

Natural Experiments - Part 1

Professor Ji-Woong Chung
Korea University

Outline

Motivation and definition

Understanding treatment effects

- Notation and Definitions

- Selection bias and why randomization matters

- Regression for treatment effects

Two types of simple differences

- Cross-sectional difference & assumptions

- Time-series difference & assumptions

- Miscellaneous issues & advice

Difference-in-differences

- Intuition & implementation

- “Parallel trends” assumption

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Recall... CMI assumption is key

- ▶ A violation of conditional mean independence (CMI), such that $E(u|x) \neq E(u)$ precludes our ability to make causal inferences

$$y = \beta_0 + \beta_1 x + u$$

- ▶ $\text{Cov}(x, u) \neq 0$ implies CMI is violated

CMI violation implies non-randomness

- ▶ Another way to think about violation is that it indicates that our x is non-random
 - ▶ I.e., the distribution of x (or the distribution of x after controlling for other observable covariates) isn't random
- ▶ E.g., firms with high x might have higher y (beyond just the effect of x on y) because high x is more likely for firms with some omitted variable contained in u ...

Randomized experiments are great...

- ▶ In many of the “hard” sciences, the researcher can simply design experiment to achieve the necessary randomness
 - ▶ Ex. #1 – To determine effect of new drug, you randomly give it to certain patients
 - ▶ Ex. #2 – To determine effect of certain gene, you modify it in a random sample of mice

But we simply can't do them

- ▶ We can't do this in finance!
 - ▶ E.g., we can't randomly assign a firm's leverage to determine its effect on investment
 - ▶ And we can't randomly assign CEOs' # of options to determine their effect on risk-taking
- ▶ Therefore, we need to rely on what we call “Natural experiments”

Defining a Natural Experiment

- ▶ Natural experiment is basically when some event causes a random assignment of (or change in) a variable of interest, x
 - ▶ Ex. #1 – Some weather event increases leverage for a **random** subset of firms
 - ▶ Ex. #2 – Some change in regulation reduces usage of options at a **random** subset of firms

NEs Provide Randomness

- ▶ We can use such “natural” experiments to ensure that randomness (i.e., CMI) holds and make causal inferences!
 - ▶ E.g., we use the randomness introduced into x by the natural experiment to uncover the causal effect of x on y

NEs can be used in many ways

- ▶ Technically, natural experiments can be used in many ways
 - ▶ Use them to construct IV
 - ▶ E.g., gender of first child being a boy used in Bennedsen, et al. (2007) is an example NE
 - ▶ Use them to construct regression discontinuity
 - ▶ E.g., cutoff for securitizing loans at credit score of 620 used in Keys et al. (2010) is a NE

And the Difference-in-Differences...

- ▶ But admittedly, when most people refer to natural experiment, they are talking about a difference-in-differences (DiD) estimator
 - ▶ Basically, compares outcome y for a “treated” group to outcome y for “untreated” group where treatment is randomly assigned by the natural experiment

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Notation and Framework

- ▶ Let d equal a treatment indicator from the experiment we will study
 - ▶ $d = 0$ untreated by experiment (i.e., control group)
 - ▶ $d = 1$ treated by experiment (i.e., treated group)
- ▶ Let y be the **potential** outcome of interest
 - ▶ $y = y(0)$ for untreated group
 - ▶ $y = y(1)$ for treated group
 - ▶ Therefore, $y = y(0) + d[y(1) - y(0)]$

Example treatments in corporate finance

- ▶ Ex. #1 – Treatment might be that your firm's state passed anti-takeover law
 - ▶ $d = 1$ for firms incorporated in those states
 - ▶ y could be several things, e.g., ROA
- ▶ Ex. #2 – Treatment is that your firm discovers workers exposed to carcinogen
 - ▶ $d = 1$ if have exposed workers
 - ▶ y could be several things, like M&A

Average Treatment Effect (ATE)

- ▶ Can now define some useful things
 - ▶ Average Treatment Effect (ATE) is given by $E[y(1) - y(0)]$
- ▶ What does this mean in words?
 - ▶ Answer: The expected change in y from being treated by the experiment; this is the causal effect we are typically interested in uncovering.

But ATE is unobservable

- ▶ Why can't we directly observe ATE?
 - ▶ Answer: We only observe one outcome...
 - ▶ If treated, we observe $y(1)$; if untreated, we observe $y(0)$. We never observe both.
 - ▶ E.g., we cannot observe the counterfactual of what your y would have been absent treatment

Defining ATT

- ▶ Average Treatment Effect if Treated (ATT) is given by
 $E[y(1) - y(0)|d = 1]$
 - ▶ This is the effect of treatment on those that are treated; i.e., change in y we'd expect to find in treated random sample from a population of observations that are treated
 - ▶ What don't we observe here?
 - ▶ Answer: $y(0)|d = 1$

Defining ATU

- ▶ Average Treatment Effect if Untreated (ATU) is given by $E[y(1) - y(0)|d = 0]$
 - ▶ This is what the effect of treatment would have been on those that are not treated by the experiment
 - ▶ We don't observe $y(1)|d = 0$

Uncovering ATE [Part 1]

- ▶ How do we estimate ATE, $E[y(1) - y(0)]$?
 - ▶ Answer: We instead rely on $E[y(1)|d = 1] - E[y(0)|d = 0]$ as our way to infer the ATE
- ▶ In words, what are we doing & what are we assuming?

Uncovering ATE [Part 2]

- ▶ In words, we compare average y of treated to average y of untreated observations
 - ▶ If we interpret this as the ATE, we are assuming that absent the treatment, the treated group would, on average, have had same outcome y as the untreated group
 - ▶ We can show this formally by simply working out $E[y(1)|d = 1] - E[y(0)|d = 0]\dots$

Uncovering ATE [Part 3]

$$\underbrace{\{E[y(1)|d = 1] - E[y(0)|d = 1]\}}_{ATT} + \underbrace{E[y(0)|d = 1] - E[y(0)|d = 0]}_{Selection\ bias}$$

- ▶ Simple comparison doesn't give us the ATE!
- ▶ What is the “selection bias” in words?

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Selection bias defined

- ▶ Selection bias: $E[y(0)|d = 1] - E[y(0)|d = 0]$
 - ▶ Definition: What the difference in average y would have been for treated and untreated observations absent any treatment
 - ▶ We do not observe this counterfactual!
- ▶ Now let's see why randomness is key!

Introducing random treatment

- ▶ A random treatment, d , implies that d is independent of potential outcomes; i.e.,
 - ▶ $E[y(0)|d = 1] = E[y(0)|d = 0] = E[y(0)]$
 - ▶ $E[y(1)|d = 1] = E[y(1)|d = 0] = E[y(1)]$
- ▶ In words, the expected value of y is the same for treated and untreated absent treatment
- ▶ With this, easy to see that selection bias = 0
- ▶ And remaining ATT is equal to ATE!

Random treatment makes life easy

- ▶ I.e., with random assignment of treatment, our simple comparison gives us the ATE!
 - ▶ This is why we like randomness!
 - ▶ But, absent randomness, we must worry that any observed difference is driven by selection bias

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

ATE in Regression Format [Part 1]

- ▶ Remember $y = y(0) + d[y(1) - y(0)]$.
- ▶ Can re-express everything in regression format

$$y = \underbrace{\beta_0}_{E[y(0)]} + \underbrace{\beta_1}_{y(1)-y(0)} d + \underbrace{u}_{y(0)-E[y(0)]}$$

$$E[y|d=1] = \beta_0 + \beta_1 + E[u|d=1]$$

$$E[y|d=0] = \beta_0 + E[u|d=0]$$

$$\Rightarrow E[y|d=1] - E[y|d=0] = \beta_1 + (E[u|d=1] - E[u|d=0])$$

ATE in Regression Format [Part 2]

- ▶ We are interested in $E[y|d = 1] - E[y|d = 0]$
 - ▶ $\beta_1 = E[y|d = 1] - E[y|d = 0]$ if $E[u|d = 1] - E[u|d = 0] = 0$,
i.e., no correlation between u and d .
 - ▶ $E[u|d = 1] - E[u|d = 0] = E[y(0)|d = 1] - E[y(0)|d = 0]$,
implying the difference in (no-treatment) potential outcomes
between those who get treated and those who don't.
 - ▶ We know that this regression gives consistent estimate of β_1 if
 $\text{cov}(d, u) = 0$, i.e., $(E[u|d = 1] - E[u|d = 0]) = 0$.
 - ▶ Hence, selection bias term occurs only if CMI isn't true!

Adding additional controls [Part 1]

- ▶ Regression format also allows us to easily put in additional controls, X
 - ▶ Intuitively, comparison of treated and untreated just becomes $E[y(1)|d = 1, X] - E[y(0)|d = 0, X]$
 - ▶ Same selection bias term will appear if treatment, d , isn't random after conditioning on X
 - ▶ Regression version just becomes

$$y = \beta_0 + \beta_1 d + X\Gamma + u$$

- ▶ **Question:** If we had truly randomized experiment, are controls necessary?

Adding additional controls [Part 2]

- ▶ **Answer:** No, controls are not necessary in truly randomized experiment
 - ▶ But they can be helpful in making the estimates more precise by absorbing residual variation... we'll talk more about this later

Treatment effect – Example

- ▶ We want to compare leverage of firms with and without a credit rating [or equivalently, regress leverage on indicator for rating]
 - ▶ Treatment is having a credit rating
 - ▶ Outcome of interest is leverage
- ▶ Why might our estimate not equal ATE of rating?
- ▶ Why might controls not help us much?

Treatment effect – Example

- ▶ Answer #1: Having a rating isn't random
 - ▶ Firms with rating likely would have had higher leverage anyway because they are larger, more profitable, etc.; selection bias will be positive
 - ▶ Selection bias is basically an omitted variable!
- ▶ Answer #2: Even adding controls might not help if firms also differ in unobservable ways, like investment opportunities

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Cross-sectional Simple Difference

- ▶ Very intuitive idea
 - ▶ Compare post-treatment outcome, y , for treated group to the untreated group
 - ▶ I.e., just run cross-section simple difference

$$y_{i,t} = \beta_0 + \beta_1 d_i + u_{i,t}$$

- ▶ $d = 1$ if observation i is in treatment group and equals zero otherwise
- ▶ Regression only contains post-treatment time periods
- ▶ What is needed for β_1 to capture the true (i.e., causal) treatment effect?

Identification Assumption

- ▶ Answer: $E(u|d) = 0$; i.e., treatment, d , is uncorrelated with the error
 - ▶ In words... after accounting for effect of treatment, the expected level of y in post-treatment period isn't related to whether you're in the treated or untreated group
 - ▶ I.e., expected y of treated group would have been same as untreated group absent treatment

Multiple time periods & SEs

- ▶ If have multiple post-treatment periods, need to be careful with standard errors
 - ▶ Errors $u_{i,t}$ and $u_{i,t+1}$ likely correlated if dependent variable exhibits serial correlation
 - ▶ E.g., we observe each firm (treated and untreated) for five years after treatment (e.g., regulatory change), and our post-treatment observations are not independent
- ▶ Should do one of two things
 - ▶ Collapse data to one post-treatment per unit; e.g., for each firm, use average of the firm's post-treatment observations
 - ▶ Or cluster standard errors at firm level [We will come back to clustering in later lecture]

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Time-series Simple Difference

- ▶ Very intuitive idea
 - ▶ Compare pre- and post-treatment outcomes, y , for just the treated group [i.e., pre-treatment period acts as 'control' group]
 - ▶ I.e., run time-series simple difference

$$y_{i,t} = \beta_0 + \beta_1 p_t + u_{i,t}$$

- ▶ $p_t = 1$ if period t occurs after treatment and equals zero otherwise
- ▶ Regression contains only observations that are treated by "experiment"
- ▶ What is needed for β_1 to capture the true (i.e., causal) treatment effect?

Identification Assumption

- ▶ Answer: $E(u|p) = 0$; i.e., post-treatment indicator, p , is uncorrelated with the error
 - ▶ I.e., after accounting for effect of treatment, p , the expected level of y in post-treatment period wouldn't have been any different than expected y in pre-treatment period

Again, be careful about SEs

- ▶ Again, if you have multiple pre- and post-treatment periods, you need to be careful with estimating your standard errors
 - ▶ Either cluster SEs at level of each unit
 - ▶ Or collapse data down to one pre- and one post-treatment observation for each cross-section

Using a First-Difference (FD) Approach

- ▶ Could also run regression using first-differences specification

$$y_{i,t} - y_{i,t-1} = \beta_1(p_t - p_{t-1}) + (u_{i,t} - u_{i,t-1})$$

- ▶ If just one pre- and one post-treatment period (i.e., $t - 1$ and t), then will get identical results
- ▶ But, if more than one pre- and post-treatment period, the results will differ...

FD versus Standard Approach [Part 1]

- ▶ Why might these two models give different estimates of β_1 when there are more than one pre- and post-treatment periods?

$$y_{i,t} = \beta_0 + \beta_1 p_t + u_{i,t}$$

versus

$$y_{i,t} - y_{i,t-1} = \beta_1(p_t - p_{t-1}) + (u_{i,t} - u_{i,t-1})$$

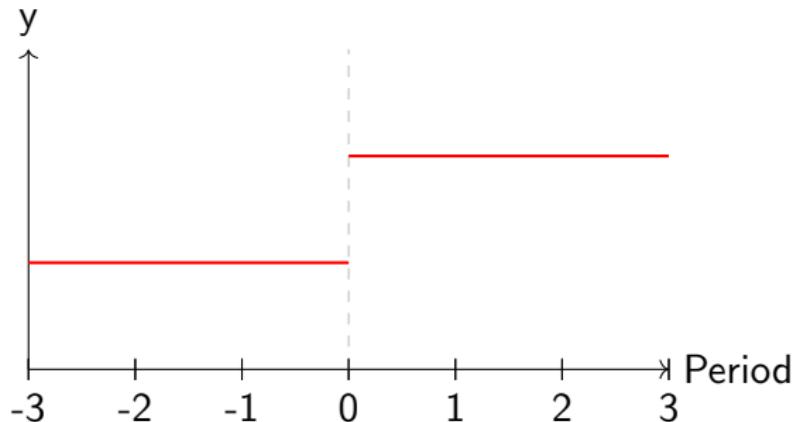
FD versus Standard Approach [Part 2]

Answer:

- ▶ In the first regression, β_1 captures the difference between average y pre-treatment versus average y post-treatment
- ▶ In the second regression, β_1 captures the difference in Δy immediately after treatment versus Δy in all other pre- and post-treatment periods
 - ▶ I.e., the Δp variable equals 1 only in immediate post-treatment period, and 0 for all other periods.

FD versus Standard Approach [Part 3]

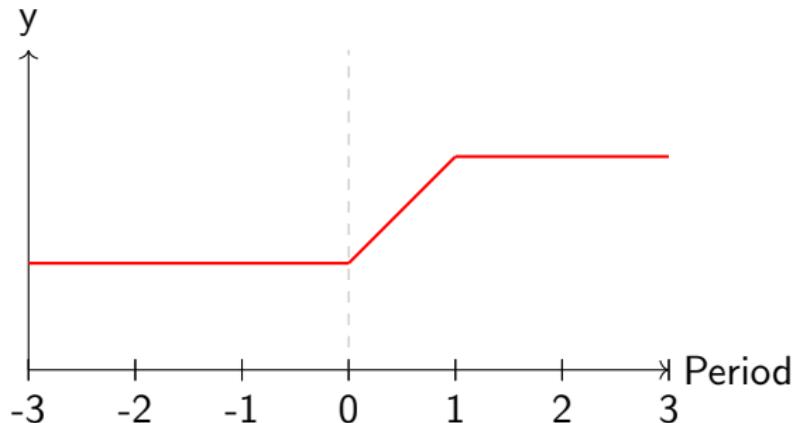
- Both approaches assume the effect of treatment is immediate and persistent.



- In this scenario, both approaches give the same estimate

FD versus Standard Approach [Part 4]

- ▶ But suppose the following is true...



- ▶ In this scenario, the FD approach gives a much smaller estimate
- ▶ The first approach compares average pre- versus post-treatment
- ▶ FD compares Δy from $t = 0$ to $t = -1$ against Δy elsewhere (which isn't always zero!)

Correct way to do difference

- ▶ Correct way to get a 'differencing' approach to match up with the more standard simple difference specification in multi-period setting is to instead use

$$\bar{y}_{i,\text{post}} - \bar{y}_{i,\text{pre}} = \beta + \bar{u}_{i,\text{post}} - \bar{u}_{i,\text{pre}}$$

- ▶ This is exactly the same as simple difference

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Treatment effect isn't always immediate

- ▶ In prior example, the specification is wrong because the treatment effect only slowly shows up over time
 - ▶ Why might such a scenario be plausible?
 - ▶ Answer = Many reasons. E.g., firms might only slowly respond to change in regulation, or CEO might only slowly change policy in response to compensation shock

Accounting for a delay...

- ▶ Simple-difference misses this subtlety; it assumes effect was immediate
- ▶ For this reason, it is always helpful to run regression that allows effect to vary by period
 - ▶ How can you do this?
 - ▶ Answer = Insert indicators for each year relative to the treatment year

Non-parametric approach

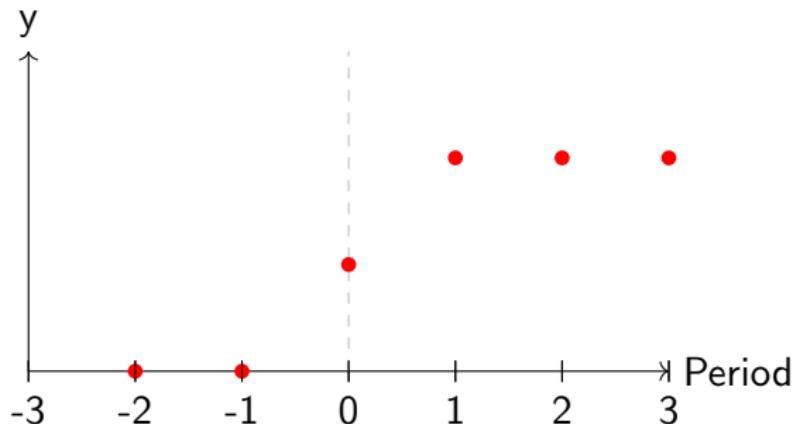
- ▶ If have 5 pre- and 5 post-treatment observations; could estimate:

$$y_{i,t} = \beta_0 + \sum_{t=-4}^{t=5} \beta_t p_t + u_{i,t}$$

- ▶ p_t is now an indicator that equals 1 if year = t and zero otherwise; e.g. $t = 0$ is the period treatment occurs. $t = -1$ is period before treatment
- ▶ β_t estimates change in y relative to excluded periods; you then plot these in graph

Non-parametric approach – Graph

- ▶ Plot estimates to trace out effect of treatment



- ▶ It allows effect of treatment to vary by year!
- ▶ Pre-period y was same as y in excluded period ($t = -3$)
- ▶ Post-period estimates capture change relative to excluded period ($t = -3$)
- ▶ Could easily plot confidence intervals as well

Simple Differences – Advice

- ▶ In general, simple differences are not that convincing in practice...
 - ▶ Cross-sectional difference requires us to assume the average y of treated and untreated would have been same absent treatment
 - ▶ Time-series difference requires us to assume the average y would have been same in post- and pre-treatment periods absent treatment
- ▶ Is there a better way?

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

Difference-in-differences

- ▶ Yes, we can do better!
- ▶ We can do a difference-in-differences that combines the two simple differences
 - ▶ Intuition = compare change in y pre- versus post-treatment for treated group [1st difference] to change in y pre- versus post-treatment for untreated group [2nd difference]

Implementing diff-in-diff

- ▶ Difference-in-differences estimator

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (p_t \times d_i) + u_{i,t}$$

- ▶ $p_t = 1$ if period t occurs after treatment and equals zero otherwise
- ▶ $d_i = 1$ if unit is in treated group and equals zero otherwise
- ▶ What do β_1 , β_2 , and β_3 capture?

Interpreting the estimates

- ▶ Here is how to interpret everything...
 - ▶ β_1 captures the average change in y from the pre- to post-treatment periods for the untreated groups
 - ▶ β_2 captures the average difference in level of y of the treated group in the pre-treatment period
 - ▶ β_3 captures the average differential change in y from the pre- to post-treatment period for the treatment group relative to the change in y for the untreated group
 - ▶ β_3 is what we call the diff-in-diffs estimate

Comparing group means [Part 1]

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (p_t \times d_i) + u_{i,t}$$

- ▶ Four possible combinations:

$$E(y|d = 1, p = 1) = \beta_0 + \beta_1 + \beta_2 + \beta_3$$

$$E(y|d = 1, p = 0) = \beta_0 + \beta_2$$

$$E(y|d = 0, p = 1) = \beta_0 + \beta_1$$

$$E(y|d = 0, p = 0) = \beta_0$$

- ▶ Assumption: $E(u|d, p) = 0$, i.e., the “experiment” is random.

Comparing group means [Part 2]

$$y_{i,t} = \beta_0 + \beta_1 p_t + \beta_2 d_i + \beta_3 (p_t \times d_i) + u_{i,t}$$

These can be arranged in two-by-two table

	Post (1)	Pre (2)	Diff (1) – (2)
Treatment (a)	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_0 + \beta_2$	$\beta_1 + \beta_3$
Control (b)	$\beta_0 + \beta_1$	β_0	β_1
Diff. (a) – (b)	$\beta_2 + \beta_3$	β_2	β_3

This is why it's called the difference-in-differences estimate; regression gives you same estimate as if you took differences in the group averages. Again, β_3 has a causal interpretation when $E(u|d, p) = 0$.

Simple difference –Revisited [Part 1]

Useful to look at simple differences

	Post (1)	Pre (2)	Diff (1) – (2)
Treatment (a)	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_0 + \beta_2$	$\beta_1 + \beta_3$
Control (b)	$\beta_0 + \beta_1$	β_0	β_1
Diff. (a) – (b)	$\beta_2 + \beta_3$	β_2	β_3

This was cross-sectional simple difference

- ▶ When does that simple diff give effect of treatment, β_3 ?
- ▶ Answer = when β_2 equals zero; i.e. no difference in level of y absent treatment

Simple difference –Revisited [Part 2]

Now, look at time-series simple diff...

	Post (1)	Pre (2)	Diff (1) – (2)
Treatment (a)	$\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\beta_0 + \beta_2$	$\beta_1 + \beta_3$
Control (b)	$\beta_0 + \beta_1$	β_0	β_1
Diff. (a) – (b)	$\beta_2 + \beta_3$	β_2	β_3

This was time-series simple difference

- ▶ When does that simple diff give effect of treatment, β_3 ?
- ▶ Answer = when β_1 equals zero; i.e. no change in y absent treatment

Outline

Motivation and definition

Understanding treatment effects

Notation and Definitions

Selection bias and why randomization matters

Regression for treatment effects

Two types of simple differences

Cross-sectional difference & assumptions

Time-series difference & assumptions

Miscellaneous issues & advice

Difference-in-differences

Intuition & implementation

“Parallel trends” assumption

“Parallel trends” assumption

- ▶ Identification assumption is what we call the parallel trends assumption
 - ▶ Absent treatment, the change in y for treated would not have been different than the change in y for the untreated observations
 - ▶ But we cannot test this!
 - ▶ Typically, we examine the “pre-trend” and hope that the trend would continue after treatment.
- ▶ Looking at what difference-in-differences estimate is doing in graphs will also help you see why the parallel trends assumption is key

Why we like diff-in-diff [Part 1]

- ▶ With simple difference, any of the below arguments would prevent causal inference
 - ▶ Cross-sectional diff – “Treatment and untreated avg. y could be different for reasons a, b, and c, that just happen to be correlated with whether you are treated or not”
 - ▶ Time-series diff – “Treatment group's avg. y could change post-treatment for reasons a, b, and c, that just happen to be correlated with the timing of treatment”

Why we like diff-in-diff [Part 2]

- ▶ But now the required argument to suggest the estimate isn't causal is...
 - ▶ "The change in y for treated observations after treatment would have been different than the change in y for untreated observations for reasons a, b, and c, that just happen to be correlated with **both** whether you are treated and when the treatment occurs"
- ▶ This is (usually) a harder story to tell

Example...

- ▶ Bertrand & Mullainathan (JPE 2003) uses state-by-state changes in regulations that made it harder for firms to do M&A
 - ▶ They compare wages at firms pre- versus post-regulation in treated versus untreated states

Are these concerns for internal validity?

- ▶ The regulations were passed during a time period of rapid growth of wages nationally...
 - ▶ Answer = No. Indicator for post-treatment accounts for common growth in wages
- ▶ States that implement regulation are more likely have unions, and hence, higher wages...
 - ▶ Answer = No. Indicator for treatment accounts for this average difference in wages

Example continued...

- ▶ However, ex-ante average differences is troublesome in some regard...
 - ▶ Suggests treatment wasn't random
 - ▶ And ex-ante differences can be problematic if we think that their effect may vary with time...
 - ▶ Time-varying omitted variables **are** problematic because they can cause violation of "parallel trends"
 - ▶ E.g., states with more unions were trending differently at that time because of changes in union power

Summary of Today [Part 1]

- ▶ Natural experiment provides random variation in x that allows causal inference
 - ▶ Can be used in IV, regression discontinuity, but most often associated with “treatment” effects
- ▶ Two types of simple differences
 - ▶ Post-treatment comparison of treated & untreated
 - ▶ Pre- and post-treatment comparison of treated

Summary of Today [Part 2]

- ▶ Simple differences require strong assumptions; typically, not plausible
- ▶ Difference-in-differences helps with this
 - ▶ Compares change in y pre- versus post-treatment for treated to change in y for untreated
 - ▶ Requires “parallel trends” assumption