

Matching

Professor Ji-Woong Chung
Korea University

Outlilne

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Matching Methods – Basic Idea [Part 1]

- ▶ Matching provides an intuitive way to estimate causal effects when treatment is not randomly assigned.
- ▶ Core idea:
 - ▶ For each treated unit, find one (or several) comparable untreated units that look similar in observed characteristics X .
 - ▶ These untreated “matches” serve as the counterfactual outcomes that the treated units would have experienced had they not been treated.
 - ▶ The treatment effect is then the difference in outcomes y between treated units and their matches.

Matching Methods – Basic Idea [Part 2]

- ▶ More formally:
 - ▶ For each value (or neighborhood) of X where both treated and untreated units exist:
 - ▶ Pair each treated unit with one or more untreated units that have the same (or very similar) X .
 - ▶ Compute the difference in outcomes y within each matched pair/group.
 - ▶ Averaging these within- X differences gives an estimate of the Average Treatment Effect on the Treated (ATT).
- ▶ **Key point:** Matching replaces the missing counterfactual outcome with outcomes from observational “clones” based on X .

Matching Methods – Intuition

- ▶ What assumptions does matching rely on?
 - ▶ **(1) Treatment is not randomly assigned in the raw data.**
 - ▶ If treatment were random, treated and untreated groups would be comparable without matching.
 - ▶ Matching is needed precisely because treated units differ systematically from untreated units.
 - ▶ **(2) Conditional on X , treatment is “as good as random.”**
 - ▶ Also known as **Conditional Mean Independence (CMI)** or **Selection on Observables**.
 - ▶ Formally: $E[Y(0) | D = 1, X] = E[Y(0) | D = 0, X]$.
 - ▶ This means untreated outcomes after conditioning on X provide valid counterfactuals for treated units.

Matching is a “Control Strategy”

- ▶ Matching is simply one way to “control for” observable differences X between treated and untreated units.
- ▶ By conditioning on X , matching attempts to create treated and untreated groups that are comparable, mimicking a randomized experiment.
- ▶ What is another way to control for observable characteristics when estimating treatment effects?

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Matching and OLS: Not That Different

- ▶ Another way to estimate the treatment effect while controlling for covariates is simply:
 - ▶ **Run a regression of y on the treatment indicator and the relevant X 's.**
 - ▶ If Conditional Mean Independence (CMI) holds given X , then OLS delivers a valid causal effect.
- ▶ To mimic matching very closely:
 - ▶ Include **dummy variables for each value (or group) of X** in the regression.
 - ▶ Then OLS estimates a treatment effect by comparing treated and untreated units *within* each X -cell.
 - ▶ This is essentially “parametric matching”: OLS restricts comparisons to units that share the same X .
- ▶ **So how are matching and OLS different if they both control for X ?**

Matching versus Regression

- ▶ A useful way to think about the difference:
 - ▶ **OLS is a weighted matching estimator.**
 - ▶ Both methods compare treated and untreated observations with the same covariates.
 - ▶ The key difference lies in **how the comparisons are weighted across different values of X .**
- ▶ The weighting details can get technical:
 - ▶ See Angrist & Pischke (Mostly Harmless Econometrics), Section 3.3.1.
 - ▶ But the basic idea: matching and OLS emphasize different parts of the data.

Matching vs Regression – Example [Part 1]

- ▶ Consider an example with discrete covariates X :
 - ▶ Step 1: Compute a simple matching estimator:
 - ▶ For each treated unit, find untreated units with the same X .
 - ▶ Compute average differences in their outcomes.
 - ▶ Step 2: Run OLS:
 - ▶ Regress y on the treatment indicator.
 - ▶ Add a full set of **indicator variables for every value of X** .
- ▶ Including X -indicators makes the OLS comparisons *within* each X -cell—just like matching.
- ▶ This version of OLS is extremely flexible (nonparametric in X) and conceptually close to matching.

Matching vs Regression – Example [Part 2]

- ▶ Even in this setup, the matching and OLS estimates will generally differ:
 - ▶ **Matching weights cells according to where the treated units are.**
 - ▶ If many treated units share a particular value of X , that cell receives more weight.
 - ▶ **OLS weights cells based on the amount of treatment variation within each cell.**
 - ▶ Cells with an equal mix of treated and untreated observations receive more weight.
 - ▶ Cells with only treated or only untreated observations contribute little or nothing.
- ▶ **OLS and matching use the same comparisons but emphasize different parts of the data.**

Matching vs Regression – Numerical Illustration

- Consider two covariate cells, $X = 0$ and $X = 1$, each with 100 observations:

Cell	Counts		Mean outcomes	
	Treated	Control	Treated $\bar{y}_1(X)$	Control $\bar{y}_0(X)$
$X = 0$	80	20	10	8
$X = 1$	20	80	6	3

- Within-cell treatment effects:

$$\hat{\tau}(X=0) = 10 - 8 = 2, \quad \hat{\tau}(X=1) = 6 - 3 = 3.$$

- Matching (ATT) weights by where treated units are:

$$w_0^M = \frac{80}{80+20} = 0.8, \quad w_1^M = 0.2,$$

$$\widehat{\text{ATT}}^M = 0.8 \cdot 2 + 0.2 \cdot 3 = 2.2.$$

- OLS with X -dummies weights by treatment variation within cells:

$$p_0 = 0.8, \quad p_1 = 0.2, \quad w_j^{\text{OLS}} \propto N_j p_j (1 - p_j).$$

Here,

$$w_0^{\text{OLS}} \propto 100 \cdot 0.8 \cdot 0.2 = 16, \quad w_1^{\text{OLS}} \propto 100 \cdot 0.2 \cdot 0.8 = 16 \Rightarrow w_0^{\text{OLS}} = w_1^{\text{OLS}} = 0.5,$$

$$\hat{\tau}^{\text{OLS}} = 0.5 \cdot 2 + 0.5 \cdot 3 = 2.5.$$

- Matching emphasizes cells with many treated units ($X=0$), while OLS emphasizes cells with more balanced treatment variation, giving equal weight to $X=0$ and $X=1$.

Matching vs Regression – Bottom Line

- ▶ Angrist & Pischke emphasize that:
 - ▶ In most applications, the numerical differences between matching and OLS tend to be small.
 - ▶ Both rely critically on the **same identifying assumption**: selection on observables (CMI).
- ▶ However, both approaches share a key limitation:
 - ▶ They only control for **observed** covariates X .
 - ▶ If unobserved variables jointly affect treatment and outcomes, both matching and OLS are biased.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Matching – Key Limitation [Part 1]

- ▶ What distinguishes matching from research designs such as IV, natural experiments, or regression discontinuity?
 - ▶ **Matching does not introduce any new exogenous variation.**
 - ▶ It simply reweights or reorganizes the existing data based on observable characteristics X .
- ▶ Implication:
 - ▶ If the original OLS regression suffers from endogeneity, matching will generally suffer from the *same* endogeneity.
 - ▶ Matching does not “solve” the bias—it only attempts to make treated and untreated units more comparable *conditional on observed covariates*.

Matching – Key Limitation [Part 2]

- ▶ Why did we worry about OLS in the first place?
 - ▶ When treatment is not randomly assigned, simply controlling for a set of covariates X often does *not* restore exogeneity.
 - ▶ Many important omitted variables may be **unobserved**, so matching cannot adjust for them.
 - ▶ Self-selection, anticipation effects, and reverse causality all remain threats.
- ▶ **Matching inherits all of these concerns.**
 - ▶ It improves balance in observables, but *not* in unobservables.
 - ▶ (Regression discontinuity is different: treatment assignment is locally as good as random by design.)

Matching – Key Limitation [Part 3]

- ▶ Important reminders:
 - ▶ Matching **cannot** fix:
 - ▶ Simultaneity or reverse causality.
 - ▶ Measurement error biases in treatment or outcome variables.
 - ▶ Omitted variable bias caused by **unobservables**.
 - ▶ Matching only controls for the variables you match on.
 - ▶ "You cannot match on what you cannot measure."

Matching – So, What Good Is It? [Part 1]

- ▶ Given its limitations, one might think matching is not very useful:
 - ▶ It is essentially another “control strategy,” similar in spirit to OLS.
 - ▶ It does not create quasi-experimental variation or solve identification problems.
 - ▶ It does not overcome unobserved confounding.
- ▶ But matching **does have several practical advantages**.

Matching – So, What Good Is It? [Part 2]

- ▶ Matching can still be valuable in empirical practice:
 - ▶ **Robustness checks:** Matching provides a nonparametric benchmark against the regression estimate.
 - ▶ **Improved covariate balance:** Matching helps reduce extreme extrapolation and ensures treated and untreated units are compared only where support overlaps.
 - ▶ **Finite-sample improvement:** Matching sometimes performs better than OLS when the functional form of the regression is misspecified.
 - ▶ **Diagnostic tool:** Identifies regions of poor overlap (common support problems) that OLS masks.
- ▶ More on these benefits later.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

First, Some Notation

- ▶ We study the causal effect of a binary treatment d :
 - ▶ $d = 1$: treated
 - ▶ $d = 0$: untreated (control)
- ▶ Potential outcomes:
 - ▶ $y(1)$: outcome unit *would* experience under treatment
 - ▶ $y(0)$: outcome unit *would* experience under control
- ▶ Observed outcome:

$$y = d \cdot y(1) + (1 - d) \cdot y(0)$$

- ▶ Observable covariates:

$$X = (x_1, \dots, x_k)$$

These are variables we will match on.

Identification Assumptions

- ▶ To estimate treatment effects using matching, we need two key assumptions:
 - ▶ **Assumption 1: Unconfoundedness (Selection on Observables)**
 - ▶ **Assumption 2: Overlap (Common Support)**
- ▶ These assumptions together ensure that:
 - ▶ Treated and control units are comparable *within* levels of X
 - ▶ There exist control units “similar enough” to every treated unit

Assumption #1 – Unconfoundedness

- ▶ Formal statement:

$$(y(0), y(1)) \perp\!\!\!\perp d \mid X$$

- ▶ Interpretation:

- ▶ Once we condition on observable covariates X , treatment behaves “as if random.”
- ▶ No remaining unobserved selection into treatment after conditioning on X .

- ▶ Implication:

- ▶ Within each value of X , the untreated group can stand in for the unobserved counterfactual for the treated group.
- ▶ This makes matching possible.

“Unconfoundedness” Explained

- ▶ Stronger than Conditional Mean Independence:

$$E[y(0) \mid d = 1, X] = E[y(0) \mid d = 0, X].$$

- ▶ Equivalent regression statement:

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \gamma d + u,$$

where d is independent of error u , i.e., $d \perp u \mid X$.

- ▶ Propensity score matching and several other matching estimators require this stronger version.
- ▶ This assumption is untestable.

Assumption #2 – Overlap

- ▶ For all covariate values X ,

$$0 < P(d = 1 | X) < 1.$$

- ▶ Interpretation:
 - ▶ Every type of unit has a positive chance of being treated and untreated.
 - ▶ Treated units must have “neighbors” in the control group with similar X .
- ▶ Why necessary?
 - ▶ Without overlap, matching cannot produce valid counterfactuals.
 - ▶ If no untreated units exist for a treated X -type, the effect is not identified for them.

“Overlap” in Practice

- ▶ Exact overlap is rare—especially when:
 - ▶ X contains continuous variables,
 - ▶ X is high-dimensional, or
 - ▶ there is strong selection into treatment.
- ▶ In practice:
 - ▶ We match on units with *similar* values of X , not identical ones.
 - ▶ This introduces small-sample bias.
- ▶ Abadie and Imbens (2008) show:
 - ▶ Nearest-neighbor matching is biased but can be bias-corrected.
 - ▶ They provide analytical corrections and variance formulas.

Average Treatment Effect (ATE)

- ▶ Under unconfoundedness + overlap:

$$\begin{aligned}ATE(X = x) &= E[y(1) - y(0) \mid X = x] \\&= E[y \mid d = 1, X = x] - E[y \mid d = 0, X = x].\end{aligned}$$

- ▶ This means ATE for each $X = x$ is just the difference in means.
- ▶ To obtain the population ATE:

$$ATE = \int ATE(X = x) f_X(x) dx,$$

i.e., a weighted average over the distribution of X .

(See Roberts & Whited, p. 68.)

Difficulty with Exact Matching

- ▶ Exact matching requires:

$$X_i = X_j \quad \text{for a treated-control pair.}$$

- ▶ Problems:
 - ▶ In high-dimensional X , cells become very sparse ("curse of dimensionality").
 - ▶ With continuous variables, exact equality almost never occurs.
- ▶ Result:
 - ▶ Many treated units may have no valid matches.
 - ▶ Matching estimators become biased or undefined without smoothing / nearest-neighbor methods.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Matching on Covariates – Step #1

- ▶ The **first step** in matching: decide how to measure “closeness” between two observations in terms of their covariates.
- ▶ We choose a **distance metric**:

$$\|X_i - X_j\|$$

- ▶ Intuition:
 - ▶ This quantifies how similar observation i is to observation j based on their covariate vectors.
 - ▶ Observations with small distance are considered “good matches.”
- ▶ Example: Euclidean distance

$$\sqrt{(X_i - X_j)'(X_i - X_j)}.$$

- ▶ (We will later discuss why Euclidean distance can be problematic when covariates have different scales and why Mahalanobis distance is sometimes preferred.)

Matching on Covariates – Step #2

- ▶ For each observation i , find the M closest observations *with the opposite treatment status*.
- ▶ More precisely:
 - ▶ If $d_i = 1$ (treated), match to the M nearest untreated units.
 - ▶ If $d_i = 0$ (control), match to the M nearest treated units.
- ▶ Interpretation:
 - ▶ These M observations form our estimate of what i 's outcome *would have been* under the opposite treatment status.
 - ▶ Using multiple neighbors instead of just one (i.e., $M > 1$) reduces noise and variance.

Matching on Covariates – Step #3: Notation

- ▶ Let $l_m(i)$ denote the index of the m -th closest match to unit i among observations with $d \neq d_i$.
- ▶ Example:
 - ▶ Suppose $i = 4$ is treated.
 - ▶ $l_1(4)$: closest control observation to unit 4.
 - ▶ $l_2(4)$: second closest control unit to 4, etc.
- ▶ Define the set of the M closest matches:

$$L_M(i) = \{l_1(i), l_2(i), \dots, l_M(i)\}.$$

- ▶ This notation keeps track of which units we use to construct the counterfactual outcomes.

Matching on Covariates – Step #4

- ▶ For each unit i , construct estimates of the two potential outcomes:

$$\hat{y}_i(0) = \begin{cases} y_i & \text{if } d_i = 0 \text{ (we observe } y(0)\text{)}, \\ \frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 1 \text{ (impute } y(0)\text{)}. \end{cases}$$

$$\hat{y}_i(1) = \begin{cases} \frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 0 \text{ (impute } y(1)\text{)}, \\ y_i & \text{if } d_i = 1 \text{ (we observe } y(1)\text{)}. \end{cases}$$

- ▶ In words:
 - ▶ If unit i was treated, we observe $y(1)$ but must impute $y(0)$ using its matched controls.
 - ▶ If unit i was untreated, we observe $y(0)$ but must impute $y(1)$ using its matched treated units.

Interpretation...

$$\hat{y}_i(0) = \begin{cases} y_i & \text{if } d_i = 0, \\ \frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 1 \end{cases}$$

If observation i is treated: we observe its treated outcome $y(1)$, but we never observe its untreated outcome $y(0)$, so we construct it using the average outcome of the M closest

$$\hat{y}_i(1) = \begin{cases} \frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 0, \\ y_i & \text{if } d_i = 1 \end{cases}$$

If observation i is untreated: we observe its untreated outcome $y(0)$, but must impute $y(1)$ using the closest treated units.

Matching constructs a “synthetic twin” for each unit based on similarity in covariates.

Matching on Covariates – Average Treatment Effect (ATE)

- Once all missing potential outcomes are imputed, the ATE is:

$$\widehat{ATE} = \frac{1}{N} \sum_{i=1}^N [\hat{y}_i(1) - \hat{y}_i(0)].$$

- Interpretation:
 - For each unit: (observed outcome under actual treatment) minus (constructed counterfactual under the alternative).
 - Then simply average across all units.
- Under assumptions of unconfoundedness + overlap, this is a consistent estimator of the ATE.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Matching on Propensity Score – Step #1

- ▶ Another way to implement matching is to first estimate a **propensity score** and then match on it.
- ▶ The **propensity score** is:

$$ps(X) = P(d = 1 | X) = E[d | X].$$

- ▶ Intuition:
 - ▶ Instead of matching on the full k -dimensional covariate vector X ,
 - ▶ we match on a **single number** summarizing the likelihood of treatment.
- ▶ Estimation:
 - ▶ Can use Logit, Probit, OLS, machine learning models, etc.
 - ▶ Typically: Logit with flexible terms (polynomials, interactions).

Propensity Score – Step #2

- ▶ The key Rosenbaum–Rubin (1983) theorem:

$$(y(1), y(0)) \perp\!\!\!\perp d \mid X \quad \Rightarrow \quad (y(1), y(0)) \perp\!\!\!\perp d \mid ps(X).$$

- ▶ Meaning:
 - ▶ If treatment is unconfounded after conditioning on X ,
 - ▶ then conditioning on the single number $ps(X)$ is **sufficient** for identification.
- ▶ So we can:
 - ▶ Match using only $ps(X)$, instead of the entire covariate vector.
 - ▶ Or run a regression of y on d and include the propensity score as a control.

Propensity Score – Step #3

- ▶ Estimate $ps(X_i) = P(d_i = 1 | X_i)$ for every observation.
- ▶ Common approaches:
 - ▶ Logit (most common), Probit, or even OLS.
 - ▶ Add nonlinear or interaction terms for continuous covariates.
 - ▶ In large samples: ML methods
- ▶ The fitted value $\hat{ps}(X_i)$ gives the predicted probability of treatment for unit i .

Tangent About Step #3

- ▶ Include only covariates that predict treatment d .
- ▶ Why?
 - ▶ Variables unrelated to treatment assignment only add noise to the model.
 - ▶ Excluding irrelevant variables can improve the finite sample performance of matching.
- ▶ Practical implication:
 - ▶ Economic logic, institutional knowledge, and theory should guide which variables enter the propensity score.
 - ▶ This is not necessarily the same set of covariates that predict outcomes y .

Matching on $ps(X)$ – Remaining Steps...

- ▶ After estimating $ps(X)$, repeat the matching procedure but use the **difference in propensity scores** as the distance metric.
- ▶ Example:
 - ▶ If unit i is untreated,
 - ▶ choose M treated observations whose propensity scores are closest to $ps(X_i)$.
- ▶ This creates a one-dimensional matching problem that avoids the curse of dimensionality associated with high-dimensional X .

Propensity Score – Advantage #1

- ▶ Propensity scores reduce subjective choices in covariate matching.
 - ▶ No need to choose a multivariate distance metric.
 - ▶ No need to standardize or rescale variables.
 - ▶ No need to decide how to weight each covariate.
- ▶ Because matching is done on a single dimension, it is more transparent and easier to implement.
- ▶ Also helps avoid the “curse of dimensionality”: Matching in high-dimensional X becomes sparse; matching on $ps(X)$ does not.

Propensity Score – Advantage #2

- ▶ Instead of matching, we can directly estimate the ATE using the inverse probability weighting (IPW) formula:

$$ATE = E \left[\frac{d_i - ps(X_i)}{ps(X_i)(1 - ps(X_i))} y_i \right].$$

- ▶ This uses the propensity score to reweight observations so treated and untreated groups “look like” each other.
- ▶ See Angrist–Pischke (Section 3.3.2) for an intuitive interpretation based on residuals and orthogonality.

Why the IPW Estimator Works

- ▶ Key identity under unconfoundedness:

$$E[y(1)] = E\left[\frac{d_i}{ps(X_i)} y_i\right], \quad E[y(0)] = E\left[\frac{1 - d_i}{1 - ps(X_i)} y_i\right].$$

- ▶ Intuition:

- ▶ Treated units are “rare” when $ps(X)$ is small, so they receive larger weights.
- ▶ Untreated units are “rare” when $1 - ps(X)$ is small, so they receive larger weights.
- ▶ Weighting by the inverse propensity score constructs a **pseudo-population** where treatment is as-good-as random.
- ▶ $ATE = E[y(1)] - E[y(0)]$.
- ▶ Combine the two expressions:

$$ATE = E\left[\frac{d_i}{ps(X_i)} y_i\right] - E\left[\frac{1 - d_i}{1 - ps(X_i)} y_i\right].$$

- ▶ Rearranging:

$$ATE = E\left[\frac{d_i - ps(X_i)}{ps(X_i)(1 - ps(X_i))} y_i\right].$$

- ▶ IPW reweights each unit so that treated and untreated groups replicate the distribution of X in the population.
- ▶ After weighting, treatment is independent of X — just like a randomized experiment.

But There Is a Disadvantage (Sort of)?

- ▶ Sometimes variables do not predict treatment d but do improve prediction of the outcome y .
- ▶ Including these variables in covariate matching (or in regression) improves precision:
 - ▶ Same logic as adding controls in OLS to reduce residual variance.
- ▶ But if such variables do not affect treatment, they *should not* enter the propensity score.
- ▶ Angrist and Hahn (2004) show:
 - ▶ Using $ps(X)$ and *not* adding irrelevant covariates can yield **better finite-sample properties**.
 - ▶ Matching on the full set of X may actually increase noise.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Practical Considerations

- ▶ Matching involves a large number of choices that meaningfully affect results:
 - ▶ **Distance metric:** How do we measure similarity in X ?
 - ▶ **Number of matches:** 1 nearest neighbor or several?
 - ▶ **With or without replacement:** Can the same unit be reused?
 - ▶ **Which covariates X to match on?**
 - ▶ **Covariate vs. propensity score matching:** Which dimension to match on?
- ▶ These decisions directly affect bias, variance, and overlap—so matching requires careful design.

Choice of Distance Metric [Part 1]

- ▶ Simple Euclidean distance:

$$\|X_i - X_j\| = \sqrt{(X_i - X_j)'(X_i - X_j)}.$$

- ▶ Downside:
 - ▶ Variables with larger numeric scales dominate the distance.
 - ▶ Example: income measured in dollars swamps age measured in years.
 - ▶ Therefore Euclidean distance is rarely appropriate without standardization.
- ▶ So which variables have more influence?
 - ▶ Those with larger variance or measured in larger units.

Choice of Distance Metric [Part 2]

- ▶ Common improvements standardize by variances or covariance structure:

- ▶ **Abadie–Imbens (2006) metric:**

$$\|X_i - X_j\| = \sqrt{(X_i - X_j)' \text{diag}(\Sigma_X^{-1})(X_i - X_j)},$$

which rescales each variable by its variance.

- ▶ **Mahalanobis distance** (most widely used):

$$\|X_i - X_j\| = \sqrt{(X_i - X_j)' \Sigma_X^{-1} (X_i - X_j)}.$$

- ▶ Mahalanobis accounts for both scale differences and covariances between covariates.
 - ▶ Σ_X^{-1} : inverse of covariance matrix of covariates.

Choice of Matching Approach

- ▶ Should you match directly on covariates or on the propensity score?
 - ▶ Covariate matching preserves “local” similarity in each dimension.
 - ▶ Propensity score matching collapses all covariates into one probability.
 - ▶ But propensity scores require assuming a model for treatment.
- ▶ No single best choice:
 - ▶ Both have strengths and weaknesses depending on overlap, dimensionality, and sample size.
 - ▶ Best practice: check that results are robust across multiple matching strategies.

And How Many Matches? [Part 1]

- ▶ No universal rule; this is a classic **bias–variance tradeoff**:
 - ▶ **1 nearest neighbor** → minimal bias, but high variance.
 - ▶ **More neighbors** → more stable (lower variance), but possibly more biased.
- ▶ Why bias increases with more matches?
 - ▶ Additional neighbors are usually further away in X -space.

And How Many Matches? [Part 2]

- ▶ Two main matching rules:
 - ▶ **Nearest-neighbor**: pick the M closest matches regardless of distance.
 - ▶ **Caliper matching**: pick all matches within a distance threshold.
- ▶ Example of caliper:
 - ▶ Using a propensity score caliper of 0.01 means only matches with scores within 1 percentage point are allowed.
- ▶ Question: What is advantage of caliper matching?
 - ▶ It avoids “bad matches” even if they are the nearest neighbors.
 - ▶ Ensures matching only when overlap is meaningful.

And How Many Matches? [Part 3]

- ▶ Practical guidance:
 - ▶ Try several numbers of matches.
 - ▶ If results change substantially as radius or number of matches increases:
 - ▶ Matching quality is poor → bias risk high.
 - ▶ If estimates remain stable but precision improves:
 - ▶ Using more matches is acceptable.

With or Without Replacement? [Part 1]

- ▶ **With replacement:**

- ▶ A control unit can be used as a match more than once.
- ▶ Produces the best (closest) possible matches → lower bias.
- ▶ But reusing units reduces precision and increases variance.

- ▶ **Without replacement:**

- ▶ Each unit can be used only once.
- ▶ Ensures more diverse comparison units.
- ▶ But potentially increases bias when the best control is “used up.”

With or Without Replacement? [Part 2]

- ▶ Roberts–Whited recommend:
 - ▶ Use **matching with replacement**.
 - ▶ Bias is the primary concern; precision can be improved later.
 - ▶ Matching without replacement depends on order of matching, which introduces randomness and instability.

Which Covariates?

- ▶ Include all covariates that:
 - ▶ affect the outcome y , **and**
 - ▶ are correlated with treatment d .
- ▶ Why?
 - ▶ Omitting an X that drives both treatment and outcome \rightarrow omitted variable bias.
- ▶ But avoid covariates affected by the treatment:
 - ▶ These are “bad controls” and would block part of the treatment effect.
 - ▶ Use lagged covariates instead when possible.

Matches for Whom?

- ▶ **ATE**: match both treated and untreated units, imputing both counterfactuals.
- ▶ **ATT**: match only for treated units.
 - ▶ Appropriate when you care about the treatment effect for the treated population.
- ▶ **ATU**: match only for untreated units.
 - ▶ Rarely used but conceptually symmetric.
- ▶ Thus: your matching strategy determines the estimand.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Testing the “Overlap” Assumption

- ▶ Overlap (common support) requires:

$$0 < P(d = 1 \mid X = x) < 1 \quad \forall x.$$

- ▶ **If matching on a single covariate or on the propensity score:**
 - ▶ Plot the distribution of X (or $ps(X)$) for treated vs. control units.
 - ▶ Look for regions where one group has no support.
- ▶ **If matching on multiple covariates:**
 - ▶ Examine how “far apart” matched pairs are along each covariate.
 - ▶ For each covariate x , identify the worst matches:
$$\frac{|x_i - x_{I(i)}|}{\text{sd}(x)}.$$
 - ▶ Large standardized differences \rightarrow poor overlap for that variable.
- ▶ Goal:
 - ▶ Ensure there exist plausible counterparts for each treated unit.
 - ▶ Detect whether the matching estimator is extrapolating.

If There Is Lack of “Overlap”

- ▶ Lack of overlap means some treated observations have no comparable controls (or vice-versa).
- ▶ Remedies are somewhat subjective but widely used:
 - ▶ **Trim or discard** units with no good match (“common support trimming”).
 - ▶ Switch to **caliper matching** to avoid poor matches.
 - ▶ Use **propensity score matching** or **IPW** to reduce dimensionality.
 - ▶ Consider redefining the estimand: perhaps the ATE is not identified, but the ATT is.
- ▶ Key principle:
 - ▶ Better to estimate a credible effect for a smaller population than a biased ATE for the full sample.

Testing the “Unconfoundedness” Assumption

- ▶ Unconfoundedness requires:

$$(y(1), y(0)) \perp\!\!\!\perp d \mid X.$$

- ▶ **This is fundamentally untestable** because:
 - ▶ We never observe both potential outcomes for any unit.
 - ▶ We never observe the error term u .
 - ▶ Therefore, we cannot check whether treatment is independent of unobserved determinants of outcomes.
- ▶ Thus:
 - ▶ Any matching or propensity-score estimate is causal only **if the assumption is believed to hold**.
 - ▶ No statistical test can confirm this.

But There Are Other Things to Try...

- ▶ Although unconfoundedness is untestable, we can perform robustness and falsification checks analogous to natural experiments:
- ▶ **1. Timing tests**
 - ▶ Effects should appear only after treatment, not before.
 - ▶ A pre-trend or placebo effect suggests selection bias.
- ▶ **2. “Placebo” outcomes**
 - ▶ Test whether treatment affects variables that should not change.
 - ▶ Significant effects imply omitted variables or selection.
- ▶ **3. Heterogeneity tests**
 - ▶ Look at subsamples where theory predicts stronger or weaker effects.
 - ▶ If patterns are inconsistent with theory, matching may be invalid.
- ▶ These tests do *not* prove unconfoundedness, but they increase confidence in the credibility of the design.

Outline

Introduction to matching

Comparison to OLS regression

Key Limitation

How to do matching

Notation & assumptions

Matching on Covariates

Matching on Propensity Score

Practical considerations

Testing the assumptions

Key weaknesses and uses of matching

Weaknesses Reiterated [Part 1]

- ▶ Matching requires many subjective researcher choices:
 - ▶ choice of distance metric,
 - ▶ number of matches,
 - ▶ calipers,
 - ▶ replacement vs. no replacement,
 - ▶ covariate set,
 - ▶ choice of propensity score model (Logit? Probit? ML?).
- ▶ Different seemingly “reasonable” choices may yield different matches → **and therefore different treatment effect estimates.**
- ▶ In practice, matching methods lack the clear empirical guidance provided by approaches based on clean quasi-experimental variation (RD, IV, DiD).

Weaknesses Reiterated [Part 2]

- ▶ Matching does **not** solve the fundamental identification problem:
 - ▶ It does **not** solve simultaneity bias.
 - ▶ It does **not** eliminate omitted variable bias from unobservables.
 - ▶ It does **not** correct for measurement error.
- ▶ Matching is simply a **control strategy**—just like OLS:
 - ▶ OLS: controls through functional form.
 - ▶ Matching: controls by local comparisons.
- ▶ OLS and matching differ mainly in how they weight comparisons, but **both require unconfoundedness** to identify causal effects.

Tangent – Related Problem

- ▶ Researchers sometimes estimate:

$$y = \beta_0 + \beta_1 d + \beta_2 ps(X) + u,$$

where:

- ▶ d : treatment indicator,
- ▶ $ps(X)$: estimated probability of treatment.
- ▶ They then claim:
“Including the propensity score controls for selection bias, so β_1 is a causal effect.”
- ▶ **This claim is incorrect.** Why?

Tangent – Related Problem [Part 2]

- ▶ The assumption behind propensity scores is:

$$(y(1), y(0)) \perp\!\!\!\perp d \mid X.$$

- ▶ But the researcher regresses on **only** $ps(X)$, not on the full covariate vector X .
- ▶ Problem:
 - ▶ Controlling for $ps(X)$ in *regression* is not equivalent to matching or reweighting.
 - ▶ It does **not** eliminate bias from unobserved confounders.
 - ▶ It assumes X includes every variable that jointly affects d and y .
- ▶ Bottom line:
 - ▶ A complicated Logit does not magically create exogeneity.
 - ▶ Without unconfoundedness, neither propensity score matching nor regressions using $ps(X)$ identify causal effects.

Another Weakness – Inference

- ▶ Matching estimators often have complicated sampling distributions.
- ▶ Why inference is difficult:
 - ▶ Matching induces dependence between observations (matched units reused).
 - ▶ The matching algorithm itself creates additional randomness.
 - ▶ Analytic formulas for standard errors exist but are complex (Abadie & Imbens 2006, 2008).
- ▶ Bootstrapping often fails because matching is a non-smooth estimator.
- ▶ This makes inference less straightforward than regression or DiD.

Use as a Robustness Check

- ▶ Matching provides a **nonparametric** benchmark for OLS results:
 - ▶ It removes functional-form assumptions.
 - ▶ It forces comparisons only among similar units.
- ▶ If matching and OLS agree:
 - ▶ The OLS estimate is more credible.
- ▶ If they differ sharply:
 - ▶ OLS may be relying heavily on extrapolation or model assumptions.
- ▶ But Angrist–Pischke note:
 - ▶ With good covariates and flexible controls, differences are often small.

Use as Precursor to Regression [Part 1]

- ▶ Matching can help define a sample where **overlap holds**.
- ▶ Example:
 - ▶ Estimate the propensity score first.
 - ▶ Restrict sample to observations with:
$$0.10 < ps(X) < 0.90.$$
- ▶ Then run OLS, DiD, or panel regressions on the trimmed sample.
- ▶ Purpose:
 - ▶ Avoids using observations with almost no comparable counterparts.
 - ▶ Ensures treatment and control units come from similar regions of the covariate space.

Use as Precursor to Regression [Part 2]

- ▶ Another example:
 - ▶ Suppose firms in Industry X experience a shock.
 - ▶ Build a control group by matching only firms with similar size, leverage, profitability, etc.
 - ▶ Then estimate treatment effects on the matched sample.
- ▶ Matching provides a principled way to construct an economically comparable control group before running the main regression.

Matching – Practical Advice

- ▶ Stata's `psmatch2` (Leuven & Sianesi) is widely used:
 - ▶ Supports nearest-neighbor matching, kernel matching, radius (caliper) matching.
 - ▶ Provides matching diagnostics and estimates standard errors using Abadie–Imbens formulas.
- ▶ In R:
 - ▶ `MatchIt`, `Matching`, `twang`, `rbounds`.
- ▶ In Python:
 - ▶ `econml`, `causalml`, `DoWhy`.
- ▶ Best practice:
 - ▶ Try multiple matching strategies.
 - ▶ Report diagnostics and balance metrics.
 - ▶ Emphasize robustness rather than “one true” estimate.

Summary of Matching

- ▶ **Matching is a control strategy.**
 - ▶ It estimates treatment effects when treatment is *as good as random* after conditioning on observable covariates X .
 - ▶ Conceptually similar to OLS with controls—but avoids imposing functional-form assumptions about how X affects y .
- ▶ **What matching does not do:**
 - ▶ It does **not** fix identification problems caused by:
 - ▶ simultaneity,
 - ▶ omitted unobservables,
 - ▶ measurement error,
 - ▶ reverse causality.
 - ▶ Matching only controls for the variables you actually observe (X).

Summary of Matching

- ▶ **Many ways to implement matching:**
 - ▶ Match on covariates or on the propensity score.
 - ▶ Nearest-neighbor vs. caliper/radius matching.
 - ▶ With or without replacement; different distance metrics.
 - ▶ Because choices are subjective, different methods may yield different estimates.
- ▶ **Practical value: robustness and diagnostics.**
 - ▶ Matching provides a nonparametric check on OLS estimates.
 - ▶ When covariates are rich and OLS uses flexible controls, matching and OLS typically produce similar ATE estimates.
 - ▶ Large discrepancies usually indicate model misspecification or poor overlap.