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Recall. . . CMI assumption is key

▶ A violation of conditional mean independence (CMI), such that
E (u|x) ̸= E (u) precludes our ability to make causal inferences

y = β0 + β1x + u

▶ Cov(x , u) ̸= 0 implies CMI is violated
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CMI violation implies non-randomness

▶ Another way to think about violation is that it indicates that our
x is non-random
▶ I.e., the distribution of x (or the distribution of x after controlling

for other observable covariates) isn’t random

▶ E.g., firms with high x might have higher y (beyond just the
effect of x on y) because high x is more likely for firms with
some omitted variable contained in u. . .
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Randomized experiments are great. . .

▶ In many of the “hard” sciences, the researcher can simply design
experiment to achieve the necessary randomness
▶ Ex. #1 – To determine effect of new drug, you randomly give it

to certain patients
▶ Ex. #2 – To determine effect of certain gene, you modify it in a

random sample of mice
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But we simply can’t do them

▶ We can’t do this in finance!
▶ E.g., we can’t randomly assign a firm’s leverage to determine its

effect on investment
▶ And we can’t randomly assign CEOs’ # of options to determine

their effect on risk-taking

▶ Therefore, we need to rely on what we call “Natural experiments”
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Defining a Natural Experiment

▶ Natural experiment is basically when some event causes a
random assignment of (or change in) a variable of interest, x
▶ Ex. #1 – Some weather event increases leverage for a random

subset of firms
▶ Ex. #2 – Some change in regulation reduces usage of options at a

random subset of firms
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NEs Provide Randomness

▶ We can use such “natural” experiments to ensure that
randomness (i.e., CMI) holds and make causal inferences!
▶ E.g., we use the randomness introduced into x by the natural

experiment to uncover the causal effect of x on y
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NEs can be used in many ways

▶ Technically, natural experiments can be used in many ways
▶ Use them to construct IV

▶ E.g., gender of first child being a boy used in Bennedsen, et al.
(2007) is an example NE

▶ Use them to construct regression discontinuity
▶ E.g., cutoff for securitizing loans at credit score of 620 used in

Keys et al. (2010) is a NE
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And the Difference-in-Differences. . .

▶ But admittedly, when most people refer to natural experiment,
they are talking about a difference-in-differences (DiD) estimator
▶ Basically, compares outcome y for a “treated” group to outcome

y for “untreated” group where treatment is randomly assigned by
the natural experiment
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Notation and Framework

▶ Let d equal a treatment indicator from the experiment we will
study
▶ d = 0 untreated by experiment (i.e., control group)
▶ d = 1 treated by experiment (i.e., treated group)

▶ Let y be the potential outcome of interest
▶ y = y(0) for untreated group
▶ y = y(1) for treated group
▶ Therefore, y = y(0) + d [y(1)− y(0)]
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Example treatments in corporate finance

▶ Ex. #1 – Treatment might be that your firm’s state passed
anti-takeover law
▶ d = 1 for firms incorporated in those states
▶ y could be several things, e.g., ROA

▶ Ex. #2 – Treatment is that your firm discovers workers exposed
to carcinogen
▶ d = 1 if have exposed workers
▶ y could be several things, like M&A

15 / 72



Average Treatment Effect (ATE)

▶ Can now define some useful things
▶ Average Treatment Effect (ATE) is given by E [y(1)− y(0)]

▶ What does this mean in words?
▶ Answer: The expected change in y from being treated by the

experiment; this is the causal effect we are typically interested in
uncovering.
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But ATE is unobservable

▶ Why can’t we directly observe ATE?
▶ Answer: We only observe one outcome. . .
▶ If treated, we observe y(1); if untreated, we observe y(0). We

never observe both.
▶ E.g., we cannot observe the counterfactual of what your y would

have been absent treatment
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Defining ATT

▶ Average Treatment Effect if Treated (ATT) is given by
E [y(1)− y(0)|d = 1]
▶ This is the effect of treatment on those that are treated; i.e.,

change in y we’d expect to find in treated random sample from a
population of observations that are treated

▶ What don’t we observe here?
▶ Answer: y(0)|d = 1
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Defining ATU

▶ Average Treatment Effect if Untreated (ATU) is given by
E [y(1)− y(0)|d = 0]
▶ This is what the effect of treatment would have been on those

that are not treated by the experiment
▶ We don’t observe y(1)|d = 0
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Uncovering ATE [Part 1]

▶ How do we estimate ATE, E [y(1)− y(0)]?
▶ Answer: We instead rely on E [y(1)|d = 1]− E [y(0)|d = 0] as our

way to infer the ATE

▶ In words, what are we doing & what are we assuming?
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Uncovering ATE [Part 2]

▶ In words, we compare average y of treated to average y of
untreated observations
▶ If we interpret this as the ATE, we are assuming that absent the

treatment, the treated group would, on average, have had same
outcome y as the untreated group

▶ We can show this formally by simply working out
E [y(1)|d = 1]− E [y(0)|d = 0]. . .
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Uncovering ATE [Part 3]

{E [y(1)|d = 1]− E [y(0)|d = 1]︸ ︷︷ ︸
ATT

+E [y(0)|d = 1]− E [y(0)|d = 0]︸ ︷︷ ︸
Selection bias

▶ Simple comparison doesn’t give us the ATE!

▶ What is the “selection bias” in words?
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Selection bias defined

▶ Selection bias:E [y(0)|d = 1]− E [y(0)|d = 0]
▶ Definition: What the difference in average y would have been for

treated and untreated observations absent any treatment
▶ We do not observe this counterfactual!

▶ Now let’s see why randomness is key!
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Introducing random treatment

▶ A random treatment, d , implies that d is independent of
potential outcomes; i.e.,
▶ E [y(0)|d = 1] = E [y(0)|d = 0] = E [y(0)]
▶ E [y(1)|d = 1] = E [y(1)|d = 0] = E [y(1)]

▶ In words, the expected value of y is the same for treated and
untreated absent treatment

▶ With this, easy to see that selection bias = 0

▶ And remaining ATT is equal to ATE!
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Random treatment makes life easy

▶ I.e., with random assignment of treatment, our simple
comparison gives us the ATE!
▶ This is why we like randomness!
▶ But, absent randomness, we must worry that any observed

difference is driven by selection bias
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ATE in Regression Format [Part 1]

▶ Remember y = y(0) + d [y(1)− y(0)].

▶ Can re-express everything in regression format

y = β0︸︷︷︸
E [y(0)]

+ β1︸︷︷︸
y(1)−y(0)

d + u︸︷︷︸
y(0)−E [y(0)]

E [y |d = 1] = β0 + β1 + E [u|d = 1]

E [y |d = 0] = β0 + E [u|d = 0]

⇒ E [y |d = 1]− E [y |d = 0] = β1 + (E [u|d = 1]− E [u|d = 0])

28 / 72



ATE in Regression Format [Part 2]

▶ We are interested in E [y |d = 1]− E [y |d = 0]
▶ β1 = E [y |d = 1]− E [y |d = 0] if E [u|d = 1]− E [u|d = 0] = 0,

i.e, no correlation between u and d .
▶ E [u|d = 1]− E [u|d = 0] = E [y(0)|d = 1]− E [y(0)|d = 0],

implying the difference in (no-treatment) potential outcomes
between those who get treated and those who don’t.

▶ We know that this regression gives consistent estimate of β1 if
cov(d , u) = 0, i.e., (E [u|d = 1]− E [u|d = 0]) = 0.

▶ Hence, selection bias term occurs only if CMI isn’t true!
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Adding additional controls [Part 1]

▶ Regression format also allows us to easily put in additional
controls, X
▶ Intuitively, comparison of treated and untreated just becomes

E [y(1)|d = 1,X ]− E [y(0)|d = 0,X ]
▶ Same selection bias term will appear if treatment, d , isn’t random

after conditioning on X
▶ Regression version just becomes

y = β0 + β1d + XΓ + u

▶ Question: If we had truly randomized experiment, are controls
necessary?
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Adding additional controls [Part 2]

▶ Answer: No, controls are not necessary in truly randomized
experiment
▶ But they can be helpful in making the estimates more precise by

absorbing residual variation. . . we’ll talk more about this later
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Treatment effect – Example

▶ We want to compare leverage of firms with and without a credit
rating [or equivalently, regress leverage on indicator for rating]
▶ Treatment is having a credit rating
▶ Outcome of interest is leverage

▶ Why might our estimate not equal ATE of rating?

▶ Why might controls not help us much?
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Treatment effect – Example

▶ Answer #1: Having a rating isn’t random
▶ Firms with rating likely would have had higher leverage anyway

because they are larger, more profitable, etc.; selection bias will be
positive

▶ Selection bias is basically an omitted variable!

▶ Answer #2: Even adding controls might not help if firms also
differ in unobservable ways, like investment opportunities
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Cross-sectional Simple Difference

▶ Very intuitive idea
▶ Compare post-treatment outcome, y , for treated group to the

untreated group
▶ I.e., just run cross-section simple difference

yi,t = β0 + β1di + ui,t

▶ d = 1 if observation i is in treatment group and equals zero
otherwise

▶ Regression only contains post-treatment time periods

▶ What is needed for β1 to capture the true (i.e., causal) treatment
effect?
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Identification Assumption

▶ Answer: E (u|d) = 0; i.e., treatment, d , is uncorrelated with the
error
▶ In words. . . after accounting for effect of treatment, the expected

level of y in post-treatment period isn’t related to whether you’re
in the treated or untreated group

▶ I.e., expected y of treated group would have been same as
untreated group absent treatment
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Multiple time periods & SEs

▶ If have multiple post-treatment periods, need to be careful with
standard errors
▶ Errors ui,t and ui,t+1 likely correlated if dependent variable

exhibits serial correlation
▶ E.g., we observe each firm (treated and untreated) for five years

after treatment (e.g., regulatory change), and our post-treatment
observations are not independent

▶ Should do one of two things
▶ Collapse data to one post-treatment per unit; e.g., for each firm,

use average of the firm’s post-treatment observations
▶ Or cluster standard errors at firm level [We will come back to

clustering in later lecture]
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Time-series Simple Difference

▶ Very intuitive idea
▶ Compare pre- and post-treatment outcomes, y , for just the

treated group [i.e., pre-treatment period acts as ‘control’ group]
▶ I.e., run time-series simple difference

yi,t = β0 + β1pt + ui,t

▶ pt = 1 if period t occurs after treatment and equals zero otherwise
▶ Regression contains only observations that are treated by

“experiment”

▶ What is needed for β1 to capture the true (i.e., causal) treatment
effect?
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Identification Assumption

▶ Answer: E (u|p) = 0; i.e., post-treatment indicator, p, is
uncorrelated with the error
▶ I.e., after accounting for effect of treatment, p, the expected level

of y in post-treatment period wouldn’t have been any different
than expected y in pre-treatment period
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Again, be careful about SEs

▶ Again, if you have multiple pre- and post-treatment periods, you
need to be careful with estimating your standard errors
▶ Either cluster SEs at level of each unit
▶ Or collapse data down to one pre- and one post-treatment

observation for each cross-section
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Using a First-Difference (FD) Approach

▶ Could also run regression using first-differences specification

yi ,t − yi ,t−1 = β1(pt − pt−1) + (ui ,t − ui ,t−1)

▶ If just one pre- and one post-treatment period (i.e., t − 1 and t),
then will get identical results

▶ But, if more than one pre- and post-treatment period, the results
will differ. . .
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FD versus Standard Approach [Part 1]

▶ Why might these two models give different estimates of β1 when
there are more than one pre- and post-treatment periods?

yi ,t = β0 + β1pt + ui ,t

versus

yi ,t − yi ,t−1 = β1(pt − pt−1) + (ui ,t − ui ,t−1)
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FD versus Standard Approach [Part 2]

Answer:

▶ In the first regression, β1 captures the difference between average
y pre-treatment versus average y post-treatment

▶ In the second regression, β1 captures the difference in ∆y
immediately after treatment versus ∆y in all other pre- and
post-treatment periods
▶ I.e., the ∆p variable equals 1 only in immediate post-treatment

period, and 0 for all other periods.
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FD versus Standard Approach [Part 3]

▶ Both approaches assume the effect of treatment is immediate
and persistent.

Period

y

-3 -2 -1 0 1 2 3

▶ In this scenario, both approaches give the same estimate
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FD versus Standard Approach [Part 4]

▶ But suppose the following is true...

Period

y

-3 -2 -1 0 1 2 3

▶ In this scenario, the FD approach gives a much smaller estimate
▶ The first approach compares average pre- versus post-treatment
▶ FD compares ∆y from t = 0 to t = −1 against ∆y elsewhere

(which isn’t always zero!)
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Correct way to do difference

▶ Correct way to get a ‘differencing’ approach to match up with
the more standard simple difference specification in multi-period
setting is to instead use

ȳi ,post − ȳi ,pre = β + ūi ,post − ūi ,pre

▶ This is exactly the same as simple difference
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Treatment effect isn’t always immediate

▶ In prior example, the specification is wrong because the
treatment effect only slowly shows up over time
▶ Why might such a scenario be plausible?
▶ Answer = Many reasons. E.g., firms might only slowly respond to

change in regulation, or CEO might only slowly change policy in
response to compensation shock
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Accounting for a delay. . .

▶ Simple-difference misses this subtlety; it assumes effect was
immediate

▶ For this reason, it is always helpful to run regression that allows
effect to vary by period
▶ How can you do this?
▶ Answer = Insert indicators for each year relative to the treatment

year
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Non-parametric approach

▶ If have 5 pre- and 5 post-treatment observations; could estimate:

yi ,t = β0 +
t=5∑
t=−4

βtpt + ui ,t

▶ pt is now an indicator that equals 1 if year = t and zero
otherwise; e.g. t = 0 is the period treatment occurs. t = −1 is
period before treatment

▶ βt estimates change in y relative to excluded periods; you then
plot these in graph
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Non-parametric approach – Graph

▶ Plot estimates to trace out effect of treatment

Period

y

-3 -2 -1 0 1 2 3

▶ It allows effect of treatment to vary by year!
▶ Pre-period y was same as y in excluded period (t = −3)
▶ Post-period estimates capture change relative to excluded period

(t = −3)
▶ Could easily plot confidence intervals as well
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Simple Differences – Advice

▶ In general, simple differences are not that convincing in
practice. . .
▶ Cross-sectional difference requires us to assume the average y of

treated and untreated would have been same absent treatment
▶ Time-series difference requires us to assume the average y would

have been same in post- and pre-treatment periods absent
treatment

▶ Is there a better way?
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Difference-in-differences

▶ Yes, we can do better!
▶ We can do a difference-in-differences that combines the two

simple differences
▶ Intuition = compare change in y pre- versus post-treatment for

treated group [1st difference] to change in y pre- versus
post-treatment for untreated group [2nd difference]
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Implementing diff-in-diff

▶ Difference-in-differences estimator

yi ,t = β0 + β1pt + β2di + β3(pt × di ) + ui ,t

▶ pt = 1 if period t occurs after treatment and equals zero otherwise
▶ di = 1 if unit is in treated group and equals zero otherwise
▶ What do β1, β2, and β3 capture?
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Interpreting the estimates

▶ Here is how to interpret everything. . .
▶ β1 captures the average change in y from the pre- to

post-treatment periods for the untreated groups
▶ β2 captures the average difference in level of y of the treated

group in the pre-treatment period
▶ β3 captures the average differential change in y from the pre- to

post-treatment period for the treatment group relative to the
change in y for the untreated group

▶ β3 is what we call the diff-in-diffs estimate
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Comparing group means [Part 1]

yi ,t = β0 + β1pt + β2di + β3(pt × di ) + ui ,t

▶ Four possible combinations:

E (y |d = 1, p = 1) = β0 + β1 + β2 + β3

E (y |d = 1, p = 0) = β0 + β2

E (y |d = 0, p = 1) = β0 + β1

E (y |d = 0, p = 0) = β0

▶ Assumption: E (u|d , p) = 0, i.e., the “experiment” is random.
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Comparing group means [Part 2]

yi ,t = β0 + β1pt + β2di + β3(pt × di ) + ui ,t

These can be arranged in two-by-two table

Post (1) Pre (2) Diff (1)− (2)

Treatment (a) β0 + β1 + β2 + β3 β0 + β2 β1 + β3
Control (b) β0 + β1 β0 β1

Diff. (a)− (b) β2 + β3 β2 β3

This is why it’s called the difference-in-differences estimate; regression
gives you same estimate as if you took differences in the group
averages. Again, β3 has a causal interpretation when E (u|d , p) = 0.
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Simple difference –Revisited [Part 1]

Useful to look at simple differences

Post (1) Pre (2) Diff (1)− (2)

Treatment (a) β0 + β1 + β2 + β3 β0 + β2 β1 + β3
Control (b) β0 + β1 β0 β1

Diff. (a)− (b) β2 + β3 β2 β3

This was cross-sectional simple difference

▶ When does that simple diff give effect of treatment, β3?

▶ Answer = when β2 equals zero; i.e. no difference in level of y
absent treatment
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Simple difference –Revisited [Part 2]

Now, look at time-series simple diff. . .

Post (1) Pre (2) Diff (1)− (2)

Treatment (a) β0 + β1 + β2 + β3 β0 + β2 β1 + β3
Control (b) β0 + β1 β0 β1

Diff. (a)− (b) β2 + β3 β2 β3

This was time-series simple difference

▶ When does that simple diff give effect of treatment, β3?

▶ Answer = when β1 equals zero; i.e. no change in y absent
treatment
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“Parallel trends” assumption

▶ Identification assumption is what we call the parallel trends
assumption
▶ Absent treatment, the change in y for treated would not have

been different than the change in y for the untreated observations
▶ But we cannot test this!
▶ Typically, we examine the “pre-trend” and hope that the trend

would continue after treatment.

▶ Looking at what difference-in-differences estimate is doing in
graphs will also help you see why the parallel trends assumption
is key
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Why we like diff-in-diff [Part 1]

▶ With simple difference, any of the below arguments would
prevent causal inference
▶ Cross-sectional diff – “Treatment and untreated avg. y could be

different for reasons a, b, and c, that just happen to be correlated
with whether you are treated or not”

▶ Time-series diff – “Treatment group’s avg. y could change
post-treatment for reasons a, b, and c, that just happen to be
correlated with the timing of treatment”
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Why we like diff-in-diff [Part 2]

▶ But now the required argument to suggest the estimate isn’t
causal is. . .
▶ “The change in y for treated observations after treatment would

have been different than the change in y for untreated
observations for reasons a, b, and c, that just happen to be
correlated with both whether you are treated and when the
treatment occurs”

▶ This is (usually) a harder story to tell
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Example. . .

▶ Bertrand & Mullainathan (JPE 2003) uses state-by-state changes
in regulations that made it harder for firms to do M&A
▶ They compare wages at firms pre- versus post-regulation in

treated versus untreated states
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Are these concerns for internal validity?

▶ The regulations were passed during a time period of rapid growth
of wages nationally. . .
▶ Answer = No. Indicator for post-treatment accounts for common

growth in wages

▶ States that implement regulation are more likely have unions,
and hence, higher wages. . .
▶ Answer = No. Indicator for treatment accounts for this average

difference in wages
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Example continued. . .

▶ However, ex-ante average differences is troublesome in some
regard. . .
▶ Suggests treatment wasn’t random
▶ And ex-ante differences can be problematic if we think that their

effect may vary with time. . .
▶ Time-varying omitted variables are problematic because they can

cause violation of “parallel trends”
▶ E.g., states with more unions were trending differently at that

time because of changes in union power
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Summary of Today [Part 1]

▶ Natural experiment provides random variation in x that allows
causal inference
▶ Can be used in IV, regression discontinuity, but most often

associated with “treatment” effects

▶ Two types of simple differences
▶ Post-treatment comparison of treated & untreated
▶ Pre- and post-treatment comparison of treated
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Summary of Today [Part 2]

▶ Simple differences require strong assumptions; typically, not
plausible

▶ Difference-in-differences helps with this
▶ Compares change in y pre- versus post-treatment for treated to

change in y for untreated
▶ Requires “parallel trends” assumption
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