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Matching Methods — Basic Idea [Part 1]

» Matching provides an intuitive way to estimate causal effects
when treatment is not randomly assigned.

» Core idea:
» For each treated unit, find one (or several) comparable untreated
units that look similar in observed characteristics X.

» These untreated “matches” serve as the counterfactual outcomes
that the treated units would have experienced had they not been
treated.

» The treatment effect is then the difference in outcomes y between
treated units and their matches.
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Matching Methods — Basic Idea [Part 2]

» More formally:

» For each value (or neighborhood) of X where both treated and
untreated units exist:

» Pair each treated unit with one or more untreated units that have
the same (or very similar) X.

» Compute the difference in outcomes y within each matched
pair/group.

» Averaging these within-X differences gives an estimate of the
Average Treatment Effect on the Treated (ATT).

» Key point: Matching replaces the missing counterfactual
outcome with outcomes from observational “clones” based on X.
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Matching Methods — Intuition

» What assumptions does matching rely on?
> (1) Treatment is not randomly assigned in the raw data.
P If treatment were random, treated and untreated groups would be
comparable without matching.

» Matching is needed precisely because treated units differ
systematically from untreated units.
> (2) Conditional on X, treatment is “as good as random.”

» Also known as Conditional Mean Independence (CMI) or
Selection on Observables.

> Formally: E[Y(0) | D =1,X] = E[Y(0) | D =0, X].

» This means untreated outcomes after conditioning on X provide
valid counterfactuals for treated units.
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Matching is a “Control Strategy”

» Matching is simply one way to “control for" observable
differences X between treated and untreated units.

» By conditioning on X, matching attempts to create treated and
untreated groups that are comparable, mimicking a randomized
experiment.

» What is another way to control for observable characteristics
when estimating treatment effects?
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Matching and OLS: Not That Different

» Another way to estimate the treatment effect while controlling
for covariates is simply:
» Run a regression of y on the treatment indicator and the
relevant X's.
» |If Conditional Mean Independence (CMI) holds given X, then OLS
delivers a valid causal effect.

» To mimic matching very closely:
» Include dummy variables for each value (or group) of X in the
regression.
» Then OLS estimates a treatment effect by comparing treated and
untreated units within each X-cell.

» This is essentially “parametric matching”: OLS restricts
comparisons to units that share the same X.

» So how are matching and OLS different if they both control
for X?
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Matching versus Regression

» A useful way to think about the difference:
» OLS is a weighted matching estimator.

» Both methods compare treated and untreated observations with
the same covariates.

» The key difference lies in how the comparisons are weighted
across different values of X.

» The weighting details can get technical:
> See Angrist & Pischke (Mostly Harmless Econometrics), Section
3.3.1.

» But the basic idea: matching and OLS emphasize different parts
of the data.
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Matching vs Regression — Example [Part 1]

» Consider an example with discrete covariates X:
» Step 1: Compute a simple matching estimator:

> For each treated unit, find untreated units with the same X.
P> Compute average differences in their outcomes.

» Step 2: Run OLS:

» Regress y on the treatment indicator.
> Add a full set of indicator variables for every value of X.

» Including X-indicators makes the OLS comparisons within each
X-cell—just like matching.

» This version of OLS is extremely flexible (nonparametric in X)
and conceptually close to matching.
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Matching vs Regression — Example [Part 2]

» Even in this setup, the matching and OLS estimates will
generally differ:
» Matching weights cells according to where the treated units
are.

> If many treated units share a particular value of X, that cell
receives more weight.

» OLS weights cells based on the amount of treatment
variation within each cell.

» Cells with an equal mix of treated and untreated observations
receive more weight.

» Cells with only treated or only untreated observations contribute
little or nothing.

» OLS and matching use the same comparisons but
emphasize different parts of the data.
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Matching vs Regression — Numerical lllustration

» Consider two covariate cells, X = 0 and X = 1, each with 100 observations:

Counts Mean outcomes
Cell Treated  Control | Treated y1(X)  Control yp(X)
X=0 80 20 10 8
X=1 20 80 6 8

> Within-cell treatment effects:
FX=0)=10-8=2, #(X=1)=6-3=3.
> Matching (ATT) weights by where treated units are:

80
w! = =0.8, wi =02,
80 + 20
——M
ATT =08-2402-3=22.
» OLS with X-dummies weights by treatment variation within cells:

po =08, p1 =02, w’® o N;pi(l—p).

Here,

wP® x100-0.8-0.2 =16, wP® = 100-0.2-0.8 =16 = wP® = wP = 0.5,

7OLS —05.240.5-3=25.

> Matching emphasizes cells with many treated units (X=0), while OLS emphasizes
cells with more balanced treatment variation, giving equal weight to X=0 and X=1.
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Matching vs Regression — Bottom Line

» Angrist & Pischke emphasize that:

» In most applications, the numerical differences between matching
and OLS tend to be small.

» Both rely critically on the same identifying assumption:
selection on observables (CMI).

» However, both approaches share a key limitation:
» They only control for observed covariates X.

» If unobserved variables jointly affect treatment and outcomes,
both matching and OLS are biased.
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Matching — Key Limitation [Part 1]

» What distinguishes matching from research designs such as 1V,
natural experiments, or regression discontinuity?
» Matching does not introduce any new exogenous variation.
» It simply reweights or reorganizes the existing data based on
observable characteristics X.

» Implication:
» If the original OLS regression suffers from endogeneity, matching
will generally suffer from the same endogeneity.
» Matching does not “solve” the bias—it only attempts to make
treated and untreated units more comparable conditional on
observed covariates.
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Matching — Key Limitation [Part 2]

> Why did we worry about OLS in the first place?
» When treatment is not randomly assigned, simply controlling for a
set of covariates X often does not restore exogeneity.

» Many important omitted variables may be unobserved, so
matching cannot adjust for them.

P Self-selection, anticipation effects, and reverse causality all remain
threats.
» Matching inherits all of these concerns.
» It improves balance in observables, but not in unobservables.

P (Regression discontinuity is different: treatment assignment is locally as
good as random by design.)
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Matching — Key Limitation [Part 3]

» Important reminders:
» Matching cannot fix:
P Simultaneity or reverse causality.

» Measurement error biases in treatment or outcome variables.

» Omitted variable bias caused by unobservables.

» Matching only controls for the variables you match on.
> “You cannot match on what you cannot measure.”
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Matching — So, What Good Is It? [Part 1]

» Given its limitations, one might think matching is not very useful:

» It is essentially another “control strategy,” similar in spirit to OLS.

» |t does not create quasi-experimental variation or solve
identification problems.

» |t does not overcome unobserved confounding.

» But matching does have several practical advantages.
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Matching — So, What Good Is It? [Part 2]

» Matching can still be valuable in empirical practice:

» Robustness checks: Matching provides a nonparametric
benchmark against the regression estimate.

» Improved covariate balance: Matching helps reduce extreme
extrapolation and ensures treated and untreated units are
compared only where support overlaps.

» Finite-sample improvement: Matching sometimes performs
better than OLS when the functional form of the regression is
misspecified.

> Diagnostic tool: Identifies regions of poor overlap (common
support problems) that OLS masks.

» More on these benefits later.
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First, Some Notation

> We study the causal effect of a binary treatment d:
> d =1: treated
»> d = 0: untreated (control)

» Potential outcomes:

> y(1): outcome unit would experience under treatment
> y(0): outcome unit would experience under control

» Observed outcome:
y=d-y(1)+(1—d) y(0)
» Observable covariates:
X =(x1,...,Xk)

These are variables we will match on.
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Identification Assumptions

» To estimate treatment effects using matching, we need two key
assumptions:

> Assumption 1: Unconfoundedness (Selection on
Observables)

» Assumption 2: Overlap (Common Support)

P> These assumptions together ensure that:

» Treated and control units are comparable within levels of X
» There exist control units “similar enough” to every treated unit
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Assumption #1 — Unconfoundedness

» Formal statement:

(v(0),y(1)) L d|X

> Interpretation:

» Once we condition on observable covariates X, treatment behaves
“as if random.”

» No remaining unobserved selection into treatment after
conditioning on X.

» Implication:
» Within each value of X, the untreated group can stand in for the
unobserved counterfactual for the treated group.

» This makes matching possible.
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“Unconfoundedness” Explained

» Stronger than Conditional Mean Independence:
Ely(0) | d =1,X] = E[y(0) | d = 0, X].
» Equivalent regression statement:
y =50+ fxa+- -+ Brxk +vd + u,
where d is independent of error u, i.e., d L u | X.

» Propensity score matching and several other matching estimators
require this stronger version.

» This assumption is untestable.
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Assumption #2 — Overlap

» For all covariate values X,
O<Pd=1|X)<L1.

P Interpretation:

» Every type of unit has a positive chance of being treated and
untreated.

» Treated units must have “neighbors” in the control group with
similar X.

» Why necessary?

» Without overlap, matching cannot produce valid counterfactuals.

» If no untreated units exist for a treated X-type, the effect is not
identified for them.
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“Overlap” in Practice

» Exact overlap is rare—especially when:
» X contains continuous variables,

» X is high-dimensional, or
» there is strong selection into treatment.
» In practice:
» We match on units with similar values of X, not identical ones.
» This introduces small-sample bias.

» Abadie and Imbens (2008) show:

» Nearest-neighbor matching is biased but can be bias-corrected.

» They provide analytical corrections and variance formulas.
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Average Treatment Effect (ATE)

» Under unconfoundedness + overlap:

ATE(X = x) = E[y(1) = y(0) | X = x]
=Ely|d=1,X=x]—E[y|d=0,X=x].

» This means ATE for each X = x is just the difference in means.

» To obtain the population ATE:

ATE—/ATE( x) fx(x) dx,

i.e., a weighted average over the distribution of X.

(See Roberts & Whited, p. 68.)
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Difficulty with Exact Matching

» Exact matching requires:

Xi = X; for a treated-control pair.

» Problems:

» In high-dimensional X, cells become very sparse (“curse of
dimensionality”).

» With continuous variables, exact equality almost never occurs.
> Result:
» Many treated units may have no valid matches.

» Matching estimators become biased or undefined without
smoothing / nearest-neighbor methods.

30/77



Outline

How to do matching

Matching on Covariates

31/77



Matching on Covariates — Step #1

>

The first step in matching: decide how to measure “closeness”
between two observations in terms of their covariates.

We choose a distance metric:
1Xi — Xl

Intuition:
» This quantifies how similar observation i is to observation j based
on their covariate vectors.

» Observations with small distance are considered “good matches.”
Example: Euclidean distance

VX = X)X - ).

(We will later discuss why Euclidean distance can be problematic
when covariates have different scales and why Mahalanobis
distance is sometimes preferred.)
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Matching on Covariates — Step #2

» For each observation /, find the M closest observations with the
opposite treatment status.

» More precisely:
» If d; = 1 (treated), match to the M nearest untreated units.
» If d;i = 0 (control), match to the M nearest treated units.

» Interpretation:

» These M observations form our estimate of what /'s outcome
would have been under the opposite treatment status.

» Using multiple neighbors instead of just one (i.e., M > 1) reduces
noise and variance.

33/77



Matching on Covariates — Step #3: Notation

» Let /(i) denote the index of the m-th closest match to unit /
among observations with d # d;.

> Example:
» Suppose i = 4 is treated.

» 1(4): closest control observation to unit 4.

> /»(4): second closest control unit to 4, etc.

» Define the set of the M closest matches:

Lm(i) = {h(i), (i), - .-, Im(i)}-

» This notation keeps track of which units we use to construct the
counterfactual outcomes.

34/77



Matching on Covariates — Step #4

» For each unit /, construct estimates of the two potential

outcomes:
9:(0) Yi if di =0 (we observe y(0)),
Yi = . .
& Yjetwnyyi if di=1 (impute y(0)).

yi if di =1 (we observe y(1)).

Pi(1) = {Alﬂ 2jery(ny ¥ ifdi =0 (impute y(1)),

» |n words:

> If unit i was treated, we observe y(1) but must impute y(0) using
its matched controls.

» If unit i was untreated, we observe y(0) but must impute y(1)
using its matched treated units.
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Interpretation...

Yi
yi(0) = 1
IDIR’
JELm(P)
. Z i
Yi

if d; =0,
ifdi =1
if d; =0,
if di =1

If observation i is treated: we ob-
serve its treated outcome y(1), but
we never observe its untreated out-
come y(0), so we construct it using
the average outcome of the M closest

If observation i is untreated: we ob-
serve its untreated outcome y(0), but
must impute y(1) using the closest
treated units.

Matching constructs a “synthetic twin” for each unit based on

similarity in covariates.
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Matching on Covariates — Average Treatment Effect (ATE)

» Once all missing potential outcomes are imputed, the ATE is:

=

ATE= Z[y, ~ (0]

» Interpretation:

» For each unit: (observed outcome under actual treatment) minus
(constructed counterfactual under the alternative).

» Then simply average across all units.

» Under assumptions of unconfoundedness + overlap, this is a
consistent estimator of the ATE.
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Matching on Propensity Score — Step #1

» Another way to implement matching is to first estimate a
propensity score and then match on it.

» The propensity score is:
ps(X)=P(d=1|X)=E[d]| X].

» Intuition:

» Instead of matching on the full k-dimensional covariate vector X,

» we match on a single number summarizing the likelihood of
treatment.

» Estimation:

» Can use Logit, Probit, OLS, machine learning models, etc.

> Typically: Logit with flexible terms (polynomials, interactions).
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Propensity Score — Step #2

» The key Rosenbaum—Rubin (1983) theorem:

(r(1),y(0)) Ld[X = (y(1),y(0)) L d| ps(X).
» Meaning:
» If treatment is unconfounded after conditioning on X,

> then conditioning on the single number ps(X) is sufficient for
identification.

» So we can:
» Match using only ps(X), instead of the entire covariate vector.

» Or run a regression of y on d and include the propensity score as
a control.
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Propensity Score — Step #3

» Estimate ps(X;) = P(d; = 1| X;) for every observation.

» Common approaches:
> Logit (most common), Probit, or even OLS.

» Add nonlinear or interaction terms for continuous covariates.

» In large samples: ML methods

» The fitted value ps(X;) gives the predicted probability of
treatment for unit /.
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Tangent About Step #3

» Include only covariates that predict treatment d.

> Why?
» Variables unrelated to treatment assignment only add noise to the
model.

» Excluding irrelevant variables can improve the finite sample
performance of matching.

» Practical implication:

» Economic logic, institutional knowledge, and theory should guide
which variables enter the propensity score.

» This is not necessarily the same set of covariates that predict
outcomes y.
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Matching on ps(X) — Remaining Steps. . .

» After estimating ps(X), repeat the matching procedure but use
the difference in propensity scores as the distance metric.

> Example:
» |f unit / is untreated,
» choose M treated observations whose propensity scores are closest

to ps(X;).

P> This creates a one-dimensional matching problem that avoids the
curse of dimensionality associated with high-dimensional X.
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Propensity Score — Advantage #1

P Propensity scores reduce subjective choices in covariate
matching.

» No need to choose a multivariate distance metric.
» No need to standardize or rescale variables.
» No need to decide how to weight each covariate.

» Because matching is done on a single dimension, it is more
transparent and easier to implement.

» Also helps avoid the “curse of dimensionality”: Matching in
high-dimensional X becomes sparse; matching on ps(X) does
not.
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Propensity Score — Advantage #2

» Instead of matching, we can directly estimate the ATE using the
inverse probability weighting (IPW) formula:
d,' — pS(X,') Vi

ps(Xi)(1 — ps(X;))™"

P This uses the propensity score to reweight observations so treated
and untreated groups “look like" each other.

ATE =E

» See Angrist—Pischke (Section 3.3.2) for an intuitive interpretation
based on residuals and orthogonality.
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Why the IPW Estimator Works

» Key identity under unconfoundedness:

e = E[n] . EOI=E[ ).

» Intuition:

> Treated units are “rare” when ps(X) is small, so they receive larger weights.

> Untreated units are “rare” when 1 — ps(X) is small, so they receive larger
weights.
P> Weighting by the inverse propensity score constructs a pseudo-population
where treatment is as-good-as random.
> ATE = E[y(1)] — E[y(0)]-
» Combine the two expressions:

ATE = E{ di y,-:| = E[l_id"y,} .
ps(X;) 1 - ps(X;)
» Rearranging:
ATE = E[—d" — ps(Xi) y,-] :
ps(X;)(1 — ps(X;))

» IPW reweights each unit so that treated and untreated groups replicate the
distribution of X in the population.

> After weighting, treatment is independent of X — just like a randomized
experiment.
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But There Is a Disadvantage (Sort of)?

» Sometimes variables do not predict treatment d but do improve
prediction of the outcome y.

» Including these variables in covariate matching (or in regression)
improves precision:

» Same logic as adding controls in OLS to reduce residual variance.

» But if such variables do not affect treatment, they should not
enter the propensity score.

» Angrist and Hahn (2004) show:

» Using ps(X) and not adding irrelevant covariates can yield better
finite-sample properties.

» Matching on the full set of X may actually increase noise.
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Practical Considerations

» Matching involves a large number of choices that meaningfully
affect results:

» Distance metric: How do we measure similarity in X7
Number of matches: 1 nearest neighbor or several?
With or without replacement: Can the same unit be reused?

Which covariates X to match on?

vV v.v .y

Covariate vs. propensity score matching: Which dimension to
match on?

» These decisions directly affect bias, variance, and overlap—so
matching requires careful design.
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Choice of Distance Metric [Part 1]

» Simple Euclidean distance:

1X: = X1 = /(X = XX — X;).

» Downside:
» Variables with larger numeric scales dominate the distance.

» Example: income measured in dollars swamps age measured in
years.

» Therefore Euclidean distance is rarely appropriate without
standardization.

» So which variables have more influence?
» Those with larger variance or measured in larger units.
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Choice of Distance Metric [Part 2]

» Common improvements standardize by variances or covariance
structure:

» Abadie-Imbens (2006) metric:

1% = Xl = /(X — X;)diag(Zx1)(X; - X)),

which rescales each variable by its variance.

> Mahalanobis distance (most widely used):

1 = X1 =\ (X = XY ER (X - X).

» Mahalanobis accounts for both scale differences and covariances
between covariates.

> Z;l: inverse of covariance matrix of covariates.
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Choice of Matching Approach

» Should you match directly on covariates or on the propensity
score?

» Covariate matching preserves “local” similarity in each dimension.

» Propensity score matching collapses all covariates into one
probability.

» But propensity scores require assuming a model for treatment.

» No single best choice:

» Both have strengths and weaknesses depending on overlap,
dimensionality, and sample size.

» Best practice: check that results are robust across multiple
matching strategies.
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And How Many Matches? [Part 1]

» No universal rule; this is a classic bias—variance tradeoff:
» 1 nearest neighbor — minimal bias, but high variance.

> More neighbors — more stable (lower variance), but possibly
more biased.

» Why bias increases with more matches?
» Additional neighbors are usually further away in X-space.
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And How Many Matches? [Part 2]

» Two main matching rules:
» Nearest-neighbor: pick the M closest matches regardless of
distance.

» Caliper matching: pick all matches within a distance threshold.

» Example of caliper:

» Using a propensity score caliper of 0.01 means only matches with
scores within 1 percentage point are allowed.

» Question: What is advantage of caliper matching?

» |t avoids “bad matches” even if they are the nearest neighbors.
» Ensures matching only when overlap is meaningful.
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And How Many Matches? [Part 3]

» Practical guidance:
» Try several numbers of matches.

» If results change substantially as radius or number of matches
increases:

» Matching quality is poor — bias risk high.

P |f estimates remain stable but precision improves:
» Using more matches is acceptable.
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With or Without Replacement? [Part 1]

> With replacement:
» A control unit can be used as a match more than once.

> Produces the best (closest) possible matches — lower bias.

» But reusing units reduces precision and increases variance.
> Without replacement:

» Each unit can be used only once.

» Ensures more diverse comparison units.

» But potentially increases bias when the best control is “used up.”
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With or Without Replacement? [Part 2]

» Roberts—Whited recommend:
» Use matching with replacement.

» Bias is the primary concern; precision can be improved later.

» Matching without replacement depends on order of matching,
which introduces randomness and instability.
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Which Covariates?

» Include all covariates that:

» affect the outcome y, and
P> are correlated with treatment d.

> Why?
» Omitting an X that drives both treatment and outcome —
omitted variable bias.

» But avoid covariates affected by the treatment:

» These are “bad controls” and would block part of the treatment
effect.
» Use lagged covariates instead when possible.
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Matches for Whom?

» ATE: match both treated and untreated units, imputing both
counterfactuals.

» ATT: match only for treated units.

» Appropriate when you care about the treatment effect for the
treated population.

» ATU: match only for untreated units.
» Rarely used but conceptually symmetric.

» Thus: your matching strategy determines the estimand.
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Testing the “Overlap” Assumption
» Overlap (common support) requires:
0<P(d=1|X=x)<1 Vx.

> If matching on a single covariate or on the propensity
score:
> Plot the distribution of X (or ps(X)) for treated vs. control units.

» Look for regions where one group has no support.

» If matching on multiple covariates:
» Examine how “far apart” matched pairs are along each covariate.

» For each covariate x, identify the worst matches:
x; — X/(i)|
sd(x)

» |arge standardized differences — poor overlap for that variable.

> Goal:
» Ensure there exist plausible counterparts for each treated unit.
» Detect whether the matching estimator is extrapolating.
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If There Is Lack of “Overlap”

» Lack of overlap means some treated observations have no
comparable controls (or vice-versa).

P> Remedies are somewhat subjective but widely used:

» Trim or discard units with no good match (“common support
trimming”).

» Switch to caliper matching to avoid poor matches.
» Use propensity score matching or IPW to reduce dimensionality.

» Consider redefining the estimand: perhaps the ATE is not
identified, but the ATT is.

» Key principle:
» Better to estimate a credible effect for a smaller population than a
biased ATE for the full sample.
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Testing the “Unconfoundedness” Assumption

» Unconfoundedness requires:

(y(1),y(0)) 1L d [ X.

» This is fundamentally untestable because:
» We never observe both potential outcomes for any unit.

» We never observe the error term u.

» Therefore, we cannot check whether treatment is independent of
unobserved determinants of outcomes.

» Thus:

» Any matching or propensity-score estimate is causal only if the
assumption is believed to hold.
» No statistical test can confirm this.
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But There Are Other Things to Try. ..

» Although unconfoundedness is untestable, we can perform
robustness and falsification checks analogous to natural
experiments:

> 1. Timing tests
» Effects should appear only after treatment, not before.
» A pre-trend or placebo effect suggests selection bias.

> 2. “Placebo” outcomes

» Test whether treatment affects variables that should not change.
» Significant effects imply omitted variables or selection.

» 3. Heterogeneity tests

» Look at subsamples where theory predicts stronger or weaker
effects.
» |f patterns are inconsistent with theory, matching may be invalid.

» These tests do not prove unconfoundedness, but they increase
confidence in the credibility of the design.

6477



Outline

Key weaknesses and uses of matching

65 /77



Weaknesses Reiterated [Part 1]

» Matching requires many subjective researcher choices:

>

\ A A A {

choice of distance metric,

number of matches,

calipers,

replacement vs. no replacement,

covariate set,

choice of propensity score model (Logit? Probit? ML?).

» Different seemingly “reasonable” choices may yield different
matches — and therefore different treatment effect
estimates.

P In practice, matching methods lack the clear empirical guidance

provided by approaches based on clean quasi-experimental
variation (RD, IV, DiD).
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Weaknesses Reiterated [Part 2]

» Matching does not solve the fundamental identification problem:
> |t does not solve simultaneity bias.

» It does not eliminate omitted variable bias from unobservables.
» |t does not correct for measurement error.
» Matching is simply a control strategy—just like OLS:
» OLS: controls through functional form.
» Matching: controls by local comparisons.

» OLS and matching differ mainly in how they weight comparisons,
but both require unconfoundedness to identify causal effects.
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Tangent — Related Problem

> Researchers sometimes estimate:

y = Bo + p1d + Pops(X) + u,

where:

> d: treatment indicator,
> ps(X): estimated probability of treatment.

» They then claim:
“Including the propensity score controls for selection bias, so
(1 is a causal effect.”

» This claim is incorrect. Why?
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Tangent — Related Problem [Part 2]

» The assumption behind propensity scores is:

(y(1),y(0)) 1L d [ X.

» But the researcher regresses on only ps(X), not on the full
covariate vector X.

» Problem:

» Controlling for ps(X) in regression is not equivalent to matching
or reweighting.

> It does not eliminate bias from unobserved confounders.
> It assumes X includes every variable that jointly affects d and y.

> Bottom line:

» A complicated Logit does not magically create exogeneity.
» Without unconfoundedness, neither propensity score matching nor
regressions using ps(X) identify causal effects.
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Another Weakness — Inference

» Matching estimators often have complicated sampling
distributions.

» Why inference is difficult:
» Matching induces dependence between observations (matched
units reused).

» The matching algorithm itself creates additional randomness.

» Analytic formulas for standard errors exist but are complex
(Abadie & Imbens 2006, 2008).

» Bootstrapping often fails because matching is a non-smooth
estimator.

» This makes inference less straightforward than regression or DiD.
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Use as a Robustness Check

» Matching provides a nonparametric benchmark for OLS results:
» |t removes functional-form assumptions.

» |t forces comparisons only among similar units.

» If matching and OLS agree:
» The OLS estimate is more credible.

» If they differ sharply:
» OLS may be relying heavily on extrapolation or model
assumptions.

» But Angrist—Pischke note:

» With good covariates and flexible controls, differences are often
small.
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Use as Precursor to Regression [Part 1]

» Matching can help define a sample where overlap holds.
> Example:
» Estimate the propensity score first.

» Restrict sample to observations with:

0.10 < ps(X) < 0.90.

» Then run OLS, DiD, or panel regressions on the trimmed sample.
» Purpose:

> Avoids using observations with almost no comparable
counterparts.

» Ensures treatment and control units come from similar regions of
the covariate space.
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Use as Precursor to Regression [Part 2]

» Another example:

» Suppose firms in Industry X experience a shock.

» Build a control group by matching only firms with similar size,
leverage, profitability, etc.

» Then estimate treatment effects on the matched sample.

» Matching provides a principled way to construct an economically
comparable control group before running the main regression.
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Matching — Practical Advice

> Stata's psmatch2 (Leuven & Sianesi) is widely used:

» Supports nearest-neighbor matching, kernel matching, radius
(caliper) matching.

» Provides matching diagnostics and estimates standard errors using
Abadie-Imbens formulas.

» |In R:
> MatchIt, Matching, twang, rbounds.

» In Python:

» econml, causalml, DoWhy.

» Best practice:
» Try multiple matching strategies.

» Report diagnostics and balance metrics.

» Emphasize robustness rather than “one true” estimate.
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Summary of Matching

» Matching is a control strategy.

P |t estimates treatment effects when treatment is as good as
random after conditioning on observable covariates X.

» Conceptually similar to OLS with controls—but avoids imposing
functional-form assumptions about how X affects y.

» What matching does not do:
» |t does not fix identification problems caused by:

> simultaneity,

> omitted unobservables,
> measurement error,

> reverse causality.

> Matching only controls for the variables you actually observe (X).
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Summary of Matching

> Many ways to implement matching:
» Match on covariates or on the propensity score.

» Nearest-neighbor vs. caliper/radius matching.
» With or without replacement; different distance metrics.

» Because choices are subjective, different methods may yield
different estimates.

» Practical value: robustness and diagnostics.
» Matching provides a nonparametric check on OLS estimates.

» When covariates are rich and OLS uses flexible controls, matching
and OLS typically produce similar ATE estimates.

» Large discrepancies usually indicate model misspecification or poor
overlap.
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