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Recall... CMI assumption is key

» A violation of conditional mean independence (CMI), such that
E(u|x) # E(u) precludes our ability to make causal inferences

y =00+ Bix+u

» Cov(x, u) # 0 implies CMI is violated

4/72



CMI violation implies non-randomness

» Another way to think about violation is that it indicates that our
X is non-random
> l.e., the distribution of x (or the distribution of x after controlling
for other observable covariates) isn't random
» E.g., firms with high x might have higher y (beyond just the
effect of x on y) because high x is more likely for firms with
some omitted variable contained in u. ..
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Randomized experiments are great. . .

» In many of the “hard” sciences, the researcher can simply design
experiment to achieve the necessary randomness
> Ex. #1 — To determine effect of new drug, you randomly give it
to certain patients
» Ex. #2 — To determine effect of certain gene, you modify it in a
random sample of mice
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But we simply can’t do them

» We can't do this in finance!

> E.g., we can’t randomly assign a firm's leverage to determine its
effect on investment

» And we can't randomly assign CEQOs’ # of options to determine
their effect on risk-taking

» Therefore, we need to rely on what we call “Natural experiments”
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Defining a Natural Experiment

» Natural experiment is basically when some event causes a
random assignment of (or change in) a variable of interest, x
> Ex. #1 — Some weather event increases leverage for a random
subset of firms
» Ex. #2 — Some change in regulation reduces usage of options at a
random subset of firms
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NEs Provide Randomness

> We can use such “natural” experiments to ensure that
randomness (i.e., CMI) holds and make causal inferences!
» E.g., we use the randomness introduced into x by the natural
experiment to uncover the causal effect of x on y
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NEs can be used in many ways

» Technically, natural experiments can be used in many ways
» Use them to construct IV

> E.g., gender of first child being a boy used in Bennedsen, et al.
(2007) is an example NE

» Use them to construct regression discontinuity

> E.g., cutoff for securitizing loans at credit score of 620 used in
Keys et al. (2010) is a NE
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And the Difference-in-Differences. . .

» But admittedly, when most people refer to natural experiment,
they are talking about a difference-in-differences (DiD) estimator
» Basically, compares outcome y for a “treated” group to outcome
y for “untreated” group where treatment is randomly assigned by
the natural experiment
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Notation and Framework

» Let d equal a treatment indicator from the experiment we will
study

> d = 0 untreated by experiment (i.e., control group)
> d =1 treated by experiment (i.e., treated group)

> Let y be the potential outcome of interest

»> y = y(0) for untreated group
» y = y(1) for treated group
> Therefore, y = y(0) + d[y(1) — y(0)]
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Example treatments in corporate finance

> Ex. #1 — Treatment might be that your firm’s state passed
anti-takeover law
» d =1 for firms incorporated in those states
» vy could be several things, e.g., ROA
> Ex. #2 — Treatment is that your firm discovers workers exposed
to carcinogen
» d =1 if have exposed workers
» vy could be several things, like M&A
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Average Treatment Effect (ATE)

» Can now define some useful things
> Average Treatment Effect (ATE) is given by E[y(1) — y(0)]
» What does this mean in words?

» Answer: The expected change in y from being treated by the
experiment; this is the causal effect we are typically interested in
uncovering.
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But ATE is unobservable

» Why can't we directly observe ATE?
» Answer: We only observe one outcome. ..
> If treated, we observe y(1); if untreated, we observe y(0). We
never observe both.
> E.g., we cannot observe the counterfactual of what your y would
have been absent treatment
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Defining ATT

> Average Treatment Effect if Treated (ATT) is given by
Ely(1) - y(0)|d = 1]

» This is the effect of treatment on those that are treated; i.e.,
change in y we'd expect to find in treated random sample from a
population of observations that are treated

» What don't we observe here?

> Answer: y(0)|d =1
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Defining ATU

» Average Treatment Effect if Untreated (ATU) is given by
Ely(1) — y(0)|d = 0]
» This is what the effect of treatment would have been on those

that are not treated by the experiment
> We don't observe y(1)|d =0
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Uncovering ATE [Part 1]

» How do we estimate ATE, E[y(1) — y(0)]?

> Answer: We instead rely on E[y(1)|d = 1] — E[y(0)|d = 0] as our
way to infer the ATE

» In words, what are we doing & what are we assuming?
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Uncovering ATE [Part 2]

» In words, we compare average y of treated to average y of
untreated observations
» |If we interpret this as the ATE, we are assuming that absent the
treatment, the treated group would, on average, have had same
outcome y as the untreated group
» We can show this formally by simply working out
Ely(1)ld = 1] — E[y(0)|d = 0]. ..
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Uncovering ATE [Part 3]

{Ely(1)]d = 1] — E[y(0)[d = 1] + E[y(0)[d = 1] — E[y(0)[d = 0]

ATT Selection bias
» Simple comparison doesn't give us the ATE!

» What is the “selection bias” in words?
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Selection bias defined

» Selection bias:E[y(0)|d = 1] — E[y(0)|d = 0]
» Definition: What the difference in average y would have been for
treated and untreated observations absent any treatment
» We do not observe this counterfactual!

> Now let's see why randomness is key!

24/72



Introducing random treatment

» A random treatment, d, implies that d is independent of
potential outcomes; i.e.,
> E[y(0)|d = 1] = E[y(0)|d = 0] = E[y(0)]
> Ely(1)|d = 1] = E[y(1)[d = 0] = E[y(1)]
» In words, the expected value of y is the same for treated and
untreated absent treatment
> With this, easy to see that selection bias = 0
» And remaining ATT is equal to ATE!
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Random treatment makes life easy

» l.e., with random assignment of treatment, our simple
comparison gives us the ATE!
» This is why we like randomness!
» But, absent randomness, we must worry that any observed
difference is driven by selection bias
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ATE in Regression Format [Part 1]

» Remember y = y(0) + d[y(1) — y(0)].

» Can re-express everything in regression format

SROLSIEE N
E[y(0)] y(1)—y(0) y(0)—E[y(0)]
Ely|d = 1] = fo + B1 + E[uld = 1]
Ely|d = 0] = o + E[u|d = 0]
= Ely|d =1]— E[y|d = 0] = 1 + (E[u|d = 1] — E[u|d = 0])
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ATE in Regression Format [Part 2]

» We are interested in E[y|d = 1] — E[y|d = 0]

» (1= E[y|ld =1] — E[y|d = 0] if E[u|d = 1] — E[u|d =0] =0,
i.e, no correlation between u and d.

> Efuld =1] - E[uld = 0] = E[y(0)|d = 1] — E[y(0)[d = 0],
implying the difference in (no-treatment) potential outcomes
between those who get treated and those who don't.

» We know that this regression gives consistent estimate of (7 if
cov(d,u) =0, i.e., (E[uld =1] — E[uld =0]) = 0.

» Hence, selection bias term occurs only if CMI isn't true!
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Adding additional controls [Part 1]

» Regression format also allows us to easily put in additional
controls, X
» Intuitively, comparison of treated and untreated just becomes
Ely(1)|d = 1,X] — E[y(0)|d = 0,X]
» Same selection bias term will appear if treatment, d, isn't random
after conditioning on X
» Regression version just becomes

y =00+ B1d+ Xl +u

» Question: If we had truly randomized experiment, are controls
necessary?
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Adding additional controls [Part 2]

> Answer: No, controls are not necessary in truly randomized
experiment

» But they can be helpful in making the estimates more precise by
absorbing residual variation... we'll talk more about this later
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Treatment effect — Example

> \We want to compare leverage of firms with and without a credit
rating [or equivalently, regress leverage on indicator for rating]

» Treatment is having a credit rating
» Qutcome of interest is leverage

» Why might our estimate not equal ATE of rating?
» Why might controls not help us much?
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Treatment effect — Example

> Answer #1: Having a rating isn't random
» Firms with rating likely would have had higher leverage anyway
because they are larger, more profitable, etc.; selection bias will be
positive
» Selection bias is basically an omitted variable!
> Answer #2: Even adding controls might not help if firms also
differ in unobservable ways, like investment opportunities
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Cross-sectional Simple Difference

» Very intuitive idea
» Compare post-treatment outcome, y, for treated group to the

untreated group
» |.e., just run cross-section simple difference

Vit = Bo + Prdi + uj s

> d =1 if observation i is in treatment group and equals zero
otherwise
P Regression only contains post-treatment time periods

> What is needed for 8; to capture the true (i.e., causal) treatment
effect?
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|dentification Assumption

» Answer: E(uld) = 0; i.e., treatment, d, is uncorrelated with the
error
» In words. .. after accounting for effect of treatment, the expected
level of y in post-treatment period isn't related to whether you're
in the treated or untreated group
» |.e., expected y of treated group would have been same as
untreated group absent treatment
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Multiple time periods & SEs

» If have multiple post-treatment periods, need to be careful with
standard errors
» Errors uj ¢ and uj 41 likely correlated if dependent variable
exhibits serial correlation
> E.g., we observe each firm (treated and untreated) for five years
after treatment (e.g., regulatory change), and our post-treatment
observations are not independent

» Should do one of two things
» Collapse data to one post-treatment per unit; e.g., for each firm,
use average of the firm's post-treatment observations
» Or cluster standard errors at firm level [We will come back to
clustering in later lecture]
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Time-series Simple Difference

» Very intuitive idea
» Compare pre- and post-treatment outcomes, y, for just the

treated group [i.e., pre-treatment period acts as ‘control’ group]
» |.e., run time-series simple difference

Yijt = Bo + Bipt + Uit

> p: = 1 if period t occurs after treatment and equals zero otherwise
P> Regression contains only observations that are treated by
“experiment”

> What is needed for 8; to capture the true (i.e., causal) treatment
effect?
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|dentification Assumption

» Answer: E(u|p) = 0; i.e., post-treatment indicator, p, is
uncorrelated with the error
» |.e., after accounting for effect of treatment, p, the expected level
of y in post-treatment period wouldn't have been any different
than expected y in pre-treatment period
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Again, be careful about SEs

» Again, if you have multiple pre- and post-treatment periods, you
need to be careful with estimating your standard errors
» Either cluster SEs at level of each unit
» Or collapse data down to one pre- and one post-treatment
observation for each cross-section
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Using a First-Difference (FD) Approach

» Could also run regression using first-differences specification

Vit — Yit—1 = B1(pt — pe—1) + (Uit — tjr—1)

» If just one pre- and one post-treatment period (i.e., t — 1 and t),

then will get identical results
» But, if more than one pre- and post-treatment period, the results

will differ. ..
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FD versus Standard Approach [Part 1]

» Why might these two models give different estimates of 3; when
there are more than one pre- and post-treatment periods?

yit = Bo+ Bipt + Uit

VErsus

Vit — Yit—1 = B1(pt — pe—1) + (Uit — tjr—1)
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FD versus Standard Approach [Part 2]

Answer:

» In the first regression, 51 captures the difference between average
y pre-treatment versus average y post-treatment

» In the second regression, 31 captures the difference in Ay
immediately after treatment versus Ay in all other pre- and
post-treatment periods

» |.e., the Ap variable equals 1 only in immediate post-treatment
period, and 0O for all other periods.

45 /72



FD versus Standard Approach [Part 3]

» Both approaches assume the effect of treatment is immediate
and persistent.
y

f f f f f 4 Period
-3 -2 -1 0 1 2

» In this scenario, both approaches give the same estimate

46 /72



FD versus Standard Approach [Part 4]

» But suppose the following is true...
y

= = = = = 4 Period

-3 -2 -1 0 1 2 3

» In this scenario, the FD approach gives a much smaller estimate

» The first approach compares average pre- versus post-treatment

» FD compares Ay from t =0 to t = —1 against Ay elsewhere
(which isn't always zero!)
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Correct way to do difference

» Correct way to get a ‘differencing’ approach to match up with
the more standard simple difference specification in multi-period
setting is to instead use

)_’i,post - )7i,pre = /B + Ui,post - Ei,pre

» This is exactly the same as simple difference
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Treatment effect isn't always immediate

» In prior example, the specification is wrong because the
treatment effect only slowly shows up over time
» Why might such a scenario be plausible?
» Answer = Many reasons. E.g., firms might only slowly respond to
change in regulation, or CEO might only slowly change policy in
response to compensation shock
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Accounting for a delay. ..

» Simple-difference misses this subtlety; it assumes effect was
immediate

» For this reason, it is always helpful to run regression that allows
effect to vary by period
» How can you do this?

» Answer = Insert indicators for each year relative to the treatment
year
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Non-parametric approach

» If have 5 pre- and 5 post-treatment observations; could estimate:

t=5

Vit = Bo+ Z Bepe + Uj ¢t

t=—4

» p; is now an indicator that equals 1 if year = t and zero
otherwise; e.g. t = 0 is the period treatment occurs. t = —1 is
period before treatment

» [, estimates change in y relative to excluded periods; you then
plot these in graph
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Non-parametric approach — Graph

» Plot estimates to trace out effect of treatment
y

F————%—+—+——+—— Period
-3 -2 -1 0 1 2 3

> It allows effect of treatment to vary by year!

> Pre-period y was same as y in excluded period (t = —3)

» Post-period estimates capture change relative to excluded period
(t=-3)

Could easily plot confidence intervals as well

v
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Simple Differences — Advice

» In general, simple differences are not that convincing in
practice. . .
» Cross-sectional difference requires us to assume the average y of
treated and untreated would have been same absent treatment
» Time-series difference requires us to assume the average y would
have been same in post- and pre-treatment periods absent
treatment

» Is there a better way?
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Difference-in-differences

P> Yes, we can do better!
» We can do a difference-in-differences that combines the two
simple differences
» Intuition = compare change in y pre- versus post-treatment for
treated group [1st difference] to change in y pre- versus
post-treatment for untreated group [2nd difference]
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Implementing diff-in-diff

» Difference-in-differences estimator

Vit = Bo + Bipe + Bodi + B3(pe X di) + uit

» p. = 1if period t occurs after treatment and equals zero otherwise
» d; =1 if unit is in treated group and equals zero otherwise
» What do 31, (32, and (33 capture?
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Interpreting the estimates

P> Here is how to interpret everything. ..

» (3, captures the average change in y from the pre- to
post-treatment periods for the untreated groups

» [, captures the average difference in level of y of the treated
group in the pre-treatment period

» (33 captures the average differential change in y from the pre- to
post-treatment period for the treatment group relative to the
change in y for the untreated group

» (33 is what we call the diff-in-diffs estimate
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Comparing group means [Part 1]

Vit = Bo + Bip: + Bodi + B3(pe X di) + uj

» Four possible combinations:

E(yld=1,p=1)= 5o+ B1+ B2+ B3
E(yld=1,p=0) = fo + f2
E(yld=0,p=1)= 5o+ A1
E(yld =0,p =0) = f3

» Assumption: E(u|d,p) =0, i.e., the "experiment” is random.
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Comparing group means [Part 2]

Vit = Bo + Bipt + Bodi + B3(pe X di) + uj

These can be arranged in two-by-two table

Post (1) Pre (2) | Diff (1) — (2)
Treatment (a) | fo+ 1+ B2+ B3 Bo+ P2 B1+ B3
Control (b) Bo + 51 Bo b1
Diff. (a) — (b) B2 + B3 B2 B3

This is why it's called the difference-in-differences estimate; regression
gives you same estimate as if you took differences in the group
averages. Again, 3 has a causal interpretation when E(uld, p) = 0.
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Simple difference —Revisited [Part 1]

Useful to look at simple differences

Post (1) Pre (2) | Diff (1) = (2)
Treatment (a) | fo+ f1+ B2+ B3 Bo+ P2 B1+ B3
Control (b) Bo + A1 Bo B1
Diff. (a) — (b) B2 + B3 B2 B3

This was cross-sectional simple difference
» When does that simple diff give effect of treatment, 337

> Answer = when (> equals zero; i.e. no difference in level of y
absent treatment
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Simple difference —Revisited [Part 2]

Now, look at time-series simple diff. ..

Post (1) Pre (2) | Diff (1) = (2)
Treatment (a) | o+ f1+ B2+ B3 Bo+ B2 B1+ B3
Control (b) Bo + 51 Bo b1
Diff. (a) — (b) B2 + B3 B2 B3

This was time-series simple difference
» When does that simple diff give effect of treatment, 337

» Answer = when (37 equals zero; i.e. no change in y absent
treatment
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“Parallel trends” assumption

» Identification assumption is what we call the parallel trends
assumption
P> Absent treatment, the change in y for treated would not have
been different than the change in y for the untreated observations
» But we cannot test this!
» Typically, we examine the “pre-trend” and hope that the trend
would continue after treatment.
> Looking at what difference-in-differences estimate is doing in
graphs will also help you see why the parallel trends assumption
is key
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Why we like diff-in-diff [Part 1]

» With simple difference, any of the below arguments would
prevent causal inference

» Cross-sectional diff — “Treatment and untreated avg. y could be
different for reasons a, b, and c, that just happen to be correlated
with whether you are treated or not”

» Time-series diff — “Treatment group's avg. y could change
post-treatment for reasons a, b, and ¢, that just happen to be
correlated with the timing of treatment”
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Why we like diff-in-diff [Part 2]

» But now the required argument to suggest the estimate isn't
causal is. ..

» “The change in y for treated observations after treatment would
have been different than the change in y for untreated
observations for reasons a, b, and c, that just happen to be
correlated with both whether you are treated and when the
treatment occurs”

» This is (usually) a harder story to tell
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Example. ..

» Bertrand & Mullainathan (JPE 2003) uses state-by-state changes
in regulations that made it harder for firms to do M&A

» They compare wages at firms pre- versus post-regulation in
treated versus untreated states
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Are these concerns for internal validity?

» The regulations were passed during a time period of rapid growth
of wages nationally. ..
» Answer = No. Indicator for post-treatment accounts for common
growth in wages
> States that implement regulation are more likely have unions,
and hence, higher wages. ..

» Answer = No. Indicator for treatment accounts for this average
difference in wages
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Example continued. . .

> However, ex-ante average differences is troublesome in some
regard. . .
» Suggests treatment wasn't random
» And ex-ante differences can be problematic if we think that their
effect may vary with time. ..
» Time-varying omitted variables are problematic because they can
cause violation of “parallel trends”
> E.g., states with more unions were trending differently at that
time because of changes in union power
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Summary of Today [Part 1]

» Natural experiment provides random variation in x that allows
causal inference

» Can be used in IV, regression discontinuity, but most often
associated with “treatment” effects

> Two types of simple differences

» Post-treatment comparison of treated & untreated
» Pre- and post-treatment comparison of treated
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Summary of Today [Part 2]

» Simple differences require strong assumptions; typically, not
plausible
» Difference-in-differences helps with this

» Compares change in y pre- versus post-treatment for treated to
change in y for untreated
» Requires “parallel trends” assumption
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