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Chapter 6

Panel Data

6.1 Introduction: Why Panel Data is Helpful

Omitted variable bias is a fundamental challenge in empirical economics.
When important explanatory variables are not included in a regression model,
the estimated coefficients on included variables can be biased and inconsis-
tent. This problem is especially severe if the omitted factors are correlated
with the regressors of interest. Unfortunately, many such omitted variables
are inherently unobservable (e.g. innate ability, firm culture, risk prefer-
ences), making it impossible to include them directly as controls. In this
context, panel data (also called longitudinal data) can offer a powerful solu-
tion by allowing researchers to control for certain unobserved characteristics.

To motivate the usefulness of panel data, consider an example from corporate
finance. Suppose we are interested in the relationship between a firm’s lever-
age (debt-to-assets ratio) and its profitability (net income-to-assets). We
might start with a simple pooled regression model for firm i, operating in
industry j, in year t:

leveragei,j,t = β0 + β1profiti,j,t + ui,j,t ,

where ui,j,t is the regression error term. The coefficient β1 would capture
the marginal effect of profitability on leverage under the assumption that,
conditional on profit, the error term is uncorrelated with profit. However,
this assumption is dubious: it is easy to think of many omitted variables that
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4 CHAPTER 6. PANEL DATA

might affect a firm’s leverage and also be correlated with its profit.

What are some likely omitted factors in this leverage example? One pos-
sibility is managerial talent or risk aversion: more talented or risk-tolerant
managers might both achieve higher profits and choose a different leverage
policy. Another potential omitted variable is industry conditions: favorable
industry demand shocks could raise profits and simultaneously enable firms
to borrow more (or reduce their need to borrow). The cost of capital faced
by the firm could influence leverage (firms with access to cheaper credit
borrow more) and might be related to profitability. Other examples include
investment opportunities (firms with better growth opportunities might have
higher profits and also choose particular leverage levels) and market senti-
ment or credit market conditions that vary over time and affect both profits
and leverage. All these factors are typically unobserved by the econometri-
cian or hard to measure, yet they could bias our estimate of β1. For instance,
if more profitable firms operate in booming industries (unobserved positive
industry shock) and simultaneously carry higher leverage, a simple OLS re-
gression of leverage on profit would attribute to profit an effect that partly
reflects industry conditions.

The omitted variables problem becomes even more pronounced when us-
ing data across heterogeneous groups such as different regions or countries.
For example, if we pool firms from various countries, there may be unob-
served country-level differences like the strength of institutions, enforcement
of property rights, financial market development, or investor sentiment. A
firm’s location might proxy for these factors. If these country-specific factors
influence both firm profitability and capital structure, then comparing firms
across countries without accounting for such differences would be misleading.

One common approach to mitigating omitted variable bias is to include proxy
variables—observable variables that are thought to be correlated with the
unobservable factor. In our leverage example, one might try to proxy for
managerial ability using characteristics like the manager’s education or for
investor sentiment using stock market indicators. However, for a proxy vari-
able to yield consistent estimates of other coefficients, a strong assumption
is required: the proxy must be so good that, after controlling for it, the re-
maining unobserved component is uncorrelated with the other regressors. In
other words, the proxy effectively absorbs all the correlation between the un-
observed factor and the included explanatory variables. In practice, finding
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such perfect proxies is difficult, and using imperfect proxies can still leave
substantial bias.

Panel data to the rescue: If we have data on the same observational units
(e.g. the same firms) over multiple time periods, we can exploit the structure
of the data to deal with a particular type of omitted variable. Specifically,
panel data allows us to control for unobserved time-invariant factors. Many
omitted variables, such as innate ability (in individual wage regressions) or
corporate culture (in firm outcomes), are plausibly constant over time for
a given individual or firm. Panel data methods enable us to difference or
subtract out these time-invariant factors, eliminating their influence on the
estimated effect of interest. The key insight is that while we cannot observe
or measure fi (say, the ability of individual i or the management quality
of firm i), if fi remains fixed over time, then changes in the outcome for
unit i over time cannot be due to changes in fi. By focusing on within-unit
variation (how yit changes as xit changes for the same i), we can control for
any characteristic of unit i that does not change over time.

In summary, panel data provides an effective way to control for omitted
variables that are constant within an entity but vary across entities. This
helps us get closer to causal inference by removing one important source of
bias. In the rest of this chapter, we will develop the fixed effects model,
which formalizes this idea, and discuss its statistical properties, benefits,
and limitations. We will also compare it to alternative panel data methods
such as random effects and first differencing, and address special cases like
dynamic models with lagged dependent variables.

6.2 The Fixed Effects Model

6.2.1 Panel Data Basics and Notation

A dataset is called panel data (or longitudinal data) if it contains multiple
observations on each individual or entity in the sample. We will use i to
index the individual (or cross-sectional unit) and t to index time. The total
number of individuals is N and the number of time periods (observations
per individual) is T . In a balanced panel, each individual is observed in
all T periods, so the total number of observations is N × T . (If different
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individuals have different numbers of observations, the panel is unbalanced.
Most of the methods we discuss apply to unbalanced panels as well, though
for simplicity we often assume a balanced panel in theoretical exposition.)

Panel data examples in economics and finance include:

� Firm-level data: e.g. 5,000 firms observed annually for 20 years (N =
5000, T = 20).

� Household or individual data: e.g. 1,000 households tracked over 10
years (N = 1000, T = 10).

� Repeated observations of countries or regions: e.g. 50 states in the US
observed over multiple decades.

In panel datasets, we can think of each individual i having a vector of observa-
tions (yi1, yi2, . . . , yiT ) for the dependent variable and similarly (xi1, . . . , xiT )
for each explanatory variable. The power of panel data comes from the possi-
bility of controlling for individual-specific effects. In a regression setting,
a general model for panel data can be written as:

yit = α + βxit + fi + uit, i = 1, . . . , N, t = 1, . . . , T,

where

� yit is the outcome for individual i at time t,

� xit is a vector of one or more observed explanatory variables (we can
treat β as a vector if there are multiple regressors),

� α is a constant term (common intercept),

� fi represents the unobserved individual-specific effect (the fixed effect
for individual i),

� uit is the idiosyncratic error term that varies over both i and t.

The term fi captures all unobservable influences on yit that are peculiar to
individual i and do not change over time. We often call fi unobserved
heterogeneity or an unobserved fixed effect. For example, in a wage
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regression yit might be the wage of person i in year t, xit could include
education and experience, and fi could represent that person’s innate ability
or family background, which is not observed but affects wages and remains
constant for that person.

It is important to clarify the assumptions we make about the error com-
ponents fi and uit. A basic set of assumptions for the fixed effects model
is:

1. E(uit) = 0 for all i, t. (The idiosyncratic errors have mean zero, given
the regressors and individual effect.)

2. Var(uit) = σ2
u and Cov(uit, ujs) = 0 for i ̸= j or t ̸= s. (Different

individuals’ errors are uncorrelated, and a given individual’s errors are
uncorrelated over time. This is a baseline assumption of no autocorrela-
tion in the idiosyncratic errors and no cross-sectional error dependence,
which can be relaxed later. We also often assume homoskedasticity of
uit here for simplicity.)

3. fi is constant for each i (by construction) and may be correlated with
the regressors xit. However, fi itself does not vary over t, and crucially
we assume fi has zero mean or is absorbed into the intercept α (so we
don’t introduce bias in the intercept).

4. The regressors are uncorrelated with the idiosyncratic errors across all
time periods: for all i, t, and s,

Cov(xit, uis) = 0 ,

or equivalently E(uis | xi1, xi2, . . . , xiT , fi) = 0. This assumption is
known as strict exogeneity of the regressors with respect to the id-
iosyncratic error. It is stronger than the usual contemporaneous exo-
geneity (which would only require E(uit | xit) = 0) because it rules out
any correlation between x at time t and the error at any other time s.
In words, strict exogeneity means that after controlling for the observed
x and the fixed effect fi, there are no feedback effects or anticipation
effects: the explanatory variables in any period are effectively predeter-
mined and unaffected by past shocks u, and they do not predict future
shocks either.
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Assumption (4) of strict exogeneity is critical for the fixed effects estima-
tor (and the first-difference estimator) to be consistent. If xit is correlated
with ui,t+1 or any future (or past) error term, then the within-group trans-
formations we use in fixed effects estimation will not eliminate all sources of
endogeneity. For instance, if a firm experiences an unusually low leverage
ui,t shock and then responds by adjusting its future xi,t+1 (profitability or
some other regressor), this would violate strict exogeneity. We will discuss
later what can be done when strict exogeneity fails (e.g. using instrumental
variables).

6.2.2 Omitted Variable Bias in Panel Data

Before introducing the fixed effects solution, let us examine the bias that
arises if we ignore the unobserved fi. If we estimate a naive pooled OLS
regression of yit on xit, omitting fi, the model is:

yit = α + βxit + vit,

where the combined error term is vit = fi + uit. Here vit contains the unob-
served heterogeneity fi which was left out of the regression, as well as the
idiosyncratic error uit. By construction, fi is constant over t for each i, so
vit is serially correlated (since vi,t and vi,s share the common component fi
for any t, s).

If Cov(xit, fi) ̸= 0, which is the usual case we worry about, then xit will be
correlated with the composite error vit. This violates the OLS assumption
of exogeneity of regressors and leads to omitted variable bias (OVB) in
the OLS estimate of β.

We can derive the direction and magnitude of this bias in a simple scenario
for intuition. Consider a simplified case with a single regressor (scalar x)
and suppose we ignore fi. The probability limit of the OLS estimator can be
expressed as:

plim β̂OLS = β +
Cov(xit, fi)

Var(xit)
δ ,

where δ is the coefficient on fi in the true model (in our formulation above,
the true model was yit = α+βxit+δfi+uit). This formula shows that the OLS
estimator is biased by an amount equal to the coefficient on the omitted vari-
able (δ) times the regression coefficient of fi on xit (i.e. Cov(x, f)/Var(x)).
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In practice we don’t know δ or the correlation of x with f , but we often
can sign this bias. If fi is positively correlated with xit and δ > 0 (i.e. the
omitted factor has a positive effect on y), then β̂OLS will be upward-biased
(too large). If δ > 0 but the correlation is negative, the bias is downward
(too small, potentially even flipping the sign of the estimate).

Example (continued): In the leverage-profit regression example, one omit-
ted factor was managerial risk aversion. Suppose more risk-averse man-
agers tend to both maintain lower leverage ratios (negative δ if we treat
fi = managers’ risk aversion level) and also achieve perhaps somewhat lower
profits (imagine risk-averse managers forgo some risky profitable projects,
so Cov(profit, fi) > 0 if fi represents risk aversion since higher fi means
more risk aversion correlated with lower profit). In this case, x (profit) is
negatively correlated with f (risk aversion), and δ < 0 (risk aversion lowers

leverage). The product Cov(x,f)
Var(x)

δ would be positive (because Cov(x, f) < 0

and δ < 0 gives a positive product). Thus β̂OLS would be β plus a positive
bias term, meaning OLS overestimates the true effect of profit on leverage.
Intuitively, some of the negative effect of risk aversion on leverage is being
falsely attributed to profit, because risk-averse (high fi) managers produce
lower profits and also choose lower leverage.

This analysis underscores why pooling data without accounting for unob-
served heterogeneity can lead us astray. Many variables of interest in eco-
nomics are correlated with traits that vary across individuals (or firms, coun-
tries, etc.) but are stable over time. If those traits also influence the outcome,
a simple cross-sectional or pooled analysis will be biased. Panel data offers
a way out of this conundrum by allowing us to difference out or control for
the fi term.

6.2.3 The Within Transformation and Fixed Effects
Estimation

The key to eliminating the bias due to fi is to remove fi from the regression
equation. Since fi is constant for each individual i, one very useful transfor-
mation is to demean the data for each individual. Define the time average
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for individual i of each variable:

ȳi =
1

T

T∑
t=1

yit, x̄i =
1

T

T∑
t=1

xit, ūi =
1

T

T∑
t=1

uit .

(Note: if the panel is unbalanced, we would average over the periods available
for each i; assume balanced panel for simplicity.) Also, since fi is constant
over t, f̄i = fi for all i. Now consider the average of the regression model
over t for a given i:

ȳi = α + βx̄i + δfi + ūi .

Next, subtract this time-averaged equation from the original equation yit =
α + βxit + δfi + uit for each t. The result is:

yit − ȳi = β(xit − x̄i) + δ(fi − fi) + (uit − ūi) .

This simplifies to:

yit − ȳi = β(xit − x̄i) + (uit − ūi) . (6.1)

All mention of fi has disappeared from the equation, as has the intercept α
(because subtracting the mean removes any constant term). The transfor-
mation we just applied is called the within transformation or demeaning
within groups. It subtracts the individual-specific mean from each variable,
yielding variables expressed as deviations from the individual’s average.

Equation (6.1) is the core of the fixed effects (FE) estimator. We can
now estimate β consistently by applying OLS to this transformed equation:

ỹit = βx̃it + ũit ,

where ỹit = yit − ȳi and x̃it = xit − x̄i are the demeaned variables, and
ũit = uit − ūi is the transformed error term. The unobserved effect fi was
the source of omitted variable bias; since it is time-invariant, demeaning the
data has exactly removed it.

Intuitively, we are now using within-individual variation over time to
estimate β. Each individual’s mean has been subtracted out, so any purely
cross-sectional difference between individuals (which could be due to different
fi values or other time-invariant factors) no longer influences the estimate.
The coefficient β in this transformed regression is identified by the question:
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for a given individual, when x is higher than usual, is y higher than usual?
By comparing each individual to themselves at different times, we control for
all stable characteristics of that individual.

For the FE estimator to be consistent, we require that the transformed re-
gressor x̃it is uncorrelated with the transformed error ũit. Under the earlier
assumption of strict exogeneity, this will hold. To see this, note that

ũit = uit − ūi = uit −
1

T

T∑
s=1

uis .

Given strict exogeneity, E(xituis) = 0 for all s, and thusE(xitūi) =
1
T

∑
s E(xituis) =

0. Also E(xituit) = 0. Therefore E(xit(uit − ūi)) = 0. This implies
E(x̃itũit) = 0, i.e. x̃ is uncorrelated with ũ. In words, if the original x
had no correlation with past, present, or future u (strict exogeneity), then
deviations of x from its mean are uncorrelated with deviations of u from its
mean, making the within-estimator unbiased and consistent.

Performing OLS on the within-transformed data yields the within estima-
tor β̂FE. This is also commonly referred to as the fixed effects estimator.
We will often use the term “fixed effects model” to refer to the model that
includes fi for each individual, and “fixed effects estimation” to refer to the
within transformation approach that effectively estimates that model. Note
that when we run this regression, we do not include an intercept, because the
intercept would be absorbed by the demeaning (every individual’s mean was
subtracted, so the demeaned data automatically have zero mean for both y
and x).

A small but important detail: by performing the within transformation, we
have used up one degree of freedom per individual (the individual’s mean,
essentially equivalent to estimating one fi for each individual). Thus, the
total degrees of freedom for the regression will be NT−K−N , whereK is the
number of regressors (elements in xit not including the intercept). In other
words, we lose N degrees of freedom compared to a pooled OLS regression
without fixed effects. If N is large, this is usually not a big concern, but it
matters for standard error calculation and statistical significance; we will let
statistical software handle this automatically.

To summarize, the fixed effects estimator differences out time-invariant omit-
ted variables by using within-individual variation. Under the maintained as-
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sumptions (notably strict exogeneity), β̂FE is a consistent estimator of the
true effect β.

6.2.4 The Dummy Variable (LSDV) Approach to Fixed
Effects

The within transformation is algebraically elegant, but there is another equiv-
alent way to arrive at the fixed effects estimator that can provide intuition:
include a dummy variable for each individual. This approach is sometimes
called the Least Squares Dummy Variable (LSDV) model. The idea is
simple: instead of subtracting the means, we explicitly model the individual-
specific intercepts. That is, we write:

yit = α + βxit + γ2D2,i + γ3D3,i + · · ·+ γNDN,i + uit ,

where Dj,i is a dummy (indicator) variable that equals 1 if i = j and 0
otherwise. In this formulation, we have an intercept α (which will serve
as the base level for individual 1, say) and a dummy for each of the other
N − 1 individuals. The coefficient γi on the dummy Di essentially estimates
that individual’s fixed effect fi. For example, if individual i consistently has
outcomes higher than predicted by α+βxit, then γi will pick up that excess as
a positive number. Collectively, these dummies absorb all between-individual
variation.

Because we introduced a full set of individual dummies along with a constant,
we have perfect multicollinearity (the dummies sum to one and equal the
intercept). In practice, one way to handle this is to omit the overall intercept
α and include N dummies (one for each individual). Alternatively, one can
include the intercept and omit one of the Di dummies (e.g. drop D1,i for
individual 1). Either way, the model has N intercept terms (one for each
individual, either explicitly or implicitly). The coefficient on any particular
dummy γi represents α + fi for that individual (if we included a common
intercept α and dropped one dummy, then γi for i > 1 would represent fi−f1,
the difference between individual i’s fixed effect and the first individual’s fixed
effect which is absorbed into α).

The LSDV estimator is obtained by running OLS on this dummy-variable
model. This will yield identical estimates of β (and identical standard errors
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for β) as the within estimator described earlier. The reason is given by the
Frisch-Waugh-Lovell theorem (partial regression): if you run a regression of
y on x and a full set of dummies, the coefficient on x is the same as if you
first removed (projected out) the influence of the dummies from both y and
x and then regressed the residualized y on the residualized x. But ”removing
the influence of the dummies” means demeaning within each individual, since
regressing a variable on the set of dummies for individuals effectively yields
the individual-specific mean as the fitted value. Thus y residualized on the
dummies is yit − α̂ − f̂i = yit − ȳi (since the OLS fit within each group is
just the group average), and similarly x residualized on dummies is xit − x̄i.
Regressing these residuals is exactly the within estimator. So β̂LSDV = β̂FE.
In short, including a dummy for each individual produces the same within-
group differences result as explicitly demeaning the data.

The LSDV approach is conceptually straightforward — you are literally con-
trolling for unobserved heterogeneity by introducing an intercept for each
cross-sectional unit. However, it is often not practical to estimate a model
with N dummy variables when N is large (imagine thousands of firms, each
needing a dummy). It also clutters the output, and the individual dummy
coefficients are usually not of direct interest (since fi itself is not usually our
focus). Therefore, in practice researchers use the within-transformation (via
specialized routines in statistical software) to estimate fixed effects models
without ever explicitly creating all those dummies.

A practical note: if you do use the dummy variable approach, recall that one
dummy (or the intercept) must be omitted to avoid the dummy trap. The
interpretation of the intercept in that case is just the average y when all x’s
are zero for the omitted group. Usually this intercept is not meaningful, and
software might output it in a possibly confusing way. For example, Stata’s
xtreg, fe command automatically handles the demeaning internally and
then reports an intercept which is actually the average of all the individual
fixed effects (the mean of f̂i). This intercept is not generally of substantive
interest, and one should not interpret it as one would a usual regression
constant.

Even though LSDV and the within estimator yield the same β̂, you will no-
tice differences in reported fit measures like R2. If you include N dummy
variables, the model will typically explain much more of the total variance
in y (possibly the R2 will be very high) because those dummies soak up all
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between-individual variation. In contrast, the fixed-effects (within) regres-
sion reports an R2

within, which is computed based only on variation within
individuals. Many software packages output three R2 values for panel re-
gressions: within R2, between R2, and overall R2. The within R2 measures
the proportion of variance in ỹit = yit − ȳi explained by x̃it; it is the relevant
measure of goodness-of-fit for the fixed effects model. The between R2 would
be from a regression on individual means (how much of the variation in ȳi
is explained by x̄i), and the overall is like an R2 from pooled OLS on the
original yit, xit. In fixed effects analysis, we tend to focus on within R2. The
within R2 is often smaller than the overall R2 because much of the variation
in y (between individuals) is removed before estimation. That is not a prob-
lem; it simply reflects that once we control for individual heterogeneity, the
remaining variation to be explained by x is less.

6.2.5 Interpreting Fixed Effects Estimates

The coefficient estimates from a fixed effects model have a specific interpre-
tation: they measure the effect of a change in the regressor on the outcome
holding constant all time-invariant characteristics of the individual.
Since each individual serves as their own control, any time-constant attribute
(observed or unobserved) is accounted for. For example, if we estimate a wage
equation with individual fixed effects, the coefficient on education would be
identified by individuals whose education level changes over time (e.g. they
obtain an extra qualification) and how that change affects their wage, con-
trolling for their personal fixed ability, etc. If education does not change for
most people in the sample (say we consider only prime-age workers over a
short horizon), the fixed effect estimate of the return to education may rely
on very limited variation (only those who, for instance, complete a degree
during the panel). In extreme cases, if a regressor does not vary at all for
a given individual, that individual’s data does not contribute to identifying
that regressor’s effect.

It is crucial to remember that fixed effects remove all between-individual
variation. Thus, the FE estimator cannot identify the impact of any variable
that has no within-individual variation. If a variable zi is constant over time
for each individual (e.g. gender in a short panel, or a firm’s founding year, or
a country’s legal origin), then we cannot estimate a coefficient on zi in a model
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that includes individual fixed effects. Such a variable is perfectly collinear
with the individual dummies (or absorbed in the demeaning). The fixed
effect model has in a sense ”swept out” those effects entirely. This is often
fine (we generally include fixed effects precisely because we suspect those
constant factors cause bias and we do not necessarily care to estimate their
coefficients). But if one of your key variables of interest is time-invariant, a
fixed effects approach will not be able to estimate its effect. In that case, you
must use alternative strategies (see discussion of random effects or Hausman-
Taylor estimators below, which rely on additional assumptions to identify
such effects).

Finally, when using fixed effects, one must consider statistical inference. The
within-estimator essentially assumes uit are i.i.d. or at least uncorrelated
over time (once fi is removed). In many panel applications, the idiosyncratic
errors uit might still have serial correlation or heteroskedasticity within an
individual’s time series (for example, a firm might have persistent shocks
over time). The fixed effects transformation does not automatically fix serial
correlation or heteroskedasticity in uit. Therefore, it is common to use clus-
tered standard errors at the individual level when reporting fixed effects
regression results. Clustering by i allows for an arbitrary variance-covariance
structure for uit across t within the same i (while still assuming independence
across i). This adjustment produces consistent standard error estimates even
if uit is autocorrelated or heteroskedastic within each individual’s observa-
tions. In practical terms, one might report robust standard errors clustered
at the panel unit level for valid inference.

6.3 Statistical Properties of the Fixed Effects

Estimator (Optional)

In this section, we consider the statistical properties (consistency, asymptotic
distribution) of the fixed effects estimator. We focus on the large N , fixed
T asymptotic scenario, which is the typical panel data context: we have
many individuals but only a few time periods per individual. (There is an
alternative large T asymptotic scenario for panel data, but it is less common
in microeconometrics applications except in macroeconomic panels or when
yearly data spans many decades.)
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Consistency: Under the assumptions stated earlier (notably strict exo-
geneity of x with respect to u and that fi is allowed to correlate with x
arbitrarily), the fixed effects estimator β̂FE is consistent as N → ∞ (with
T fixed). Intuitively, as the number of individuals grows, we get more and
more independent pieces of within-person variation to pin down β. The key
requirement is that each individual’s error term uit is well-behaved (e.g. zero
mean, no serial correlation or at least not too strong, finite variance) and
that xit has enough variation within each person and is exogenous as de-
scribed. Then β̂FE converges in probability to the true β. To sketch a proof
of consistency, one can examine the formula for β̂FE. The OLS estimator on
the transformed model can be written in closed form as:

β̂FE =

∑N
i=1

∑T
t=1 x̃itỹit∑N

i=1

∑T
t=1 x̃

2
it

,

where x̃it = xit−x̄i and ỹit = yit−ȳi. Substitute yit = βxit+fi+uit (assuming
α absorbed into fi for simplicity) into ỹit: note that ȳi = βx̄i + fi + ūi, so
ỹit = β(xit − x̄i) + (uit − ūi) = βx̃it + ũit. Then we have:

β̂FE =

∑
i,t x̃it(βx̃it + ũit)∑

i,t x̃
2
it

= β +

∑
i,t x̃itũit∑
i,t x̃

2
it

.

By assumption E(x̃itũit) = 0 (no correlation between transformed regressor
and error). We can consider the numerator 1

N

∑
i,t x̃itũit and the denominator

1
N

∑
i,t x̃

2
it. As N → ∞, by the Law of Large Numbers,

1

N

N∑
i=1

T∑
t=1

x̃itũit →p E(x̃itũit) = 0 ,

and

1

N

N∑
i=1

T∑
t=1

x̃2
it →p E(x̃2

it) ,

which is some positive number (assuming there is within-variation in x).
Thus, in the probability limit, β̂FE →p β + 0

E(x̃2)
= β. This establishes

consistency (again under the maintained assumptions, including no serious
multicollinearity issues etc.). The important point is that we need N →
∞; if the number of individuals is small, fixed effects may not give reliable
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estimates (in fact β will not converge to a point as you increase T alone while
N fixed unless T → ∞ too, but that is another asymptotic regime).

Asymptotic Normality: Not only is β̂FE consistent, it is also asymptoti-
cally normal (again for large N , fixed T ). The asymptotic distribution can
be derived using a central limit theorem argument. Continuing from the
expression above:

√
N(β̂FE − β) =

(
1

N

∑
i,t

x̃2
it

)−1
1√
N

∑
i,t

x̃itũit .

The first term (inverse of average x̃2) converges in probability to [E(x̃2)]−1,
a constant matrix (or scalar in the single-regressor case). The second term
1√
N

∑
i,t x̃itũit is a sum of N independent random vectors (when conditioned

on the xs, each individual’s sum
∑

t x̃itũit is i.i.d. across i). By the Lyapunov
or Lindeberg Central Limit Theorem, this sum is asymptotically normal with
mean zero and variance equal to its cross-sectional variance. That is,

1√
N

N∑
i=1

T∑
t=1

x̃itũit →d N (0,Ω) ,

where Ω = Var
(∑T

t=1 x̃itũit

)
. The matrix Ω simplifies to E [(

∑
t x̃itũit)(

∑
t x̃itũit)].

Provided no degeneracies, Ω will be positive-definite. Therefore, by Slutsky’s
theorem (continuous mapping applied to the first term which converges in
probability), we have:

√
N(β̂FE − β) →d N (0,Σ−1

x ΩΣ−1
x ) ,

where Σx = E (
∑

t x̃itx̃it) (the average within-group sum of squares of x). In a
simpler notation, we often write the asymptotic variance as (X ′

withinXwithin)
−1(Ωuit

)(X ′
withinXwithin)

−1

where Ωuit
captures the within-group error correlation structure.

In practice, to estimate the variance of β̂FE consistently, one can use a ro-
bust (sandwich) estimator. One common robust estimator of Var(β̂) that is
consistent as N → ∞ is:

V̂ar(β̂FE) =

(∑
i

∑
t

x̃itx̃it

)−1(∑
i

(∑
t

x̃itûit

)(∑
t

x̃itûit

)′)(∑
i

∑
t

x̃itx̃it

)−1

,
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where ûit are the residuals from the fixed effects regression. This variance
formula corresponds to clustering at the individual level (it allows an arbi-
trary covariance matrix for uit within each i). Many software packages will
report these ”cluster-robust” standard errors if specified, which is usually
recommended in panel applications. Under classical assumptions of no serial
correlation and homoskedastic uit, a simpler formula could be used, but the
robust one is safer.

Thus, β̂FE is
√
N -consistent and asymptotically normal, facilitating inference

in large samples.

6.4 Advantages of Fixed Effects Estimation

The fixed effects model has several major advantages in applied research:

� Control for time-invariant unobservables: As we have emphasized, the
FE estimator allows arbitrary correlation between the observed regres-
sors xit and any unobserved individual-specific effect fi. This is a very
general way to handle omitted variable bias stemming from omitted
factors that do not change within an individual. We don’t need to
specify or measure fi; it is enough that it is fixed over time and we
difference it out. This flexibility is a stark contrast to methods like
random effects (or simple OLS) which require that the unobserved fi
be uncorrelated with the x’s.

� Intuitive interpretation: The fixed effect coefficient β can be interpreted
as the effect of x on y based on variation within the same individual
(or entity). Many researchers informally describe fixed effects as ”each
person serves as their own control.” This resonates with the idea of a
controlled experiment where each individual is compared to themselves
under different conditions (here, different values of x). For policy eval-
uation or causal inference, this within-unit comparison often bolsters
credibility, as it eliminates many sources of spurious association that
come from comparing different individuals.

� Flexible use of multiple fixed effects: The concept of fixed effects can
be extended beyond just one dimension (the individual). We can in-
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clude additional sets of dummy variables to control for other forms of
unobserved heterogeneity. For example:

� We might include time fixed effects (year dummies) δt to capture any
common shocks or trends affecting all individuals in a given time period
(e.g. macroeconomic conditions, technological progress).

� We could include group fixed effects such as industry fixed effects or
region fixed effects to control for unobservable differences across indus-
tries or regions.

� In a more complicated panel such as employees within firms, we could
include firm fixed effects and person fixed effects simultaneously if work-
ers switch firms (this would be a two-way fixed effects model).

� We can even include interaction fixed effects like industry-by-year fixed
effects to capture shocks that are common to all firms in an industry
in a particular year.

The inclusion of these additional fixed effects is straightforward in estima-
tion (just add the corresponding dummy variables or use methods to absorb
them). The interpretation remains similar: e.g. if you include year fixed
effects, you are now looking at deviations from the overall year mean, so
effectively you compare individuals to others in the same year, focusing on
idiosyncratic deviations net of the year shock.

Each fixed effect absorbs a certain pattern of variation: - Individual FE ab-
sorb any level differences across individuals. - Year FE absorb any aggregate
time-series movements common to all individuals. - Industry-year FE would
absorb any shock that is specific to that industry in that year, and so on.

Because of this flexibility, fixed effects models can dramatically reduce bias.
For instance, if you fear that your outcome and regressor are both affected by
general economic booms and busts, including year dummies will control for
that. If you worry that some industries have systematically different levels
of productivity (affecting both x and y), including industry dummies will
control for that. Essentially, fixed effects can handle any omitted variable
that can be described as a group effect for some known group or category.
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Broad applicability to grouped data: While textbooks often present
fixed effects in the context of individuals observed over time, the approach
is applicable in any setting where observations can be grouped and there
is potential omitted heterogeneity at the group level. For example, if you
have data on students grouped by class (with no time dimension), you could
include class fixed effects to control for class-level attributes. Or if you have
repeated observations of the same city under different policies, city fixed
effects control for all time-invariant city characteristics. In panel data termi-
nology, the ”individual” index i need not be an actual person; it could be a
firm, a country, a school, etc., and t could index time or any ordered sequence
of observations for that unit. The main requirement for consistency is that
the number of groups N is large, as N effectively plays the role of sample
size in the asymptotic analysis.

As a side note, when we include a large number of fixed effects (say industry,
year, region, etc. simultaneously), we have to be careful about interpretation
and multicollinearity. If we include fixed effects for many dimensions, we
cannot separately identify the effect of variables that are themselves functions
of those fixed effects (e.g., if we include state fixed effects and year fixed
effects, we cannot also include a state-specific time trend unless we omit
something or use a different method, because a state-specific trend can look
like an interaction of state and year fixed effects).

In summary, the fixed effects model is very general and imposes minimal
structure on the data: basically that a certain form of heterogeneity is con-
stant within a group. This is often far more plausible than assuming the het-
erogeneity is absent or uncorrelated with the regressors. This generality is a
major reason fixed effects regressions are ubiquitous in empirical economics,
especially in fields like labor economics, development, and corporate finance,
where unobserved ability, culture, or institutional differences abound.

6.5 Limitations of Fixed Effects Models

Despite their many advantages, fixed effects models also come with several
important limitations and potential costs. Researchers must be mindful of
these when choosing the fixed effects approach and interpreting results.



6.5. LIMITATIONS OF FIXED EFFECTS MODELS 21

6.5.1 Inability to Estimate Time-Invariant Regressors

The most obvious limitation of the fixed effects transformation is that it wipes
out all time-invariant information. If an explanatory variable does not change
over time for a given individual, we cannot identify its effect separately from
the individual fixed effect. The variable is perfectly collinear with the fixed
effect. For example, suppose we are studying CEO compensation with a
panel of CEO-year observations (where a CEO might switch firms, so we
track CEOs over time possibly in different firms). We include CEO fixed
effects to control for unobserved CEO talent. Now one regressor of interest
might be a dummy femalei indicating whether the CEO is female. This
variable is constant for each individual CEO (their gender does not change
over time). If we include CEO fixed effects in the model:

ln(total pay)ijt = α + β1ln(firm sizeijt) + β2femalei + δt + fi + λj + uijt,

where i indexes the CEO, j the firm, and t year, and we have included CEO
fixed effect fi, year fixed effects δt, and firm fixed effects λj. In this setup, the
female dummy is perfectly collinear with the CEO fixed effect (each CEO
i has a fixed effect fi and either female= 0 or 1 which is just a different
mean for that CEO). The regression software will thus automatically drop
the female dummy or the CEO dummy to resolve collinearity. We will not
get an estimate for β2 at all from a fixed-effects regression. The effect of
CEO gender on pay cannot be disentangled from the generic CEO-specific
effect.

This is a general point: any characteristic that is fixed for an individual
(or group) cannot be studied within that individual using fixed effects. In
some cases, this is acceptable because those effects are nuisance parameters
we didn’t care to estimate (e.g. you might not care to estimate the effect
of being a particular person, you just want to control for it). But in other
cases, it is a drawback: if the effect of a policy or trait that doesn’t vary over
time is of interest, fixed effects won’t recover it. For instance, if you wanted
to estimate the effect of a country being landlocked on its trade volume,
a country fixed effects model would drop the landlocked dummy (since a
country is either always landlocked or not).

Caution: Statistical software like Stata’s xtreg, fe is smart enough to
automatically omit time-invariant variables. However, if a researcher man-
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ually creates dummy variables or fixed effect categories and includes them
in OLS, one must be careful. Some software will handle multicollinearity by
arbitrarily dropping one of the collinear variables. If one naively includes a
full set of dummies and a time-invariant regressor, the program might drop
one of the dummy variables (perhaps the first individual’s dummy) instead
of the time-invariant regressor. In that case, the coefficient reported for the
time-invariant regressor is meaningless — it’s not actually identified; it ef-
fectively absorbed what was the fixed effect of the omitted individual. This
can lead to incorrect interpretation if one does not realize the variable was
collinear. The safe practice is to let the fixed effects estimator or a careful
manual procedure handle such cases, and to understand that any variable
with no within-group variation cannot be identified.

Is there any solution? If we truly need to estimate the effect of a time-
invariant regressor, one approach is to relax the assumption that fi can be
arbitrarily correlated with xit. The random effects model (discussed below)
allows identification of time-invariant variables by assuming fi is uncorre-
lated with all regressors. However, this assumption is often hard to jus-
tify. Another approach is the Hausman-Taylor method (Hausman and Tay-
lor 19811), which is an instrumental variables technique: one uses the fact
that some regressors might be uncorrelated with fi to serve as instruments
for the time-invariant regressors. The details of this method are beyond our
scope here, but it essentially blends fixed and random effects assumptions to
allow estimation of coefficients on time-invariant variables. Alternatively, if
an external instrument is available for the time-invariant variable, one could
employ IV methods in a panel context. In summary, pure fixed effects alone
cannot handle time-invariant regressor estimation — additional assumptions
or external variation are needed.

Hausman-Taylor method (Optional)

If we truly need to estimate the effect of a time-invariant regressor, one ap-
proach is to relax the assumption that fi can be arbitrarily correlated with
xit. The random effects (RE) model allows identification of time-invariant

1Hausman, J.A. and Taylor, W.E. (1981). ”Panel data and unobservable individual
effects.” Econometrica, 49(6), 1377-1398.
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variables by assuming fi is uncorrelated with all regressors. However, this
assumption is often hard to justify. Another approach is the Hausman–
Taylor (HT) method (Hausman and Taylor 19812), which is an instrumental-
variables technique that blends fixed- and random-effects logic: some regres-
sors are allowed to be correlated with fi, and other regressors—assumed un-
correlated with fi—supply internal instruments that identify the coefficients
on the problematic variables, including time-invariant ones.

Setup and classification. Write the standard one-way error-components model

yit = x′
itβ + z′iγ + fi + εit, i = 1, . . . , N, t = 1, . . . , Ti,

where xit are time-varying regressors and zi are time-invariant regressors.
Partition the regressors into four groups:

xit =
(
X1it, X2it

)
, zi =

(
Z1i, Z2i

)
,

where X1 and Z1 are exogenous w.r.t. fi (uncorrelated with fi), and X2

and Z2 may be endogenous w.r.t. fi (correlated with fi). All regressors are
assumed uncorrelated with εit, and the usual variance-components structure
holds, εit ∼ (0, σ2

ε), fi ∼ (0, σ2
f ), independent of each other.

HT estimation in practice (step-by-step).

1. Within (FE) step for time-varying coefficients. Demean all time-
varying variables within i so that fi drops out:

ỹit = X̃1itβ1 + X̃2itβ2 + ε̃it.

Estimate β1, β2 by FE/OLS using only within variation. These are
consistent even if X2 is correlated with fi because fi is removed by
demeaning.

2. Estimate variance components and form the quasi-RE trans-
form. Using residuals from the FE step, obtain method-of-moments
(or QMLE) estimates of σ2

ε and σ2
f . Compute the usual RE weight

θ̂i = 1−
√

σ̂2
ε

σ̂2
ε + Tiσ̂2

f

,

2Hausman, J.A. and Taylor, W.E. (1981). “Panel data and unobservable individual
effects.” Econometrica, 49(6), 1377–1398.
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and apply the quasi-RE (“partial between”) transformation to any vari-
able wit:

w∗
it = wit − θ̂iw̄i,

where w̄i is the time average for unit i. This transformation rein-
troduces between-unit information (needed to identify time-invariant
effects) while accounting for the estimated variance components.

3. Construct instruments. Use internal instruments based on exoge-
nous regressors:

� The within variation of X1, X̃1it, and the between variation (unit
means) X̄1i are valid instruments because X1 is uncorrelated with
fi.

� The time-invariant exogenous variables Z1i are also valid instru-
ments.

These instruments are used for the potentially endogenous X2 (in the
transformed equation) and, crucially, for Z2, whose identification relies
on between variation. A necessary rank condition is that the number
of exogenous instruments, {X̃1it, X̄1i, Z1i}, is at least as large as the
number of endogenous regressors, {X2it, Z2i}.

4. Final 2SLS on the quasi-RE–transformed model. Run IV/2SLS
of y∗it on

(
X∗

1it, X
∗
2it, Z

∗
1i, Z

∗
2i

)
using instruments {X̃1it, X̄1i, Z1i}. This

yields the HT estimates (β̂1, β̂2, γ̂1, γ̂2), including consistent estimates
for the time-invariant coefficients γ under the maintained exogeneity
classification. Inference should use standard errors robust to arbitrary
serial correlation and heteroskedasticity within i (e.g., cluster by i).

Remarks. (i) When all regressors are exogenous w.r.t. fi, HT reduces to
RE/GLS. (ii) If the HT exogeneity classification is misspecified (e.g., some
X1 or Z1 are actually correlated with fi), the IV exclusion restrictions fail. In
practice, researchers often compare FE and (quasi-)RE estimates via a Haus-
man test and use subject-matter knowledge to justify the HT partition. (iii)
If a credible external instrument exists for a time-invariant regressor, panel
IV with fixed effects is an alternative. In summary, pure fixed effects can-
not identify coefficients on time-invariant regressors, but HT recovers them
by leveraging exogenous within and between variation as instruments while
allowing correlation between fi and a subset of regressors.
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6.5.2 Amplification of Measurement Error Bias

Another often under-appreciated cost of fixed effects (and first-difference)
estimators is that they can exacerbate biases due to measurement error in
the regressors. Recall that classical measurement error in an explanatory
variable tends to attenuate OLS estimates towards zero (bias them towards
zero). The severity of attenuation depends on the signal-to-noise ratio —
roughly, β is multiplied by V ar(x∗)/[V ar(x∗)+V ar(e)], where x∗ is the true
variable and e the measurement error.

The fixed effects transformation can worsen the signal-to-noise ratio if the
true variation in x is mostly between individuals rather than within individu-
als. Think of decomposing the variation in x into two components: meaning-
ful variation (possibly including between-individual differences and persistent
trends) and noise variation (transitory fluctuations or measurement error).
When we apply the within transformation, we remove the between-individual
variance (which may have been largely the “good” variation if individuals
have very different levels of x). What remains is only the within-individual
variation. If the noise in x is i.i.d. over time, the variance of the noise in the
within dimension might actually increase relative to the variance of the sig-
nal. In extreme cases, if x varies little over time (highly persistent or almost
fixed) but each observation is measured with a similar amount of error, then
taking differences or deviations could leave mostly noise. Consequently, the
attenuation bias on β can become more severe in a fixed effects regression
than it would have been in a cross-sectional regression.

To illustrate, suppose xit = x∗
it + eit, where x∗

it is the true regressor and eit
is classical (mean-zero) measurement error. In a simple cross-sectional OLS,
the probability limit of the slope is

plimβ̂OLS = β
V ar(x∗)

V ar(x∗) + V ar(e)
.

Now consider the fixed effects (within) estimator. The “signal” part of the
demeaned regressor is x̃∗

it ≡ x∗
it−x̄∗

i and the “noise” part is ẽit ≡ eit−ēi, so the
demeaned regressor is x̃it = x̃∗

it + ẽit. The variance of x̃∗
it is generally smaller

than V ar(x∗
it) because demeaning removes across-individual (and some low-

frequency) variation. The variance of ẽit also changes relative to V ar(eit): if
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eit is i.i.d. over time with variance σ2
e , then in a balanced panel

V ar(ẽit) = V ar(eit − ēi) = σ2
e

(
1− 1

T

)
.

Meanwhile, if x∗
it is highly persistent with autocorrelation ρ ≈ 1, then V ar(x̃∗

it)
can be much smaller than V ar(x∗

it) (e.g., if x
∗
it is nearly constant within i, x̃∗

it

is tiny). Consequently, the reliability ratio in the within regression becomes

plimβ̂FE = β
V ar(x̃∗)

V ar(x̃∗) + V ar(ẽ)
,

which is typically smaller than the cross-sectional ratio above, implying
stronger attenuation toward zero. In short, measurement-error bias is of-
ten more severe with fixed effects.3

Practical implication: If you see a coefficient estimate on a key regressor
shrink toward zero (or become statistically insignificant) after adding fixed
effects, it might be because the fixed effects removed a lot of the variation in
the regressor, leaving mostly noise. One should be cautious in interpreting
a “zero result” in such cases. It could be a true zero effect, but it could
also be that any effect is drowned out by measurement error after using only
within-group variation.

3Another way to show this using FD: Remember, with ME in independent variable, we
have

plim(β̂) = β
var(x∗)

var(x∗) + var(e)

In first-difference estimator:

plim(β̂) = β
var(∆x∗)

var(∆x∗) + var(∆e)

, where var(∆x∗) = var(x∗
t ) − 2cov(x∗

t , x
∗
t−1) + var(x∗

t−1). If xt is stationary, var(∆x∗) =
2σ2

x − 2cov(x∗
t , x

∗
t−1) = 2σ2

x(1− ρ). Define r to be the autocorrelation coefficient in ut so
we can write

plim(β̂) = β
2σ2

x(1− ρ)

2σ2
x(1− ρ) + 2σ2

u(1− r)
= β

1

1 +
σ2
u(1−r)

σ2
x(1−ρ)

When r = ρ = 0, traditional attenuation bias. When r = 0 only (ME is serially un-
correlated, but the signal is correlated), worrisome. When r = 1 (i.e., ME is fixed), FE
eliminates ME.
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Another related issue arises even when variables are perfectly measured:
sometimes the outcome y responds to long-term changes in x but not to
short-term fluctuations. If we use fixed effects (or first differences), we are es-
sentially relying on possibly short-term deviations for identification. If those
short-term movements in x do not have a substantive effect on y (because
only sustained, long-run changes in x matter for y), then the FE estima-
tor might find no effect, even though a long-run cross-sectional comparison
would show an effect. In other words, yit might react to the persistent com-
ponent of xit but not to the transitory component, whereas FE throws away
the persistent component (if it is constant or slow-moving) and uses mainly
transitory variation. This phenomenon has been noted by McKinnish20084 ,
among others. The lesson is that one must consider the time-scale of the ef-
fect of interest. If we suspect the effect of x on y operates over long horizons,
a short panel with FE might not capture it well. Techniques like looking
at long differences or distributed lags can sometimes be more informative in
such cases.

Example 6.1. A study by Paravisini, Rappoport, Schnabl, and Wolfenzon
(2014)5 investigated how shocks to bank credit supply affect firm output
(exports). A major challenge was that credit shocks often coincide with de-
mand shocks (in recessions, banks cut lending and firms face lower demand).
To isolate credit supply effects, the authors exploited a unique dataset of
Peruvian firms that export products to different countries and have relation-
ships with different banks. They included firm fixed effects (controlling for
any time-invariant firm trait), bank fixed effects (controlling for banks that
consistently lend more or less), and even product-destination fixed effects
(controlling for, say, a particular product exported to a particular country,
to net out demand shifts in that product market). This is a very exhaustive
set of FE, ensuring that identification comes purely from within-firm changes
in credit from different banks and how that affects exports of a given prod-
uct to a given destination. The result was a relatively small estimated effect
of credit on output. However, one concern is measurement error: firm-level
credit might be measured with noise (loans not fully observed, timing issues

4McKinnish, T. (2008). ”Panel data models and transitory fluctuations in the explana-
tory variable.” Journal of Econometrics, 144(1), 39-52.

5Paravisini, D., Rappoport, V., Schnabl, P., & Wolfenzon, D. (2014). ”Dissecting the
effect of credit supply on trade: Evidence from matched credit-export data.” Quarterly
Journal of Economics, 129(2), 861-921.
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in measurement, etc.). By using so many fixed effects, the variation in credit
used to estimate the effect is quite limited (e.g., firm deviations from their
usual credit, controlling also for average credit from each bank, etc.), poten-
tially amplifying attenuation bias. The authors, aware of this, are careful not
to over-interpret the small coefficient as evidence that credit supply matters
little. Instead, they acknowledge that due to the extensive fixed effects (nec-
essary for identification), the estimate could understate the true importance
of finance (because the remaining variation in credit could be quite noisy).
This example highlights how combining heavy FE strategies with imperfect
data can lead to coefficients that are biased towards zero.

What can be done about measurement error? Measurement error
is a tough nut to crack in any context. With panel data, some specialized
methods have been proposed. For instance, Griliches and Hausman (1986)6

discuss how one might use the difference between within and between esti-
mates to assess bias. The intuition is that if measurement error is classical,
the within estimator (using short-term changes) might be more attenuated
than the between (cross-sectional) estimator. Under some assumptions, one
can correct for measurement error by comparing the two. Other works, like
Biorn (2000)7 and Erickson and Whited (2000, 2012)8 propose methods to
adjust for measurement error in panel settings (often requiring instrumen-
tal variables or strong assumptions about the structure of the error). An-
other approach is to collect better data or proxies that can instrument for
the mismeasured variable (for instance, using multiple measures of the same
concept). In summary, there is no simple fix within the OLS/FE framework
aside from being aware of the issue. If attenuation bias is suspected, one
might interpret small coefficients as a lower bound of the possible effect, or
try sensitivity analyses.

6Griliches, Z. & Hausman, J.A. (1986). ”Errors in variables in panel data.” Journal of
Econometrics, 31(1), 93-118.

7Biorn, E. (2000). ”Panel data with measurement errors: Instrumental variables versus
some GMM estimators.” Econometric Reviews, 19(3), 219-250.

8Erickson, T. & Whited, T.M. (2000). ”Measurement error and the relationship be-
tween investment and q.” Journal of Political Economy, 108(5), 1027-1057; Erickson, T.
& Whited, T.M. (2012). ”Treating measurement error in Tobin’s q.” Review of Financial
Studies, 25(4), 1286-1329.
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6.5.3 High-Dimensional Fixed Effects and Computa-
tional Issues

Including fixed effects for very large numbers of groups can strain computa-
tional resources and statistical power. In a typical regression, including N
individual dummies is manageable if N is, say, a few thousand. But what
if we want to include multiple high-dimensional fixed effects, e.g. firm FE
(N ≈ 10000) and year FE (T ≈ 30)? Year FE are fine (only 30 dummies),
but firm FE are 10,000 dummies. That many parameters can be estimated,
but now imagine adding industry-by-year FE (if 100 industries over 30 years,
that is another 3000 dummies), and maybe region FE, etc. The number of
dummy variables can blow up, making the regression computationally heavy
and possibly imprecise (each dummy uses up a degree of freedom).

When only one type of fixed effect is present, the within transformation deals
with it elegantly (as we did for individual FE, we avoid ever estimating those
N intercepts explicitly). However, when we have multiple types of fixed
effects, we cannot simultaneously demean in two dimensions at once by a
simple subtraction. For instance, consider we want firm fixed effects and
year fixed effects in:

yit = α + βxit + fi + δt + uit ,

with i indexing firm and t indexing year. The within transformation can
remove one dimension at a time. If we transform by demeaning within each
firm, we eliminate fi. But year fixed effects δt remain (since they vary over
time, not constant within i). We can then include year dummies in the
regression to handle δt. That is straightforward since T is usually not huge.
Alternatively, we could first demean within years (subtract year means, which
removes δt) and then include firm dummies. Either way, one dimension of
FE can be partialled out perfectly; the other has to be explicitly included or
partialled out in a second step.

With modern software, this is not such a hurdle. Programs exist to absorb
two or more sets of high-dimensional fixed effects without explicitly creating
all dummy variables (e.g. methods using iterative demeaning or the Frisch-
Waugh approach multiple times). In R, the lfe or fixest packages and in
Stata, commands like areg (absorbing one FE) or user-written reghdfe (for
multiple FEs) handle these scenarios efficiently. They use clever algorithms
to avoid the memory blow-up of creating huge dummy matrices.
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However, historically and conceptually, as you add more and more fixed
effects, you must be cautious. You are using up degrees of freedom and
possibly encountering collinearity issues (for example, including firm and
industry FE together is fine, but including firm and industry and industry-
by-year FE is redundant if firm FE are there, etc.). One must ensure each
set of fixed effects is needed and correctly specified.

Example 6.2. (computational difficulty) If we tried to include firm FE and
industry×year FE in a single regression with a large panel of firms, the
number of dummy variables could be enormous (say 10,000 firms + (100
industries × 30 years = 3,000) = 13,000 dummies). This is on the edge
of feasibility for OLS with large N . If instead we had 100,000 firms, it
becomes even more daunting. The design matrix would be huge. In such
cases, specialized algorithms or tricks (like absorbing one effect at a time) are
essential. The specific details of these computational techniques go beyond
our scope, but it is good to be aware that naive inclusion of many FE can
slow down estimation or even crash your software if you run out of memory.

Typically, if you encounter a model that requires multiple high-dimension
FEs, you might consider:

� Is each set of FE absolutely necessary?

� Can any be replaced with a more parsimonious control or a random
effects structure?

� Use appropriate software that can handle multi-way fixed effects effi-
ciently (as mentioned, rather than creating 0/1 dummies manually).

One way to think about multi-way fixed effects is to consider them as a
generalization of the within transformation. For example, to incorporate
both firm and year fixed effects, one can transform the data by subtracting
the firm mean (removing firm FE) and also subtracting the year mean, and
then add back the overall mean (to avoid subtracting the constant twice).
This is a demeaning in two dimensions (also known as the iterative Helmert
transformation for two-way effects). The resulting data will have both firm
and year means zero. Estimating β on that transformed data yields the two-
way FE estimate. Doing this manually is error-prone, but conceptually it’s
what software does.
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In summary, multiple fixed effects are doable but require care. The cost
is primarily computational and possibly interpretational (lots of effects and
potential multicollinearity if you’re not careful). There is no finite-sample
bias introduced by having many FE (aside from using up degrees of freedom),
but see the next point about incidental parameters in non-linear models
which addresses a different issue.

6.5.4 Incidental Parameter Problem and Non-Linear
Models

Thus far, we have focused on linear panel models (where yit enters linearly
and we estimate via OLS). In linear models, the fixed effects approach is
straightforward due to linearity: we can eliminate fi by demeaning with-
out having to estimate fi explicitly. In non-linear models (such as binary
outcome models like logit/probit, count models like Poisson, etc.), the fixed
effects cannot be removed by a simple transformation in general. Instead,
they would appear as additional parameters to estimate (one for each in-
dividual). When N is large and T is fixed, we face what is known as the
incidental parameter problem: we have N additional parameters (the fi’s)
which grow with the sample size. Maximum Likelihood Estimation (MLE)
in such settings can lead to inconsistency of the parameters of interest.

In a fixed effects logit model, for example, if we include a dummy for each
individual in a logistic regression, we technically have N person-specific inter-
cepts. As N → ∞ (with T fixed), the number of parameters grows without
bound. Neyman and Scott (1948) first pointed out that when the number of
parameters increases with the sample size, the usual consistency properties
of MLE can fail for the parameters of interest. Intuitively, the MLE tries to
fit N intercepts exactly for each individual. When T is small, those intercept
estimates f̂i can soak up a lot of variation, potentially even overfitting the
idiosyncratic noise. The β coefficients (which are common across individuals)
can get biased as a result.

In linear models, we avoided this by using the within transformation. We
never explicitly estimatedN separate fi parameters; we differenced them out.
As a result, the incidental parameters (fi) did not need to be estimated, and
β̂ is consistent. In non-linear models, such clean differencing is not always
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possible: - Logit model: There’s a special case where fixed effects logit can
be addressed by a conditional likelihood approach. For binary outcomes, one
can condition on the total number of successes for each individual (a sufficient
statistic for fi in a logit model). This leads to the conditional logit estimator
(also called logit with fixed effects), which actually gives consistent estimates
for β without needing to estimate fi. However, this conditional likelihood
method is specific to logit and a few other models (like Poisson). - Probit
model: There is no analogous conditioning trick for probit. If you include
individual dummies in a probit and N is large, the coefficient estimates will
be biased (even as N grows) unless T → ∞. Essentially, fixed effects probit
demands that fi be treated as random or else you have the incidental param-
eter issue. The bias does not vanish with more individuals, only with more
time periods. - Poisson model: It turns out a fixed effects Poisson (for count
data) can be estimated consistently via a conditional likelihood as well (con-
ditioning on the total count for each individual). So Poisson is a nice case
where fixed effects are tractable without bias. - Other non-linear models:
Tobit, Cox proportional hazards, multinomial logit, etc., all have difficulties
with including numerous fixed effects without additional assumptions or bias
corrections.

Therefore, for many non-linear panel models, one should exercise caution
with naive fixed effects inclusion. Either use models specifically designed for
fixed effects (like conditional logit or Poisson FE), or consider alternative es-
timation methods (like generalized estimating equations, or treat the effects
as random but perhaps use a correlated random effects approach like Mund-
lak’s adjustment, where one includes the individual means of time-varying
covariates to account for correlation with fi).

Another byproduct of the incidental parameter issue is that the actual es-
timates of the fixed effects themselves (f̂i or the dummies coefficients) are
generally inconsistent when T is small. Even in the linear case, while β̂ is
consistent, each f̂i is only based on T observations and does not improve as N
grows; it’s an unbiased estimator of fi but with variance that doesn’t vanish
(it remains on the order of σu/

√
T ). So one should not over-interpret indi-

vidual fixed effect estimates, especially if T is low. For example, you might
estimate student fixed effects in test scores; a student with just a couple of
test observations might have a high fixed effect estimate, but that could be
largely noise (since it includes the average of their idiosyncratic errors). If
you tried to rank individuals by fixed effect, the ranking could be noisy for
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those with few time observations.

Researchers sometimes want to interpret the distribution of f̂i—for instance,
Bertrand and Schoar (2003)9 estimated CEO fixed effects on corporate poli-
cies and then analyzed those fixed effects, labeling them as “managerial
styles.” They found that the CEO dummies were jointly significant (rejecting
that all γi = 0 in LSDV, meaning CEOs do differ systematically). However,
interpreting these fixed effect estimates as true measures of a CEO’s skill or
style must be done with care. If one took those f̂i to a second-stage regres-
sion, formally one should correct for the estimation error in f̂i (since they
are noisy estimates of the true effect). Simply regressing something on f̂i can
lead to attenuation or other issues.

Moreover, tests involving fixed effects (like the F-test for all fi = 0) assume
certain conditions for validity. The standard F-test for joint significance of
fixed effects assumes homoskedastic, iid errors. In practice, with panels,
errors can be heteroskedastic or autocorrelated, so a robust test or bootstrap
might be needed. There is also a concern pointed out by Fee, Hadlock, and
Pierce (2013)10: they found that if they randomly assign managers to firms
(breaking the true link between manager and performance), they still found
significant “manager effects” using a fixed effects approach. This suggests
that under certain circumstances, one might find spurious significance of fixed
effects due to either multiple testing or the underlying distribution of the
errors violating assumptions. Thus, while fixed effects are extremely useful,
one should not automatically interpret the presence of significant fixed effects
as deep evidence of structural differences without further scrutiny.

To summarize the advice on this issue: - In linear models, use fixed effects
freely to remove bias, but don’t focus on the estimated fixed effect values
themselves as if they were precise or structural. - In non-linear models,
be cautious: either avoid too many fixed effects or use methods specifically
designed for them (like conditional likelihood where available, or accept bias
if T is modest). - If you need to include fixed effects in a non-linear model
and T is not large, understand that point estimates of β may be biased (often
called ”Nickell bias” in the context of dynamic linear models, and a similar

9Bertrand, M. & Schoar, A. (2003). ”Managing with style: The effect of managers on
firm policies.” Quarterly Journal of Economics, 118(4), 1169-1208.

10Fee, C.E., Hadlock, C.J., & Pierce, J.R. (2013). ”Managers with and without style:
Evidence using exogenous variation.” Review of Financial Studies, 26(3), 567-601.



34 CHAPTER 6. PANEL DATA

phenomenon occurs in non-linear ones). - There are some bias correction
methods proposed in the econometric literature for the incidental parameter
problem (e.g. for probit, or for short T dynamic panels), but they can be
complex.

6.6 The Random Effects Model

The fixed effects model makes no assumption about whether fi is correlated
with the regressors. It treats fi as a parameter to be estimated (or elimi-
nated). The random effects (RE) model takes a different approach: it treats
fi as a random draw from a population distribution and crucially assumes
that fi is uncorrelated with the regressors xit. In other words, the random
effects model assumes:

Cov(fi, xit) = 0 for all t .

Under this assumption, the omitted variable bias problem disappears: if fi
is uncorrelated with the x’s, then even though fi is in the error term of
the pooled model, that error component is uncorrelated with x, satisfying
the OLS exogeneity condition. In that case, a pooled OLS regression would
actually yield a consistent estimate of β.

However, pooled OLS would not be fully efficient because the composite error
vit = fi + uit has a specific structure: it is correlated over time for the same
i (since Cov(vi,t, vi,s) = V ar(fi) for t ̸= s). OLS ignoring this correlation
would still be consistent (if the assumption holds) but the standard errors
would be wrong and OLS wouldn’t be the best linear unbiased estimator.
Instead, one can do Generalized Least Squares (GLS) which accounts for
the intraclass correlation of errors to get more efficient estimates. Random
effects estimation typically refers to GLS (or Feasible GLS if variances are
unknown and need to be estimated) under the assumption of zero correlation
between fi and xit.

The mechanics of random effects GLS often involve transforming the data
by a partial demeaning. Specifically, the GLS estimator for random effects
can be seen as a weighted combination of the between-group estimator and
the within-group (fixed effects) estimator. It effectively does:

yit = θȳi = β(xit − θx̄i) + transformed error,
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where θ is a function of the variance components (σ2
f and σ2

u). If σ2
f is

large relative to σ2
u, θ is close to 1 and the model puts more weight on

within variation (approaching fixed effects); if σ2
f is small, θ is close to 0,

putting more weight on between variation (approaching pooled OLS). When
Cov(fi, xit) = 0, this GLS is the Best Linear Unbiased Estimator (BLUE) and
also consistent. If the correlation assumption is false, RE GLS is inconsistent.

Is the random effects assumption realistic? In many economic con-
texts, it is hard to justify that the unobserved fi (which could be ability,
preferences, institutional quality, etc.) is uncorrelated with the regressors
of interest. For example, imagine yit is earnings and xit includes education.
The unobserved fi might be ”ability.” It’s unlikely that ability is uncorrelated
with education; more able individuals tend to get more education. Thus, the
random effects assumption would fail and RE estimates of the return to ed-
ucation would be biased. Similarly, in our earlier firm example, fi might be
the firm’s general risk aversion or culture, which plausibly correlates with
financial decisions like leverage, violating the RE assumption.

In practice, because the zero-correlation assumption is often implausible, ran-
dom effects models are not trusted as much. A typical approach is to run a
Hausman test: this test compares the estimates from a consistent estimator
(fixed effects) to those from an efficient estimator under H0 (random effects).
Under the null hypothesis that Cov(fi, xit) = 0, both FE and RE are consis-
tent, but FE is inefficient. Under the alternative that Cov(fi, xit) ̸= 0, FE
is consistent but RE is inconsistent. If the Hausman test (which essentially
checks if the estimates differ significantly) rejects, it means the data are not
consistent with the RE assumption, and one should prefer the FE estima-
tor. If it fails to reject, one might use RE for efficiency (and plus RE allows
estimation of time-invariant covariates).

However, as Angrist and Pischke (2009)11 note, the efficiency gain of RE
over FE is often small, especially if T is modest or the explanatory power of
fi is not overwhelming. Moreover, if there is any doubt about the assump-
tion, most researchers opt for the safer course (FE). Also, if the assumption
truly holds, pooled OLS itself would be consistent (just with wrong standard
errors). The main point of RE GLS is theoretical efficiency improvement.

11Angrist, J.D. & Pischke, J.-S. (2009). Mostly Harmless Econometrics. Princeton
University Press. See p. 223.
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When might random effects be useful? - If you have reason to believe
the unobserved effect is not correlated with regressors (perhaps the regressors
are randomly assigned or quasi-random, which is rare in observational data).
- If you need to estimate coefficients on time-invariant regressors which FE
cannot do. For example, if you’re studying the effect of a time-invariant
policy or geographic feature, and you are willing to assume that omitted
fixed effect is uncorrelated (or you include enough other controls to mitigate
correlation), you might use RE. - If N is not huge but T is fairly large, RE
might save some degrees of freedom. But usually, large T also means FE bias
from any correlation might diminish anyway, so FE could still be fine.

Summary on RE vs FE: The fixed effects model addresses the primary
concern of many studies: omitted variable bias from time-invariant unobserv-
ables. The random effects model yields similar results only under the strong
assumption of no omitted variable bias (in that sense). Since this assumption
is typically suspect, random effects is often not trusted. Many practitioners
simply use FE as the default for panel data. RE is sometimes taught and used
for specific cases, but one should always perform a Hausman test or other
diagnostics to check its validity. Even if valid, the benefits (slightly smaller
standard errors, ability to estimate coefficients on time-invariant variables)
have to be weighed against the risk that the assumption might not hold
perfectly.

In the context of corporate finance, Angrist and Pischke’s viewpoint is apt:
the conditions for RE to be correct are strong, and even if they hold, FE was
consistent anyway and likely not much less efficient, whereas if they don’t
hold, RE is seriously misleading. Therefore, RE is seldom the preferred
strategy in practice.

6.7 The First-Difference Estimator

First-differencing is an alternative method to remove fixed effects. Instead
of subtracting the time mean, we subtract the previous observation of the
same individual. The idea is: between two adjacent time periods, the indi-
vidual effect fi does not change, so it will cancel out when we take a differ-
ence. For simplicity, consider T = 2 first. If we have two time periods, the
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first-difference (FD) estimator is nearly identical to the fixed effects (within)
estimator; in fact, with T = 2, demeaning each individual’s data is the same
as subtracting the period 1 value from the period 2 value (up to a sign). So
for T = 2, FE and FD produce exactly the same β̂.

For T > 2, FE and FD are not identical transformations, but they both
eliminate fi. Let’s derive the first-differenced model for general T . The
model is again:

yit = α + βxit + fi + uit .

The first-difference between period t and t− 1 is:

yit − yi,t−1 = β(xit − xi,t−1) + (fi − fi) + (uit − ui,t−1) .

The fi cancels out, as desired. We typically assume the model holds for
t = 2, . . . , T differences (we lose the first period as it has no previous value
to difference with). Define ∆yit = yit − yi,t−1 and ∆xit = xit − xi,t−1. The
differenced equation is:

∆yit = β∆xit +∆uit, t = 2, ..., T

We can now run OLS on this first-differenced equation. This yields the FD
estimator β̂FD.

If the strict exogeneity assumption holds (i.e. E(xit∆uis) = 0 for all t, s),
then the FD estimator is consistent for β. Strict exogeneity in this context
implies xi,t is uncorrelated with ui,t (contemporaneous) and also with ui,t−1

(one-period lagged) because ∆ui,t = ui,t − ui,t−1 includes ui,t−1. If x at
time t is correlated with the prior period’s error ui,t−1, then xi,t will be
correlated with ∆ui,t and the FD estimator will be biased. This is a subtle
but important difference: FE requires xi,t uncorrelated with ui,s for all s
(same requirement), and FD effectively requires a similar condition. So both
need strict exogeneity for consistency. If x reacts to past shocks, both FE
and FD are in trouble (though the nature of the bias differs, as we discuss
soon).

The first-difference approach, like FE, wipes out any time-invariant fi. It’s
also possible to do “differences” in a panel that is not strictly time-based (for
example, if observations are in some inherent order, one could subtract the
previous observation’s value; but this is rarely used unless there is a logical
ordering).
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FE vs. FD for T > 2: Efficiency considerations. If strict exogeneity
holds and errors are i.i.d. across t, both FE and FD are consistent, but they
are not numerically identical unless T = 2. Which is more efficient depends
on the serial correlation in uit:

� No serial correlation in uit. If uit is serially uncorrelated (and
homoskedastic), FE is more efficient than FD. Differencing creates
∆uit = uit − ui,t−1, which induces MA(1) correlation:

Cov(∆ui,t,∆ui,t−1) = −V ar(ui,t−1) when Cov(ui,t, ui,t−1) = 0.

Thus FD inherits serial correlation even when the level errors are white
noise, reducing efficiency relative to FE (unless one uses GLS that
accounts for the MA(1) structure).

� Positive serial correlation in uit. If uit follows an AR(1), ui,t =
ϕui,t−1 + εit with ϕ > 0, the within (FE) transformation does not
eliminate this persistence; the transformed errors ũit remain serially
correlated. FD, however, reduces persistence: differencing an AR(1)
yields an MA(1) with smaller autocorrelation. In the extreme random-
walk case (ϕ = 1),

ui,t = ui,t−1 + εit ⇒ ∆uit = εit (i.i.d.),

so FD removes all serial correlation in the errors and can be more
efficient than FE in levels (unless FE is estimated by appropriate GLS).

� Inference. With substantial serial correlation (of either sign), FE and
FD remain consistent under strict exogeneity, but standard errors must
allow for within-i dependence (e.g., cluster-robust by i). The relative
finite-sample efficiency of FE vs. FD depends on the exact error process
and whether one exploits it via GLS.

Another consideration: - FE is slightly more complicated with heteroskedas-
tic or non-normal errors, because the inclusion of many dummy variables can
potentially soak up some variation and might rely on large N normal approx-
imations. FD is essentially a transformation that also can be used in GMM
contexts more readily if needed. - Both FE and FD are equally sensitive to
measurement error in x (both will suffer attenuation, though as discussed FD
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might suffer more if x is persistent). - If the strict exogeneity assumption is
violated in the sense of xi,t being correlated with future errors but not past
ones (that is, x is predetermined but not strictly exogenous), an interesting
difference emerges: if x is correlated with ui,t+1, the FE estimator is actually
inconsistent (because the demeaning uses future errors in the mean), but the
FD estimator might still be inconsistent as well (since xi,t will correlate with
∆ui,t+1 which includes ui,t)? Let’s clarify: - Actually, if x is predetermined
(meaning Cov(xi,t, ui,s) = 0 for s ≤ t but possibly not for s > t), then FE
estimator of β is still consistent as T → ∞ (the bias from correlation with
future errors dies out at rate 1/T because each observation’s weight in the
mean shrinks with T ). For fixed T , FE is biased but the bias is O(1/T ). -
FD in that case might not enjoy a similar reduction with larger T , since each
difference still involves a contemporaneous correlation if it exists. Thus, if x
reacts to past shocks (so not strict exogeneity), often FE is preferred because
the bias might be smaller (especially if T is moderately large) whereas FD
might have a bias that doesn’t diminish unless you instrument.

Given these nuances, a common suggestion in empirical practice is to try
both FE and FD estimators. If they give very similar results, that increases
confidence in the findings (since each has different small-sample properties).
If they differ significantly, that flags a potential issue: either serial correla-
tion, or violation of strict exogeneity, or measurement error might be affecting
them differently. As mentioned earlier, Griliches and Hausman (1986) pro-
posed leveraging the difference between FE and FD estimates to diagnose
measurement error: if measurement error is a big problem, the FE estimate
might be attenuated more than the FD estimate (or vice versa depending on
persistence), so comparing them can provide clues. In some cases, one can
even compute an estimate of the true coefficient by combining the two bi-
ased estimates (this is an advanced technique requiring assumptions on error
structure).

In general, FE is more popular than FD for panel data because it’s easier to
implement with standard software (most packages have a built-in FE esti-
mator but not all have an easy FD routine, though it’s not hard to manually
difference). Also, FE naturally extends to more than 2 time periods and
multiple fixed effects, whereas FD is most natural for one dimension at a
time. But conceptually, both are accomplishing the same goal: removing fi.

It’s worth noting that if one uses FD, adding period fixed effects (year dum-
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mies) is equivalent to removing any secular trends before differencing. Often
one might include a time dummy in the FD regression to capture mean
growth from t− 1 to t that would otherwise appear as a nonzero intercept in
the FD equation.

To illustrate FE vs FD concretely: Suppose we have an individual wage panel
with 5 years of data. A fixed effects estimator would effectively use deviations
from each person’s 5-year average wage and average x (say education doesn’t
change, but experience does year by year). A first-difference estimator would
use at most 4 differences (year2-year1, year3-year2, etc.) per person. If the
wage shocks are i.i.d., FE is using all 5 data points optimally; FD is throwing
away one data point and having correlated errors, so FE is better. If wage
shocks follow a random walk, FD uses essentially the innovation in wage
which is clean, and FE might erroneously treat the accumulated shocks as
noise. Typically, wage shocks have some persistence but not a pure random
walk, so either method could be fine.

In summary: FE and FD are two sides of the same coin (both difference
out fixed effects). They yield the same estimate when T = 2. For T > 2,
both are consistent (if exogeneity holds) but differ in efficiency depending on
error autocorrelation. If you suspect strong autocorrelation or want to avoid
assumptions of no serial correlation, FD with appropriate standard errors is
robust. If you trust no serial correlation, FE might be more efficient.

6.8 Dynamic Panel Models (Lagged Depen-

dent Variables)

A common extension to our model is to allow for dynamics: include lagged
dependent variables as regressors. For example, a firm’s current leverage
might depend on last year’s leverage (perhaps due to adjustment costs or
target behavior). Or an individual’s current consumption might depend on
past consumption. When we include a lagged y, the fixed effects approach
faces a new challenge. Consider the model:

yit = α + ρyi,t−1 + βxit + fi + uit .

with |ρ| < 1 to ensure stability. This is a dynamic panel model with fixed
effects. The presence of yi,t−1 (the lagged dependent variable) violates the
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strict exogeneity assumption, because yi,t−1 obviously depends on ui,t−1 (in
fact yi,t−1 contains ui,t−1). Even if uit itself is serially uncorrelated, yi,t−1 will
generally be correlated with fi and with ui,t−1. This creates problems for
both OLS and FE estimators:

Pooled OLS (ignoring fixed effects). If we estimate the dynamic model

yit = α + ρ yi,t−1 + βxit + fi + uit

by OLS without accounting for fi, the composite error is vit = fi + uit.
Because yi,t−1 contains fi (since yi,t−1 = α+ρyi,t−2+βxi,t−1+ fi+ui,t−1), we
have Cov(yi,t−1, vit) ̸= 0. Hence the lag regressor is endogenous and OLS is
biased and inconsistent.

Fixed effects (within) estimation. Demeaning to remove fi yields

yit − ȳi = ρ (yi,t−1 − ȳi) + β (xit − x̄i) + (uit − ūi).

However, (yi,t−1 − ȳi) is correlated with (uit − ūi) because ūi =
1
T

∑T
s=1 uis

includes ui,t−1, which also helps determine yi,t−1. Formally, for finite T ,

Cov
(
yi,t−1 − ȳi, uit − ūi

)
̸= 0,

so the within estimator of ρ is biased (typically downward when ρ > 0).
This is the Nickell bias (Nickell, 1981): with N → ∞ and fixed T , ρ̂FE is
inconsistent, and the bias is O(1/T ). As T → ∞, the bias vanishes and both
FE and OLS (with fi observed) become consistent.

The bias of ρ̂FE in a dynamic panel is known as the Nickell bias (after Nickell,
1981). For moderate T (say T = 5 or 10), this bias can be non-negligible.
For example, with ρ around 0.5 and T = 5, the bias might be on the order
of −0.1 (estimated ρ too low by 0.1 or so). As T increases, the bias shrinks;
e.g. at T = 30, it’s much smaller, and in the limit T → ∞, it vanishes.

First Differences: If we difference the dynamic model: yit−yi,t−1 = ρ(yi,t−1−
yi,t−2)+β(xit−xi,t−1)+(uit−ui,t−1), we also encounter an issue: yi,t−1 in the
right-hand side difference is correlated with ui,t−1 in the error term (because
yi,t−1 includes ui,t−1 from the original equation). So ∆yi,t−1 is correlated with
∆uit (since ∆uit contains −ui,t−1). Thus OLS on the differenced equation is
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also biased for ρ. In fact, the FD estimator has a similar magnitude of bias in
finite samples (also O(1/T ), but it might differ slightly in sign or magnitude
depending on ρ).

Given that neither FE nor FD (nor pooled OLS) produce consistent esti-
mates in a dynamic panel with fixed N , how do we estimate such models?
The solution lies in using instrumental variables or GMM techniques that ex-
ploit further lags as instruments. This approach was pioneered by Anderson
and Hsiao (1982) who suggested instrumenting ∆yi,t−1 with yi,t−2 (which is
correlated with yi,t−1 but not with ui,t−ui,t−1, under assumptions of no serial
correlation in u). More efficiently, Arellano and Bond (1991) and subsequent
works developed a general GMM estimator that uses all available lagged
values of y as instruments for the differenced (or level) equations. These
are known as dynamic panel GMM estimators (difference GMM and system
GMM, etc.). Those are beyond the scope of this chapter, but essentially they
tackle the endogeneity of the lagged dependent variable by instrumenting it
with deeper lags (assuming no autocorrelation in u beyond some order and
assuming initial conditions are such that those lags are valid).

The key point for our discussion is: do not use basic fixed effects or
OLS when you have a lagged dependent variable in a short panel.
They will be biased. If T is reasonably large, one might tolerate the bias,
but often researchers prefer to address it directly via instrumental variable
methods.

Sometimes, researchers face a model where they are not sure if a lagged de-
pendent variable should be included or not. One trick sometimes mentioned
is ”bracketing” the true effect of a variable by comparing the static FE model
and the dynamic model. Suppose our variable of interest is xit and we want
its effect on yit. If the true model is static (no lagged y) but we erroneously
include yi,t−1, the coefficient on xit in the dynamic model might be biased
(since yi,t−1 will soak up some effect that belongs to x or might itself be en-
dogenous). If the true model is dynamic but we estimate a static FE model
(omitting the lag), then the coefficient on xit could be biased because it picks
up some dynamic effects.

Typically, if β (the effect of x) is positive, one can argue: - If the true
model is dynamic but we use static FE (omit yi,t−1), then some of the effect
of past y on current y might be attributed to x, potentially leading to an
overestimate of β. Intuition: suppose x has a positive effect, and y is highly
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persistent (ρ > 0). Then xit might be correlated with future yi,t+1 as well
through persistence. In a static model, you don’t control for that, so you
might see a bigger immediate effect to compensate. - If the true model is
static but we mistakenly include yi,t−1, that lag term might pick up some
of the contemporaneous effect of x. The β on x would then appear smaller
(underestimated) because the model is giving some explanatory power to
yi,t−1 that actually should be attributed to xit (which influenced yi,t−1 if x
is autocorrelated or something, or simply the lag is acting as a proxy for
omitted factors which x also captured). - So the static FE estimate of β
might be an upper bound, and the dynamic (with lag) estimate might be a
lower bound, on the true effect (if those are the only two issues).

This idea of bracketing suggests that if you run a static FE model and a
dynamic panel model (with appropriate correction for the lag, say using an
IV or at least seeing the bias direction), the true β might lie between the
two estimates. If you find that in your data the static FE β̂ is, say, 0.8 and
the dynamic model β̂ is 0.4 (just as an example), you might suspect the
true effect is somewhere in between, maybe around 0.6. If you find instead
that the static gave 0.5 and the dynamic gave 0.7 (reversing the order),
then something is inconsistent with the typical pattern—maybe the dynamic
estimation isn’t reliable or other omitted variables are playing a role, because
we expected static to overshoot if anything.

However, one has to be careful: both these estimates (especially naive dy-
namic using OLS/FE) are biased in unknown ways, so one shouldn’t literally
take them as bounds without more justification. The bracketing argument
is more heuristic. Ideally, one would directly address the dynamic panel
bias via a proper estimator (like Arellano-Bond GMM). The bounded idea is
sometimes mentioned to guess the magnitude of bias.

In summary for the dynamic case: - Including lagged dependent variables in
panel regressions introduces special bias issues if using FE/OLS. - Use ap-
propriate instruments or estimators for dynamic panels (this is a whole topic
by itself, often taught under panel data econometrics or advanced econo-
metrics). - Recognize that a coefficient difference between a model with and
without a lagged y might suggest some dynamic structure. If theory suggests
dynamics, it’s better to use a proper dynamic panel method. - If one incor-
rectly ignores dynamics, coefficients on other variables might be biased (often
upwards, because the omitted lag can cause serial correlation in errors). - If



44 CHAPTER 6. PANEL DATA

one incorrectly includes a lag when not needed, one might unnecessarily soak
up explanatory power (leading to wider standard errors or multicollinearity
issues, but consistency isn’t at stake if T large, though if done by FE with
small T , you’re introducing Nickell bias and hurting β too).

To close this section: dynamic panels are common (e.g. growth regressions,
adjustment models). The good news is that when T is moderately large
(e.g. annual data over 30 years), simply doing FE with a lag might be okay;
the Nickell bias is roughly (1 + ρ)/(T − 1) for large N scenarios, so with
T = 30 and ρ = 0.5, bias ≈ 0.05 which might be negligible. But with T = 5,
it’s not negligible. So always check the context and possibly use specialized
estimators like difference GMM or system GMM if needed.

6.9 Summary and Conclusions

Panel data methods such as fixed effects and first differences are powerful
tools to control for unobserved heterogeneity. They allow us to remove the
influence of omitted variables that are constant within an entity, thereby
mitigating a major source of bias in estimating causal relationships.

Key takeaways: - Fixed Effects (FE) estimation differences out time-
invariant characteristics. By using only within-unit variation, FE provides
consistent estimates even when each unit has its own intercept fi correlated
with the regressors. This greatly broadens the situations where OLS can
be used without bias, making minimal assumptions about unobserved dif-
ferences across units. - The FE estimator has an intuitive interpretation
(effect of x on y for a given entity’s changes) and is very general (you can
have individual FE, time FE, and other group FE to control for various het-
erogeneities). - Random Effects (RE) estimation is an alternative that as-
sumes no correlation between fi and xit. While it can be more efficient and
can estimate coefficients on time-invariant variables, this assumption is often
questionable. In practice, if RE assumptions hold, pooled OLS is consistent
and one might just use that; if they fail, RE is inconsistent. Thus, the safe
approach favored in most studies is FE, unless one has strong justification
to use RE. The Hausman test is a classic way to compare FE and RE; typi-
cally it leads to rejection of RE in observational data. - First Differences
(FD) estimation achieves the same asymptotic goals as FE (eliminate fi)
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by looking at changes between periods. FD and FE are numerically iden-
tical when T = 2; for larger T , they differ in efficiency depending on error
structure, but both are consistent under similar assumptions. Trying both
can be a useful robustness check. - Limitations of FE: - It cannot identify
effects of variables that do not change within a unit (time-invariant regres-
sors). To learn about those, other methods or assumptions are needed (e.g.,
RE model or instrumental variables). - It can exacerbate attenuation bias
if key regressors are measured with error, because the within-variation may
have a lower signal-to-noise ratio. - It uses a lot of degrees of freedom when
N is large, and multiple fixed effects can be computationally heavy (though
solvable with modern algorithms). In extreme cases, including too many
fixed effects can lead to multicollinearity or overfitting issues as well. - In
non-linear models or models with short time series, the inclusion of many
fixed effects introduces the incidental parameter problem, potentially bias-
ing the estimates. Special methods or caution are required in those contexts.
- Dynamic panels: A lagged dependent variable with fixed effects causes
standard FE/OLS estimators to be biased. One should use specialized tech-
niques (IV/GMM) or be aware of the approximate nature if using a short
panel.

General advice: Use fixed effects when you suspect important omitted vari-
ables are fixed within units. This often greatly improves the credibility of
your estimates by controlling for unobserved heterogeneity. Always remem-
ber, though, that fixed effects only control for time-constant heterogeneity;
time-varying omitted variables can still bias results. Thus, you may need
additional control variables or instruments for those. Also, fixed effects “use
up” variation, so check that your key regressor does vary sufficiently within
units; if not, FE won’t be informative for that effect.

If you have panel data, it’s often wise to start with a pooled OLS, then see
how results change with fixed effects. A big change suggests that unobserved
heterogeneity was indeed biasing the OLS results (or at least the between-
individual differences were important). If OLS and FE are similar (and
Hausman test says no difference), then maybe unobserved fi wasn’t a big
problem (or x is primarily within-variation anyway). In that case, you might
even prefer the simpler model or RE if you want to include time-invariant
factors.

Avoid blindly using fixed effects in situations they aren’t suitable (short
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panels with lagged y, non-linear models with many dummies, etc.) without
further techniques.

In conclusion, panel data greatly expands the toolkit of empirical economics,
allowing more credible causal inference in the presence of unobserved hetero-
geneity. The fixed effects model is a workhorse method, and understanding
its proper use and limitations is essential for graduate-level applied research.
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