimates standard errors using
Abadie–Imbens formulas.

▶ In R:
▶ MatchIt, Matching, twang, rbounds.

▶ In Python:
▶ econml, causalml, DoWhy.

▶ Best practice:
▶ Try multiple matching strategies.

▶ Report diagnostics and balance metrics.

▶ Emphasize robustness rather than “one true” estimate.
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Summary of Matching

▶ Matching is a control strategy.
▶ It estimates treatment effects when treatment is as good as

random after conditioning on observable covariates X .

▶ Conceptually similar to OLS with controls—but avoids imposing
functional-form assumptions about how X affects y .

▶ What matching does not do:
▶ It does not fix identification problems caused by:

▶ simultaneity,
▶ omitted unobservables,
▶ measurement error,
▶ reverse causality.

▶ Matching only controls for the variables you actually observe (X ).
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Summary of Matching

▶ Many ways to implement matching:
▶ Match on covariates or on the propensity score.

▶ Nearest-neighbor vs. caliper/radius matching.

▶ With or without replacement; different distance metrics.

▶ Because choices are subjective, different methods may yield
different estimates.

▶ Practical value: robustness and diagnostics.
▶ Matching provides a nonparametric check on OLS estimates.

▶ When covariates are rich and OLS uses flexible controls, matching
and OLS typically produce similar ATE estimates.

▶ Large discrepancies usually indicate model misspecification or poor
overlap.
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