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Why the Regression is Helpful

Post (1) Pre (2) Diff (1)− (2)

Treatment (a) β0 + β1 + β2 + β3 β0 + β2 β1 + β3
Control (b) β0 + β1 β0 β1

Diff. (a)− (b) β2 + β3 β2 β3

▶ Some papers report this simple two-by-two table as their
estimate.

▶ Advantages of using regression:
▶ Can modify to test timing of treatment. (will discuss later)
▶ Allows adding additional controls, X .
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Adding Controls to Difference-in-Difference

▶ Easy to add controls in regression:

yit = β0 + β1pt + β2di + β3(di × pt) + XΓ + uit

▶ Important to avoid adding controls affected by treatment
(Angrist-Pischke term this “bad control”).
▶ You won’t be able to get a consistent estimate of β3 from

estimating the equation
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Example of a Bad Control

A policy is introduced at time t = 1 for a “treated” group; another group remains
untreated. We observe the outcome yit in periods t = 0 (pre) and t = 1 (post).
We also observe a covariate Xit measured at post-treatment (so it can be affected
by treatment).

Outcome yit Covariate Xi, t=1

Unit t = 0 t = 1 (Post)

Treated (i=1) 10 15 20
Control (i=2) 12 14 18

True treatment effect: (15− 10)− (14− 12) = 3.

Suppose we control for post-treatment covariate Xi,1 in the regression:

yit = β0 + β1pt + β2di + β3 (di × pt) + γ Xi1 + uit .

Because Xi1 is affected by the treatment (for treated: X=20 vs control X=18),
controlling for it will “soak up” some of the treatment’s effect and bias β3.

Result: Estimated β3 will be less than the true 3 (say ≈ 2) because including Xi1

removes part of the effect channel from treatment → X → y .
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When Controls are Appropriate

▶ Two main reasons to add controls:
▶ Improve precision by reducing standard errors.
▶ Restore “random” assignment of treatment.
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#1 – To Improve Precision via Controls
▶ When treatment is randomized, adding baseline covariates that predict the

outcome can reduce residual variation (“noise”). That means you get more
precise estimates (smaller standard errors).

▶ Should adding controls change the treatment effect estimate?
▶ If treatment is truly random and the only difference between treatment

and control is the treatment itself, then in expectation the coefficient on
the treatment should remain the same regardless of additional controls.

▶ The added controls should reduce variance, not introduce bias — they
help precision, not identification.

▶ When might the estimate change when you add controls?
▶ If treatment isn’t fully random, the controls may absorb part of the bias.
▶ Or you might have included a “bad control” — a variable that itself is

influenced by the treatment. Controlling for such a variable can distort
the treatment effect estimate.

▶ Practical advice:
▶ Present results both without and with control.
▶ Check that added controls are pre-treatment (ex-ante) and not affected

by the treatment.
▶ If the treatment effect changes substantially when adding controls,

investigate why: might be imbalance, omitted confounding, or bad
controls.
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Example – Improving Precision

▶ Suppose you have firm-level panel data.
▶ Some natural experiment “treats” some firms but not others.

▶ Could estimate standard difference-in-differences.

yit = β0 + β1pt + β2di + β3(di × pt) + uit

▶ Could add fixed effects (like firm and year FE) for more precise
estimate.

▶ pt is collinear with year FE (doesn’t vary across firms).
▶ di is collinear with firm FE (doesn’t vary across time for each

firm).

▶ So, you should estimate:

yit = β0 + β3(di × pt) + αi + δt + uit

▶ αi : control for treatment
▶ δt : control for post-treatment
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Generalized Difference-in-Differences

▶ Advantage: can improve precision and provide better model fit.

▶ Instead of assuming all firms in a group share the same baseline
y , firm fixed effects let each firm have its own starting level.

▶ Instead of assuming the same pre/post change for everyone, time
fixed effects allow each year to have its own mean outcome.
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#2 – Restoring Randomness of Treatment

▶ In observational settings, treatment is often not randomly assigned.

▶ Example: Firms with high x (e.g., size, leverage, productivity)
may be more likely to receive the treatment.

▶ If the same x also predicts trends in y (e.g., outcomes grow faster for
large firms), then treatment and outcome trends are confounded.

⇒ Differences in y may reflect differences in x , not causal impact of
treatment.

▶ Including x as a control can restore conditional randomness:

Di ⊥ ui | xi

That is, once we control for x , treatment assignment behaves “as if
random.”

▶ Then, comparing treated and untreated firms with similar x yields a
valid estimate of the treatment effect.
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Example – Restoring Randomness
▶ A new regulation affects some firms but not others.

▶ The regulation is meant to be random, but in practice, larger
firms are more likely to be affected.

▶ Firm size (x) also influences y (e.g., profitability or compliance
cost trends).

▶ Firm size is determined before the regulation and is not affected
by it (a pre-treatment variable).

▶ If these statements hold:
▶ treatment depends on firm size,
▶ firm size affects y , and
▶ firm size is exogenous to the treatment,

then adding firm size as a control:

yit = α+ βDi + γSizei + ui

helps “restore randomness” — treatment is random conditional on
size.

▶ This correction isolates the within-size variation in treatment,
removing confounding bias.
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Controls Continued. . .

▶ But suppose firm size itself changes as a result of the new regulation:

▶ Then current size is a post-treatment variable.
▶ Controlling for it would remove part of the treatment’s effect on y

— a classic bad control problem.

▶ Alternative: Use only pre-treatment size and allow its effect to differ
after treatment:

yit = αi + λt + β(Di × Postt) + γSizei, pre + δ(Sizei, pre × Postt) + uit

▶ This does two things:

▶ Controls for selection — treatment may depend on pre-treatment
size.

▶ Controls for differential trends — large vs. small firms may
follow different post-treatment paths even without treatment.

▶ Because Sizei, pre is measured before treatment, it’s not affected by
treatment, avoiding endogeneity.
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Restoring Randomness – Caution!

▶ Key idea: Adding controls can, in principle, make treatment “as-if
random” once we condition on them.

▶ In practice, this is rarely convincing. Because:

▶ We usually cannot verify that all sources of non-random
assignment are captured by observables.

▶ If treatment depends on both observable and unobservable factors
(e.g., firm quality, management skill), controlling for observables
alone won’t restore true randomness.

▶ The identifying assumption becomes:

E [uit | Di , xi ] = E [uit | xi ],

which is strong and often implausible without very specific
institutional knowledge.
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Restoring Randomness – Caution!

▶ When might it be credible?

▶ When the source of non-randomness is narrow and
well-understood — for example, treatment depends only on one
known variable (like firm size or a cutoff rule).

▶ Regression Discontinuity (RD) is the classic example:
▶ Assignment is non-random overall (higher x ⇒ more likely

treated),
▶ But around a threshold, treatment is “as if random” once you

control finely for x .
▶ Nearby units differ only by whether they fall just above or below

the cutoff.

▶ “Restoring randomness” by adding controls is theoretically neat but
empirically fragile—plausible only when the non-randomness
mechanism is simple and observable.
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Be Careful About Standard Errors

▶ When you have multiple pre- and post-treatment periods
(panel data), standard OLS formulas assume that all residuals are
independent.

▶ But in DiD settings, that assumption is usually violated:
▶ Errors for the same firm (or region, or unit) are often serially

correlated over time.
▶ If you treat each time–unit observation as independent, your

standard errors will be far too small ⇒ you’ll overstate statistical
significance.

17 / 77



Be Careful About Standard Errors

▶ Two standard fixes:

1. Cluster standard errors at the unit level: Allows arbitrary
correlation of residuals over time within each firm (but assumes
independence across firms).

V̂ (β̂) = (X ′X )−1

(∑
i

X ′
i ûi û

′
iXi

)
(X ′X )−1

2. Collapse to one observation per unit: Compute pre- vs.
post-treatment means for each unit, then estimate DiD on these
means. This makes the data cross-sectional and avoids serial
correlation altogether.

▶ Both methods give you correct inference for the DiD coefficient β̂3, but
the clustered SE approach retains all data and is usually preferred.
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Serial Correlation Bias – Visual Intuition

Time

Outcome y

Independent errors

Correlated errors

▶ Without clustering, we treat the red series as if each point were
independent—even though they move together over time—leading to
under-estimated SEs and inflated t-statistics.
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Multiple Treatment Events

▶ In many real-world settings, a policy or regulation isn’t adopted everywhere
at once:

▶ Instead, it’s implemented in different places at different times.

▶ These are called staggered adoption or multiple-event DiD designs.

▶ Conceptually, each adoption acts like a small “natural experiment”:

Groupg treated at time Tg

and other groups that haven’t yet been treated can serve as controls for that
group at that time.

▶ Having many such events can make the DiD design more robust and

empirically credible:

▶ Provides repeated tests of the same hypothesis across groups and times.
▶ Helps average out idiosyncratic shocks that might bias a single-event study.
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How Multiple Events Strengthen Identification

1. Replication across time and groups:

▶ If similar treatment effects are observed across many adoption dates, it’s less
likely that results are driven by a single shock or coincidence.

2. More demanding test of parallel trends:

▶ Each treated group can be compared to not-yet-treated groups in the same
year.

▶ For parallel trends to be violated, the bias would need to occur every time a
group is treated — much less plausible.

3. More efficient estimation:

▶ Each adoption contributes to the estimation of the treatment effect.
▶ Increases statistical power and precision relative to a single event.

4. Built-in falsification checks:

▶ You can examine pre-trends separately for each event cohort.
▶ If pre-trends are flat for all cohorts, that’s strong evidence of validity.

Multiple staggered events turn one DiD test into a series of “mini natural
experiments” that reinforce each other.
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Example

▶ Suppose 50 U.S. states adopt a new disclosure rule between 1995 and
2010. If you find that:

▶ Firms’ liquidity rises after adoption,
▶ The pattern is consistent across states and adoption years,
▶ And no pre-trends appear before any state’s adoption,

▶ Then it’s hard to believe that 50 unrelated shocks all just happened to
make liquidity rise in exactly those years when each state adopted the
rule.

▶ Caveat: Having many events doesn’t automatically guarantee validity:

▶ If adoption timing is systematically related to unobserved trends
(e.g., states adopt after prior growth spurts), bias can still exist.

▶ But with multiple, dispersed adoption dates, such coincidences
must repeat many times, which makes the violation less plausible
and easier to detect with pre-trend checks.
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Estimation with Multiple Events

▶ When a treatment (e.g., new regulation) occurs in different years for
different groups, we can extend DiD easily.

▶ The simplest implementation follows Bertrand and Mullainathan
(2003):

▶ Stack all groups and periods together.
▶ Include time fixed effects to absorb common shocks.
▶ Include cohort (group) fixed effects to absorb permanent

differences across groups.
▶ Estimate one common treatment indicator that turns on when

each group becomes treated.

▶ This yields a single β̂ — an average treatment effect across all events.
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Multiple Events [Part 1]

▶ The regression model:

yict = βdict + pt +mc + uict

where
▶ yict = outcome for unit i , cohort c , period t
▶ dict = indicator for whether cohort c is treated by time t (i.e.,

treatment × post)
▶ pt = time fixed effects, capturing economy-wide shocks or

macro trends
▶ mc = cohort fixed effects, capturing permanent differences

across cohorts

▶ The index c identifies the cohort — a set of units treated in the
same event.
▶ Example: if California adopts a policy in 1999 and Texas in 2003,

all California firms belong to the 1999 cohort and all Texas firms
to the 2003 cohort.
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Multiple Events [Part 2]

▶ Intuition:
▶ In each year, the units that are not yet treated serve as controls

for those that have just been treated.
▶ Example: A firm treated in 1999 acts as a control for a firm

treated in 2004 up until 1999, when the 1999 firm itself becomes
treated.

▶ This approach effectively performs many DiD comparisons
simultaneously:
▶ “Treated–post” minus “control–post” within each period,
▶ then averages those differences across all groups and times.

▶ The coefficient β represents the average treatment effect across
all staggered events, assuming parallel trends hold for each
adoption cohort.
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A Big Potential Problem [Part 1]

▶ In the Bertrand–Mullainathan (two-way fixed-effects) setup,
earlier-treated groups are reused as controls for later-treated
groups.
▶ Once a state, firm, or cohort is treated, it remains treated forever.
▶ So in later periods, that group no longer provides a valid

untreated counterfactual.

▶ Example: California (treated in 1999) is used as a control for
Texas (treated in 2003) during 1995–2002, even though
California has already begun responding to treatment after 1999.
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A Big Potential Problem [Part 2]
▶ If treatment effects evolve over time — e.g., they grow or fade after

treatment — this creates dynamic treatment effects.

▶ When already-treated units act as “controls” for newly-treated ones,
their outcomes keep moving because of their own treatment, violating
parallel trends.

▶ Example dynamic pattern:

Period

y

-3 -2 -1 0 1 2 3

▶ In this example, y keeps rising after treatment.

▶ When we later use these “treated” units as controls, their continued
increase biases the estimated effect for later cohorts.
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A Big Potential Problem [Part 3]

▶ Because already-treated groups contaminate the control pool, both the
estimated effects and the pre-trend tests become biased.

▶ Even if you add event-study dummies, the “control” observations are
not truly untreated, so the estimated pre-period coefficients need not
be zero even when parallel trends holds in theory.

▶ The modern literature (e.g., Callaway–Sant’Anna 2021; Sun–Abraham
2021) proposes alternative estimators that handle these dynamic and
heterogeneous effects correctly. See Baker, Cunningham,
Goodman-Bacon, and Sant’Anna (2025) and Baker, Larcker, and Wang
(JFE 2022) for a review.
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The Goodman–Bacon Decomposition

▶ In a staggered-adoption setting, different groups are treated at different
times.

▶ The traditional two-way fixed effects (TWFE) model:

yit = αi + λt + βDit + uit

implicitly averages many 2Ö2 DiDs:

▶ Early vs. never-treated groups
▶ Late vs. never-treated groups
▶ Early vs. late groups (before and after the late group’s adoption)

▶ Goodman–Bacon (2021, J. Econometrics) shows:

β̂TWFE =
∑
(g,g′)

wgg′ D̂IDgg′ ,

where each D̂IDgg′ is a 2Ö2 DiD between cohorts (g , g ′) and the weights
wgg′ sum to 1. Depend on treatment timing and group sizes.
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What “Negative Weights” Mean

▶ Some comparisons receive negative weights, especially when
already-treated units act as controls for later-treated units.

▶ The regression enforces orthogonality with fixed effects, effectively
subtracting parts of those comparisons.

▶ Intuition:

▶ Suppose early adopters’ outcomes keep rising after treatment.
▶ When they serve as controls for later adopters, this ongoing rise is

misattributed to the later treatment — creating a negative
contribution.

▶ In extreme cases, β̂ can even flip sign.
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Why the Regression “Subtracts” Some Comparisons

▶ In TWFE:
yit = αi + λt + βDit + uit ,

we first remove each unit’s mean (αi ) and each period’s mean (λt) before
estimating β.

▶ With staggered adoption:

▶ Early adopters have higher average Dit (treated longer),
▶ Late adopters have lower averages,
▶ Demeaning causes some treated observations to have negative residuals

D̃it .

▶ To maintain orthogonality, OLS “balances” these deviations — giving certain
group–time cells negative weight.

Intuition: After removing fixed effects, the regression no longer compares treated
vs. untreated means—it compares deviations from each group’s and year’s
averages, which can flip signs.
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Double Demeaning Makes Some D̃it Negative

Two units (A=early, B=late), three periods (t = 0, 1, 2).
Treatment paths: A: (0, 1, 1); B: (0, 0, 1).

t=0 t=1 t=2

A (early) 0 1 1
B (late) 0 0 1

Unit means: D̄A = 2
3
, D̄B = 1

3
; Time means: D̄0 = 0, D̄1 =

1
2
, D̄2 = 1; Grand

mean: D̄ = 1
2
.

D̃it = Dit − D̄i − D̄t + D̄ ⇒
t=0 t=1 t=2

A − 1
6

1
3

− 1
6

B 1
6

− 1
3

1
6

Note: A is treated at t=2, yet D̃A,2 < 0. After removing unit/time means, some
treated cells have negative regressor values—the algebraic source of “subtraction.”
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How Subtraction Appears in OLS:
∑

D̃it ỹit

Let outcomes show dynamic effects:

yA,t = (0, 1, 2), yB,t = (0, 0, 1).

After double demeaning, ỹit = yit − ȳi − ȳt + ȳ yields:

t=0 t=1 t=2

A − 1
3

1
6

1
6

B 1
3

− 1
6

− 1
6

Contribution to numerator:

∑
D̃it ỹit :

t=0 t=1 t=2

A: D̃ỹ + 1
18

+ 1
18

− 1
36

B: D̃ỹ + 1
18

+ 1
18

− 1
36

Cells like (A, t=2) are treated yet contribute negatively—subtracting from β̂. This
is the finite-sample manifestation of negative weights in staggered TWFE.
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Callaway & Sant’Anna (2021): Setup

▶ Problem: Standard DiD or TWFE fails when you have multiple time periods
and staggered treatment timing.

▶ Define:

▶ Gi = g : the time when unit i first receives treatment (if ever).
▶ Yit(0), Yit(1): potential outcomes without/with treatment for unit i at

time t.

▶ Key parameter: the cohort–time average treatment effect

ATT (g , t) = E
[
Yit(1)− Yit(0)

∣∣ Gi = g , t ≥ g
]
.

▶ Compared to TWFE: we estimate separate effects for each cohort g and time
t, and then aggregate.
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Callaway & Sant’Anna (2021): Identification

▶ Key assumptions:

▶ No anticipation: Yit(0) unchanged just before treatment at t = g .
▶ Parallel trends (for each cohort g):

E
[
Yt(0)−Yt−1(0)

∣∣ Gi = g
]
= E

[
Yt(0)−Yt−1(0)

∣∣ controls still untreated at t
]
.

▶ With these assumptions, for each (g , t), one can estimate ATT (g , t).

▶ Aggregation: Once all ATT (g , t) are computed, you can build summary
parameters like

θoverall =
∑
g,t

wg,t ATT (g , t),

where weights wg,t might reflect cohort sizes, exposure times, etc.
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Callaway & Sant’Anna (2021): Simpled Example

Three units A, B, C. Two time periods t = 1, 2.

Unit t = 1 t = 2

A (g = 2) 10 15
B (g = 2) 8 13
C (never) 12 12

Bold = treated outcome for units treated at t = 2. Control group = C (never
treated).

Compute for cohort g = 2, time t = 2:

ATT (2, 2) =
(
(15− 10)− (12− 12)

)
= 5 .

Interpretation: The estimated effect for cohort treated at time 2 is +5.
If there were other cohorts/time combinations, we’d compute each ATT (g , t) and
then aggregate.
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Callaway & Sant’Anna (2021): Why Use It?

▶ Avoids contamination from previously treated units acting as controls (a
major issue in TWFE with staggered adoption).

▶ Allows treatment effect heterogeneity across cohorts and over time (different
g and t values).

▶ Implemented in R package did and Stata command csdid.

▶ When properly applied, yields more credible causal estimates than näıve
TWFE in many staggered-treatment settings.
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Stacked Regression Approach – Alternative
▶ For each event cohort c:

▶ Restrict to a symmetric pre- and post-window (e.g., 5 years before and
after).

▶ Drop any unit that receives another treatment within that window
(keeps controls clean).

▶ Controls are units not yet treated by the event’s date.

▶ Stack the sub-samples (one per event) into one dataset and label each

observation by cohort c.

▶ Example: A firm may serve as a control in cohort 1999 but later as a
treated unit in cohort 2005.

▶ Estimate the pooled regression:

yi,c,t = β di,c,t + αi,c + δt,c + ui,c,t ,

where:

▶ αi,c : unitÖcohort fixed effects;
▶ δt,c : timeÖcohort fixed effects;
▶ Optionally include γc : cohort FE capturing across-event differences.

▶ Cluster SEs at the unit (or unitÖcohort) level.

▶ β represents the average treatment effect across events.
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Stacked Regression Approach – Not a Panacea

▶ Advantages:

▶ Avoids using already-treated units as controls � mitigates bias from
dynamic effects.

▶ Enables focused, interpretable event-window analysis.
▶ Flexible: extendable to triple-difference or event-study designs.

▶ Caveats:

▶ Requires careful and consistent window choice (pre/post lengths affect
weights).

▶ Drops later-treated units � smaller samples and reduced power.
▶ Assumes parallel trends within each event window, not across all

cohorts.
▶ The pooled β still averages heterogeneous effects.
▶ Even stacked regressions can mis-weight cohorts when window lengths

or variances differ (Wing et al., 2024).
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Falsification Tests for Difference-in-Differences

Because the key identification assumption (parallel trends) cannot be directly
tested, we rely on supporting evidence via falsification tests.

1. Compare pre-treatment observables — do treated and control groups
look similar before policy?

2. Check timing of change / pre-trends — did outcomes diverge before
treatment?

3. Treatment reversal — if treatment is undone, does effect reverse?

4. Placebo outcomes — test variables that should not be affected by
treatment.

5. Triple-difference — use a third dimension where effect should vary,
providing extra cross-check.
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#1 Pre-treatment Comparison (Part 1)

▶ Idea: if treatment is as good as random, then treated and control
groups should be similar in their characteristics prior to treatment.

▶ Show tables or graphs of observable covariates (e.g., pre-period means):
helps assess balance.

▶ If large differences exist, it raises concern: why might treated units be
different, and could that drive different trends in y?
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#1 Pre-treatment Comparison (Part 2)

▶ If you find a difference in some variable z , does DiD fail?

▶ Not necessarily — the question is whether z predicts divergent
trends in y independent of treatment.

▶ You may control for z (and its interaction with time) to mitigate
concern.1

▶ But a key lingering concern: unobservables. Differences in observed
covariates suggest possible differences in unobservables that affect
trends in y .

1See Callaway & Sant’Anna (2021) and Caetano et al. (2022) for time-varying
covariate extensions.
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If you find a difference in some variable z . . .

▶ Suppose you observe that treated units differ from controls in a covariate zi
(e.g., firm size, prior sales) in the pre-treatment period.

▶ You can adjust your model:

yit = αi + λt + β Dit + γ zi + δ (zi × Postt) + uit

where Postt= 1 in the post-treatment period.

▶ Example:
Unit zi yi, t=−1 → yi, t=0

A (treated) 1,000 50 � 55
B (treated) 1,100 52 � 57
C (control) 300 20 � 24
D (control) 320 19 � 23

Although z differs (1000 vs 300), the change in y from t = −1 to t = 0 is
similar ( +5) across groups � less concern that z drives differing pre-trends.

▶ If instead control units changed by +2 while treated changed by +5
pre-treatment, you would worry that zi (or other omitted factors) are driving
divergent trends � DiD may be biased.

48 / 77



#2 Check for Pre-trend (Part 1)

▶ One of the strongest diagnostics: allow the treatment effect to vary by
time (leads and lags) and inspect the coefficients for pre-periods.

▶ Under parallel trends, one expects no systematic difference in trends for
the treated group before the event.

yit = β0 + β1di + β2pt +
∑
t

γt (di × λt) + uit

▶ Here: di = indicator for treated unit, pt = post-treatment period
indicator, λt = dummy for each period relative to the event (e.g.,
t = −2,−1, 0,+1, . . .).

▶ The coefficients γt measure the difference in outcome for treated vs
controls at each time t.
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#2 Check for Pre-trend (Part 2)

▶ Plot γt estimates with confidence intervals across lead and lag periods.

▶ If pre-treatment γt (for t < 0) are close to zero and not trending
systematically, this supports parallel trends.

▶ But note: failing to reject pre-trend ̸= proof that parallel trends hold.
(Roth 2022)
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Why “No significant pre-trend” ̸= Proof of Parallel Trends

▶ Researchers often test for pre-treatment differences in trends (leads) to check
the Parallel Trends Assumption:

H0 : γt = 0 (for t < 0)

▶ Roth (2022) identifies two major limitations of this approach:

1. Low statistical power: Conventional pre-trend tests may not detect
meaningful violations of parallel trends (i.e., differences in trends that
matter for bias) because the test lacks power.

2. Selection/conditioning bias: If investigators proceed only when the
pre-trend test “passes” (i.e., no significant difference), they may
inadvertently bias their treatment effect estimates (confidence intervals
may under-cover) because this conditioning distorts the sampling
distribution.

▶ Failing to reject the null of no pre-trend is necessary for credible DiD design
but not sufficient to guarantee the validity of the parallel trends assumption.

51 / 77



Practical Implications for Your DiD Design

▶ When graphing or estimating pre-treatment coefficients (γt) and they appear
“flat” (no divergence), this is good—but it does not eliminate the possibility
of undetected trend differences.

▶ Recommended practices:

▶ Report the magnitude of the pre-trend coefficients (not just p-values),
so readers can judge whether any drift is economically meaningful.

▶ Compute power or minimal detectable effect (MDE) of your pre-trend
test: ask “If there were a trend difference of size X, would we likely
detect it?” The R package pretrends (Roth 2022) is designed for this.

▶ Avoid proceeding conditionally on “pre-test passed” without
adjustment, since this may worsen bias.

▶ If you observe even small pre-trend drift (or are unsure about power),
consider sensitivity methods / bounding approaches (e.g., HonestDiD)
rather than relying solely on the standard DiD estimator.

▶ Use pre-trend tests as a diagnostic tool—helpful for assessing design
credibility—but not as definitive proof that the identifying assumption holds.
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#2 Check for pre-trend [Part 4]

▶ Something like this is ideal

Period

y

-3 -2 -1 0 1 2 3

▶ No differential pre-trend
▶ Tight confidence intervals
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#2 Check for pre-trend [Part 5]

▶ Something like this is very bad

Period

y

-3 -2 -1 0 1 2 3

▶ y for treated firms was already going up at faster rate prior to
event!
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#2 Check for pre-trend [Part 6]

▶ Should we make much of wide confidence intervals in these
graphs? E.g.

Period

y

-3 -2 -1 0 1 2 3

▶ Answer: Not too much. . . Each period point estimate might be
noisy; diff-in-diffs will tell us whether post-average y is
significantly different then pre-average y
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#2 Check for pre-trend [Part 7]

▶ Another type of pre-trend check done is to do the diff-in-diffs in
some “random” pre-treatment to show no effect

▶ Caveats
▶ It is subject to gaming; researcher might choose a particular

pre-period to look at that works
▶ Prior approach allows us to see what the timing was and

determine whether it is plausible
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#3 Treatment Reversal

▶ If treatment is reversed (e.g., regulation is removed), then we can test
whether the outcome moves back toward control levels.

▶ This strengthens the causal story by demonstrating the treatment’s
temporal link to the outcome.

▶ Requires the reversal to be exogenous and clean — otherwise inference
is weak.
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#4 Placebo Outcomes / Unaffected Variables

▶ Identify variables that theory predicts should not be affected by the
treatment.

▶ Run the DiD on these placebo outcomes — if you find large “effects,”
it raises concerns of residual confounding or misspecification.

▶ Example: If a labor regulation should only affect wages, check an
outcome like “firm color change” that shouldn’t be affected.
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#5 Triple Difference

▶ Use when theory suggests treatment effect should differ by a third
dimension (e.g., high-vs-low exposure subgroup).

▶ Model:
yit = · · ·+ δ (di × pt × si ) + . . .

where si is subgroup indicator.

▶ The triple difference adds a further layer of variation:
(post vs pre) Ö (treated vs control) Ö (sensitive vs less-sensitive).

▶ Helps isolate the effect and test consistency of theory.
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Triple Difference (DDD) – Specification

yit = β0 + β1pt + β2di + β3hi + β4(pt × hi )

+ β5(di × hi ) + β6(pt × di ) + β7(pt × di × hi ) + uit

▶ pt : indicator for post-treatment period.

▶ di : indicator for treated group.

▶ hi : indicator for high-sensitivity subgroup (effect modifier).

▶ β6: DiD effect for low-sensitivity subgroup (hi = 0).

▶ β7: Additional effect for high-sensitivity subgroup (hi = 1); total for
high = β6 + β7.
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Triple Difference – Combinations Table

hi
0 (low-sens) 1 (high-sens)

di = 0 Controls pre/post pre/post
di = 1 Treated pre/post pre/post

▶ There are 2× 2× 2 = 8 cells (pre/post Ö treated/control Ö low/high).

▶ The full model with the eight coefficients (including constant) allows
estimation of each cell’s mean.

▶ The triple interaction (pt × di × hi ) isolates how much more (or less)
the treatment effect is for the high-sensitivity group compared to the
low-sensitivity group.
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Triple Difference – Example

You sponsor a job-training program at t = 0. You believe larger firms benefit
more.

hi = 1 if firm assets above median before t = 0.

Estimated coefficients:
β6 = 2, β7 = 3.

▶ For low-sensitivity firms (hi = 0): effect = β6 = 2.

▶ For high-sensitivity firms (hi = 1): effect = β6 + β7 = 2 + 3 = 5.

▶ Interpretation: training yields +2 units for smaller firms, +5 units for
larger firms (difference of 3 units tied to size).

64 / 77



Triple Difference – Key Assumption & Reference

▶ The DDD estimator hinges on a single parallel-trends-on-differences
assumption: the difference between high vs low sensitivity groups’
trends is the same in treated and control groups, in absence of
treatment.

▶ According to Olden & Møen (2019): “The difference between two
biased DiD estimators will be unbiased as long as the bias is the same
in both estimators.”

▶ Practical tips:

▶ Define hi using ex-ante characteristics (before treatment) to avoid
“bad control” problems.

▶ Use robust standard errors (cluster by unit or relevant group)
given repeated observations.

▶ Ensure you interpret β7 as the differential effect for the subgroup;
total effect for subgroup = β6 + β7.
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Triple-Difference: Indicator hi vs Continuous Moderator Si

In a DDD model you often include a third dimension hi (e.g., sensitivity
subgroup).

Option A: Indicator moderator

hi =

{
1 if unit is “high sensitivity” (above median size)

0 otherwise

Option B: Continuous moderator

Si = (ex-ante size, assets in $M, etc.)

Which form to use?

▶ Indicator hi � you estimate different treatment effects for two discrete
groups.

▶ Continuous Si � you estimate how the treatment effect changes with
the moderator value (slope).
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Continuous Si vs Indicator hi : Advantages & Trade-Offs
Advantages of continuous moderator Si :

▶ Uses more variation: avoids arbitrary cut-off, retains full information.

▶ Enables estimating a dose-response style slope: e.g., “for each $10 M
increase in assets, treatment effect rises by X .”

Disadvantages / cautions:

▶ Imposes functional form (typically linear) between Si and treatment effect; if
the true effect is non-linear or threshold-based, results may mis-specify.

▶ More sensitive to outliers: very large values of Si may drive the interaction
estimate.

▶ Interpretation becomes more complex: you often need to compute marginal
treatment effects at different Si values (e.g., 10th percentile, median, 90th
percentile).

Practical guidance:

▶ If theory suggests a smooth effect of the moderator (e.g., size matters
linearly), continuous might work better.

▶ If you believe there is a threshold (e.g., only “very large firms” benefit) or few
data at extremes, indicator may be safer.

▶ Always check with robustness: compare indicator specification to continuous,
possibly test for non-linearity (e.g., quartile splines).
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Example: Continuous Moderator in DDD

Firms receive a subsidy at time t = 0. Hypothesis: larger firms (higher
assets) gain more.

▶ Let Si = firm assets (in $10 M) measured just before t = 0.

▶ Model:

yit = αi + δt + βd(pt × di ) + βs(pt × di × Si ) + uit

▶ Suppose estimates: β̂d = 3, β̂s = 0.5.

▶ Interpretation: Among treated firms, a firm with Si = 2 (assets $20 M)
sees effect: 3 + 0.5× 2 = 4. A firm with Si = 5 (assets $50 M) sees
effect: 3 + 0.5× 5 = 5.5.

If you instead used an indicator hi = 1 if assets > $30 M, you’d estimate one
effect for “large” firms and another for “small” — but you’d lose nuance and
might impose an arbitrary cut-off.
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Generalized Triple-Difference (DDD) Specification

▶ As with standard DiD, we can add FE to soak up time-invariant unit
heterogeneity and common time shocks — improving precision and
controlling for omitted variables.

yit = β1 (pt × hi ) + β2 (pt × di ) + β3 (pt × di × hi ) + αi + δt + uit

▶ pt = 1 if period t is post-treatment, 0 otherwise.
▶ di = 1 if unit i is in treated group, 0 otherwise.
▶ hi = 1 if unit i belongs to a “high-sensitivity” subgroup (the third

difference dimension), 0 otherwise.
▶ The constant, main effects of di and hi , and two-way interactions that

are time-invariant or unit-invariant are collinear with αi or δt .
▶ Therefore the specification focuses only on interactions that vary both

across units & time.
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Subsample Approach to Heterogeneity

▶ Rather than estimating the full triple-difference (DDD) specification,
one can estimate separate DiD models for each subgroup defined by hi :

▶ DiD for the “less-sensitive” subgroup (units with hi = 0).
▶ DiD for the “more-sensitive” subgroup (units with hi = 1).

▶ Advantages: simpler, intuitive, and you directly measure effect for each
subgroup.

▶ Caveat: The estimates from these two subsample regressions will not
necessarily match the coefficients from the combined regression (i.e., β2

and β2 + β3 in the full model). Why? Because the baseline controls, FE
structure, and time effects may differ across the two subsample models.
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Why Subsample Estimates May Differ from DDD

▶ Key reason: When you run separate regressions on each subgroup, you
allow for different time fixed effects (or other controls) in each
regression implicitly.

▶ In the subsample regression for hi = 0, year effects reflect
dynamics only for that subgroup.

▶ In the subsample regression for hi = 1, year effects may capture
different macro/sectoral trends as applicable to high sensitivity
units.

▶ In contrast, the combined DDD regression imposes a common* year
fixed effect across both subgroups (unless you explicitly interact year
FE by hi ).

▶ As a result, the estimated coefficients from separate subsample
regressions may diverge from the combined regression’s β2 (low
sensitivity) and β2 + β3 (high sensitivity) estimates.

72 / 77



Recovering Subsample Effects from One Regression

yit = β2(pt × di ) + β3(pt × di × hi ) + αi + δt + (δt × hi ) + uit

▶ By interacting the year fixed effects δt with the subgroup indicator hi ,
you allow each subgroup (hi = 0 vs hi = 1) to have its own time-effects
structure — replicating what separate subsample regressions do.

▶ In this specification:

▶ β2 = DiD effect estimated for the less-sensitive subgroup (hi = 0).
▶ β2 + β3 = DiD effect for the more-sensitive subgroup (hi = 1).
▶ A t-test on β3 tests whether the treatment effect differs

significantly between the two subgroups.
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Stacked Regression & Triple-Difference in Multiple Events

▶ When you have multiple treatment events (e.g., different cohorts or
timing), the stacked regression approach (stack sub-samples for each
event/cohort) remains popular.

▶ With this approach you can:

▶ Create a separate “stack” (data subset) for each event/cohort.
▶ Within each stack, apply DiD or DDD approaches, then combine

stacks into one dataset.
▶ Estimate one regression with interactions (and possibly fixed

effects) to capture heterogeneity across events and sub-groups.

▶ Important caveat (Wing et al., 2024): The most basic unweighted
stacked estimator “does not identify the target causal parameter or any
convex combination of underlying causal effects” when there is variation
in treatment timing and control/treatment shares across stacks.

▶ To correct for this bias, one must apply corrective sample weights as
proposed by Wing et al. — or adopt alternative estimators (e.g.,
cohort-time ATT methods by Callaway & Sant’Anna (2021)
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External Validity: Why Application Matters

▶ Even if your internal identification is strong (randomization or credibly
parallel trends), the estimated treatment effect may not generalize
beyond your sample/context.

▶ Key questions for external validity:

▶ Are the treated firms/units representative of a broader population?
▶ Does the policy context apply elsewhere, or was your setting

unique?
▶ Can you articulate the underlying mechanism and argue it applies

beyond your particular setting?

▶ Being explicit about the scope of inference and the conditions under
which the effect might differ helps make your findings more robust and
interpretable.
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Summary of Today [Part 1]

▶ Diff-in-diffs & control variables:
▶ Don’t add controls affected by treatment.
▶ Controls shouldn’t change estimates but can improve precision.

▶ Multiple events are helpful in mitigating concerns about parallel
trends assumption.
▶ But follow, e.g., Callaway and Sant’anna (2021) to avoid potential

bias from dynamic treatment effects
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Summary of Today [Part 2]

▶ Many falsification tests can help assess internal validity:
▶ Compare ex-ante characteristics.
▶ Check timing of observed effect.

▶ Triple difference is another way to check internal validity and
mitigate concerns about identification
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