Chapter 6

Causal Inference and the
Sources of Endogeneity

6.1 Introduction

Causal inference in regression analysis is concerned with estimating the effect
of an explanatory variable X on an outcome Y in a way that reflects a
true causal effect rather than a spurious correlation. The ideal scenario for
causal inference is a randomized experiment, where the explanatory variable
is assigned independently of any other factors. In such an experiment, any
observed relationship between X and Y can be interpreted causally because
X is exogenous by design. In observational studies, however, we must rely
on assumptions to ensure that our estimated relationship is not driven by
confounding factors.

In the context of ordinary least squares (OLS) regression, a key requirement
for a causal interpretation is the exogeneity of the regressors. This means
that each explanatory variable must be uncorrelated with the error term
in the regression equation. Equivalently, the error term should have zero
conditional mean given the regressors. We state this formally:

Assumption 6.1 (Exogeneity (Zero Conditional Mean)). For the true re-
gression model Y; = Gy + 51 X1 + PoXio + -+ + BpXir + u;, the error term
satisfies E[uz ’ Xﬂ, Xi27 c ,Xlk} = 0.
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Assumption is one of the central requirements for OLS to identify causal
effects. If this assumption holds, OLS estimators are unbiased and consistent
for the true parameters.[] However, if Assumption is violated, then one
or more regressors are endogenous, meaning they are correlated with the
error term. In that case, the OLS estimates will generally be biased and
inconsistent, leading us away from the true causal effect.

There are several common sources of endogeneity in regression models. In
this chapter, we examine three key sources:

1. Omitted variable bias — Important explanatory factors are left out
of the model.

2. Simultaneity (reverse causality) — One of the regressors is jointly
determined with the dependent variable.

3. Measurement error — A regressor is measured with error, contami-
nating the regression with noise.

All of these scenarios result in a violation of exogeneity and thus bias the
OLS coefficient estimates. In the following sections, we discuss each source
of endogeneity in detail, providing intuitive examples and formal derivations
where appropriate. Our goal is to understand why these problems lead to bi-
ased estimates and how to recognize them in practice. (Methods for address-
ing these issues—such as instrumental variables or experimental designs—will
be touched upon briefly and covered more fully in subsequent chapters.)

6.2 Omitted Variable Bias

One of the most prevalent sources of endogeneity is omitted variable bias
(OVB). This bias occurs when a relevant variable that influences the de-
pendent variable is omitted from the regression, and that omitted variable

'We assume throughout that all other standard regression assumptions (linearity of
the model, random sampling, no perfect multicollinearity, etc.) hold as well. The focus
here is on violations of exogeneity, which is often the most critical assumption for causal
interpretation.
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is correlated with one or more included regressors. In such cases, the coeffi-
cient on the included regressor will capture not only its own direct effect on
the outcome, but also the indirect effect that operates through the omitted
factor. Intuitively, the regression is attributing to X some of the effect that
actually belongs to the omitted variable, since X is serving as a proxy for
that omitted factor in the model.

OVB can arise if two conditions are met:

1. The omitted variable is a determinant of the dependent variable (i.e. it
truly belongs in the regression model for Y').

2. The omitted variable is correlated with at least one included regressor.

If an omitted factor does not affect Y, then leaving it out does not bias the
estimation of other coefficients (it would simply inflate the error variance).
Likewise, if the omitted factor is unrelated to all included X variables, its
omission will not violate exogeneity (because the omitted factor, though in
the error term, would be uncorrelated with X by construction). Only when
both conditions hold do we get omitted variable bias.

To formalize the idea, consider a true model with two regressors X and Z:

where u is an error term with E[u | X, Z] = 0. Here Z represents an impor-
tant variable determining Y alongside X. Suppose we erroneously omit Z
and estimate a regression of Y on X alone:

Y =00+ aX +e, (6.2)

where e is the new error term in this misspecified regression. The omitted
variable Z is now part of the error: specifically, comparing (6.2)) with the
true model (6.1]), we have

e = B2 + u.
If Z is correlated with X, then X will be correlated with e (since Z resides

in e), violating Assumption [6.1] As a result, the OLS estimator &; in the
omitted model (6.2) will be biased.
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We can derive an expression for this bias. The OLS estimator from (/6.2))

satisfies _ _
X=XV, -Y) B Cov(X,Y)

S(X — X)? ~ Var(X)
the ratio of the sample covariance between X and Y to the variance of X.
Consider the covariance term using the true model (6.1)):

Cov(X,Y) = Cov(X, By + 51X + B2 Z + u).

@1:

Since fy is a constant and Cov(X, X) = Var(X), this expands to
Cov(X,Y) = py Var(X) + 2 Cov(X, Z) + Cov(X, u).
By the exogeneity of the true model, Cov(X,u) = 0. Therefore,
Cov(X,Y) = p Var(X) + 2 Cov(X, Z).
Plugging this into the formula for &; and simplifying gives:

Cov(X, Z)

a1 = B+ B Var(X)

We summarize this result formally:

Proposition 6.2 (Omitted Variable Bias). Under the true model (6.1)), if
the regressor Z is omitted and we estimate (6.2)), then

Cov(X, Z)
Var(X)
i.e. the probability limit of the estimator includes an asymptotic bias term

Cov(X,Z) |2
52 Var(X)

plim &y = 1 + B

Proof. Using the true model (6.1]), the population covariance between X and
Y is
Cov(X,Y) = COV(X, Bo + 51X + B Z + u)
= (1 Cov(X, X) + B2 Cov(X, Z) + Cov(X, u)
= ﬁl Var(X) + 62 COV(X, Z),

2We use the term “probability limit” (plim) to denote the value to which an estimator
converges as the sample size grows large (consistency). If the estimator is unbiased and
consistent, its plim equals the true parameter. Under endogeneity, the plim will generally
be different from the true parameter.
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since Cov(X,u) = 0 by exogeneity of the true model. Dividing both sides by
Var(X) yields
Cov(X,Y) Cov(X, Z)
Var(X) Var(X)
The left-hand side is the probability limit of the OLS estimator &; from the

misspecified regression (as n — 00), and the right-hand side is 5; plus the
bias term. O

= [+ B2

Cov(X, Z)

Var(X)
induced by omitting Z. From this formula we can determine the direction of
the bias in different scenarios:

The second term in the above expression, [y , represents the bias

e If X and the omitted variable Z are positively correlated (Cov(X, Z) >
0) and Z has a positive effect on Y (8 > 0), then the bias term is
positive. In this case, &; will overestimate 3; (an upward bias).

e If X and Z are positively correlated but Z has a negative effect on Y
(B2 < 0), the bias term is negative. In this scenario, &; will underesti-
mate .

e In general, the sign of the bias is sign(f5s) x sign(Cov(X, Z)). If X and
Z are negatively correlated, the reasoning reverses.

e If either S, = 0 (the omitted variable has no true effect on Y') or
Cov(X, Z) = 0 (the omitted variable is uncorrelated with X), then the
bias term is zero. This is consistent with our earlier statement that
both conditions must hold for OVB to occur.

It is worth noting that omitted variable bias can sometimes be severe enough
to even flip the sign of an estimated coefficient relative to its true value.
For example, if §; > 0 (a positive true effect of X on Y) but S < 0 and
Cov(X, Z) is sufficiently large in magnitude, the term 52%&? could be
more negative than [y is positive, resulting in &; that is negative. In that
case, the regression would misleadingly suggest a negative relationship be-
tween X and Y even though the true causal effect of X is positive. This

underscores how dangerous omitted confounders can be for causal inference.
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Example 6.3 (Education, Ability, and Wages). A classic example of omit-
ted variable bias arises in estimating the returns to education on earnings.
Suppose we regress individuals’ wage (or log wage) on their years of educa-
tion. The coefficient on education in such a regression is meant to capture the
causal effect of schooling on earnings (e.g. the percentage increase in wages
per additional year of education). However, not everyone pursues education
to the same extent, and one important factor is ability. More able or talented
individuals may both achieve higher education and earn higher wages. If we
omit innate ability from the wage regression (perhaps because it is hard to
measure), the schooling variable X will partly proxy for ability. Here Z (the
omitted variable) is ability, which likely satisfies both conditions for OVB:
(1) ability clearly affects wages (more able workers are more productive and
thus command higher pay), and (2) ability is positively correlated with edu-
cation (more able individuals tend to obtain more schooling, due to factors
like better academic performance or more opportunities).

In this scenario, the omission of ability biases the estimated coefficient on
education upward. Education appears to have a larger effect on wages than it
truly does, because the regression is attributing the wage gains due to ability
to the additional schooling. This is sometimes referred to as ability bias in
the returns-to-education literature. If we could measure and include ability
in the regression, we expect the coefficient on education would decrease (per-
haps substantially). In practice, researchers attempt to address this OVB
problem by finding proxies for ability or using methods like twin studies and
instrumental variables (for example, using variations in schooling caused by
differences in school access or laws) to isolate the true effect of education on
earnings.

The education example illustrates the threat that an omitted confounding
factor poses: it undermines the causal interpretation of the regression coeffi-
cient. Whenever we run a regression, we should carefully think about what
factors might have been omitted and whether they could induce correlation
between our regressors and the error term. If so, OLS estimates will not
recover the true causal parameters.
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6.3 Measurement Error

Another major source of endogeneity is measurement error in the regres-
sors. Measurement error occurs when the variable we use in the regression
is measured or recorded with noise relative to the true quantity we want
to capture. For instance, a survey might ask respondents for their income
or debt levels, but respondents could misreport these either intentionally or
due to forgetfulness. In economic data, key variables like wealth, earnings,
or leverage can be measured with error. When the mismeasured variable is
used as an X in regression, the estimation can suffer from what is known as
errors-in-variables bias.

Not all measurement error causes bias. If the error is in the dependent
variable Y (for example, if Y is self-reported and measured with noise), the
OLS coefficients remain unbiased—such measurement error in Y only adds
extra randomness to the model and typically inflates the residual variance
(making estimates less precise) but does not bias the coefficients ] The more
problematic case is measurement error in an independent variable X.

For simplicity, consider a single regressor model Y = Sy + ;X" + u, where
X* is the true, unobserved regressor and u is the error term (assume E[u |
X*] = 0so that X* itself satisfies exogeneity). We do not observe X* directly;
instead, we observe X = X*+4w, where w is a measurement error. We assume
classical measurement error: w is independent of X™* and u, with mean zero
(so the observed X is an unbiased measure of the true X*). Now consider
the regression of Y on X (the observed, error-ridden regressor). Substituting
X* =X — w into the true model:

Y =00+ (X —w)+u= 5+ /X + (u—Fw).
The regression we actually estimate is
Y = 6o+ AiX +14,

where 4 = u — Syw is the composite error term. Importantly, this new error
term @ includes the term —fyw, and w is part of X. Even though w is

3(Classical measurement error in Y increases the variance of the error term but does
not violate the zero conditional mean assumption, since the mismeasurement is part of
the error term and is independent of X. However, non-classical measurement error in Y
(e.g. if the error is systematically related to X') could introduce bias.
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independent of X* and wu, it is not independent of X (because X contains
w). In fact, Cov(X,a) = Cov(X, —f1w + u) = —f Cov(X,w) + Cov(X,u).
Now, Cov(X,u) = 0 by assumption (since X* and wu are independent and
X = X*+w). But Cov(X,w) = Cov(X*+w, w) = Cov(X*, w)+ Var(w) =
0+ Var(w), since X* and w are independent. Thus Cov(X, @) = —3; Var(w),
which is generally nonzero (unless 5, = 0). This means X is endogenous in
the observed regression, and OLS will be biased.

We can derive the attenuation effect explicitly. The population OLS estima-
tor with X measured with error is:

=~ Cov(X,Y)
b= Var(X)

Using Y = By + /1 X* + v and X = X* + w, we find:

Cov(X,Y) = Cov(X* +w, 51X" + u)
= (1 Cov(X™, X*) + 51 Cov(w, X*) + Cov(X™*,u) + Cov(w,u).

Given our assumptions: Cov(w, X*) = 0, Cov(X*,u) = 0, and Cov(w,u) =
0. Therefore, Cov(X,Y) = f; Var(X*). Meanwhile, the variance of X is

Var(X) = Var(X* + w) = Var(X™) + Var(w),

since X* and w are independent. Thus:

~ ﬁl V&I‘(X*)

B Var(X*)
b= Var(X*) + Var(w)

Var(X*) + Var(w)

= X

Because Var(w) > 0, the fraction
Var(X™*)
Var(X*)—l—VaE(w)

we have 8; = A (. In expectation, the estimated coefficient is attenuated
(shrunk towards zero) by the factor A. In the limit of large samples,

plim Bl = Af,

% is less than 1. Denoting A =

(sometimes called the reliability ratio of the measured variable),

so unless Var(w) = 0 (no measurement error) or 5; = 0 (the true effect is
zero), plimf; # (1. Typically A is significantly below 1 when measurement
error is substantial, meaning the regression understates the true effect. This
phenomenon is known as attenuation bias.
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In summary, classical measurement error in a regressor biases the estimated
coefficient toward zero. A positive true effect will be underestimated (closer
to zero), and a negative true effect will also be underestimated in magnitude
(closer to zero from below). The severity of the bias depends on how noisy
the measurement is: if Var(w) is large relative to Var(X*), then A is small
and the bias is severe. If the measurement is fairly precise (small Var(w)),
A is closer to 1 and the bias is mild. It is important to note that this
derivation assumes the measurement error is random (classical). In reality,
some measurement errors are systematic or correlated with other variables
(“non-classical” measurement error), which can lead to more complex forms
of bias that do not necessarily attenuate toward zeroﬁ

Example 6.4 (Measurement Error in Leverage). Researchers in finance often
study the effect of a firm’s leverage (debt-to-equity ratio or a similar metric)
on outcomes such as its stock returns, risk, or investment behavior. Leverage
is typically measured from balance sheet data (book leverage) or market
data (market leverage), but both measures can be prone to error or may not
perfectly capture the concept of true leverage at every moment. Suppose
a researcher regresses a measure of firm performance (say, stock return) on
the firm’s leverage ratio. If the leverage data contains measurement error
(for instance, due to accounting differences, reporting lags, or approximation
in using book values), the estimated coefficient on leverage will likely suffer
from attenuation bias.

In practice, this means the regression might find only a weak or insignifi-
cant relationship between leverage and performance, even if the true effect
of leverage is substantial. The noise in the leverage variable dilutes the sig-
nal. Some studies indeed attribute the difficulty in detecting strong leverage
effects to measurement error. For example, if true leverage changes are not
fully captured in the reported data, or if firms’ off-balance-sheet debts are
not counted, the observed leverage is a noisy proxy for true leverage. The
resulting coefficient estimate is biased toward zero. Researchers must be
cautious interpreting such results: a lack of a significant coefficient on lever-
age could be due to measurement error rather than a truly negligible effect.
In response, they might seek instruments for leverage or use techniques like

4For example, if less educated respondents systematically misreport their income more
than highly educated respondents, the measurement error in income would be correlated
with education, violating the classical assumption and potentially biasing the estimated
effect of education on income in unpredictable ways.
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averaging over time (to reduce noise) as remedies for the errors-in-variables
problem.

This example highlights that measurement error can mask real economic
relationships. Whenever we suspect that a key regressor is measured with
error, we should be wary of coefficient estimates that are surprisingly small
or insignificant. Correcting for measurement error often requires additional
information, such as validation datasets or instrumental variables, which pro-
vide an external source of variation in the mismeasured variable.

6.4 Simultaneity (Reverse Causality)

The third major source of endogeneity we consider is simultaneity bias, also
known as reverse causality or joint determination of variables. Simultaneity
arises in situations where one of the regressors is not truly independent of the
outcome, but rather is determined simultaneously with the outcome through
an equilibrium relationship or a feedback mechanism. In other words, X and
Y mutually influence each other, making it ambiguous which one is the cause
and which is the effect in a simple regression framework.

When simultaneity is present, the regressor X is endogenous because changes
in X may be caused by changes in Y (or by common factors that affect both).
As a result, the OLS estimation of Y on X will capture a mix of effects, and
it generally cannot isolate the pure causal effect of X on Y. The estimated
coefficient may be biased and inconsistent because Assumption [6.1] fails: the
variation in X is not external or as-good-as-random; instead, X responds to
shocks in Y.

A canonical example of simultaneity comes from supply and demand in eco-
nomics:

Example 6.5 (Simultaneous Determination of Price and Quantity). Con-
sider a market for a commodity where we have a demand equation and a
supply equation:

Q'=ap—a,P+u (Demand),

Q =v%+mP+v (Supply).
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Here Q% is quantity demanded, Q® is quantity supplied, P is the price, and
u, v are demand and supply shocks respectively. In equilibrium, the observed
price P and quantity Q satisfy Q = Q% = Q*. If one were to naively regress
() on P using observational data from this market, the coefficient would not
recover the true demand parameter —a; (nor the supply parameter ;). The
reason is that price and quantity are jointly determined by both equations.
When demand wu shifts, it changes () and P; when supply v shifts, it also
changes @ and P. The OLS regression of () on P essentially mixes up these
demand and supply movements, producing an estimate that lies somewhere
between the true demand and supply slopes. Moreover, the regressor P is
correlated with the composite error (which would include both w and v).
Thus, P is endogenous. The estimation suffers from simultaneity bias, and
we cannot interpret the estimated coefficient as the demand elasticity (or the
supply slope) on its own.

This example illustrates that when both X and Y are determined by a system
of equations, a single-equation regression cannot disentangle causality. In the
supply-demand case, more advanced methods (such as two-stage least squares
with instrumental variables for price) are required to consistently estimate
the demand or supply parameters separately.

Simultaneity bias is essentially a form of omitted variable bias, where the
omitted factors are the forces that simultaneously determine the regressor
and the outcome. In the above example, the demand shock w is an omitted
factor in the supply equation and is correlated with price P, and the supply
shock v is omitted in the demand equation and is also correlated with P.
Each equation alone omits the influence of the other side of the market.

Another way to think about simultaneity is as a reverse causation problem:
we typically write Y = f(X) but in reality X might also be a function of Y.
For instance, consider the relationship between a firm’s advertising expendi-
ture and its sales. One might posit a model Sales = [y + [ Advertising + u,
assuming that more advertising causes higher sales. However, it could also
be true that firms adjust their advertising budgets in response to sales trends
(when sales are expected to increase, they spend more on ads, or perhaps
when sales are poor, they spend more to boost them). If advertising is partly
determined by anticipated sales, then causality runs both ways: advertising
affects sales and sales affects advertising. A simple OLS regression of sales on
advertising would be endogenous, as the regressor (advertising) is influenced
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by the error term (which in this context includes shocks to sales or demand).
In such a case, the estimated (; will be biased, and we cannot interpret it
straightforwardly as the effect of advertising on sales.

The core issue in simultaneity is that an explanatory variable is not purely
external to the system but is itself an outcome of some other simultane-
ous process. As a result, we lose the clear causal ordering that regression
requires for interpretation. OLS regression alone cannot resolve “who is
causing whom.” In fact, with simultaneity, it is fundamentally impossible to
discern the direction of causality using only the variation in X and Y that
we observe: all the variation in X is potentially contaminated by feedback
from Y. This is why additional techniques are needed to study causal rela-
tionships in simultaneous settings. One approach is to find an instrumental
variable that affects X but not Y except through X, and use it to tease out
exogenous variation in X. (Instrumental variables are the subject of the next
chapter.) Another approach is to build and estimate a system of equations
(as in structural modeling) to account for the joint determination explicitly.

6.4.1 Testing for Endogeneity: The Durbin—Wu—Hausman
Test

Given an econometric model, it is often useful to test whether a regressor
is in fact endogenous (violating Assumption Exogeneity) or whether OLS
might be reliable. One widely used approach is the Durbin-Wu-Hausman
(DWH) test for endogeneity, which in regression form is sometimes called
the Davidson-MacKinnon test[’| This test provides a way to check if an OLS
coefficient differs significantly from what it would be under an alternative
method that accounts for endogeneity (such as an instrumental variables
estimator). A significant difference suggests that the regressor is endogenous.

5The Durbin-Wu-Hausman test is named after James Durbin (1954), De-Min Wu
(1973), and Jerry Hausman (1978), who developed tests for endogeneity/consistency.
Davidson and MacKinnon (1993) describe a regression-based implementation of this test.
The intuition is to compare an estimator that is always consistent (under both Hy and H,,
such as IV) to one that is only consistent under Hy (such as OLS). A significant difference
between the two estimates signals that Hy (exogeneity of X) is likely false. The procedure
described above (sometimes called a Hausman regression) is a convenient way to perform
this test in practice by checking if the OLS residual contains any remaining predictive
power after accounting for the instrument.
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The basic implementation of the DWH test for a single suspect regressor X
is as follows:

1. First-stage regression: Find an additional variable (or set of vari-
ables) that can serve as an instrument Z for the suspect regressor X.
The instrument Z should be correlated with X (relevant) but uncorre-
lated with the original error term ¢ in the Y equation (valid). Regress
X on all exogenous variables in the model, including Z, to obtain the
fitted values X and the residual r = X — X. This first stage effectively
isolates the part of X that is exogenous (as explained by Z and other
controls) from the part that might be endogenous.

2. Augmented regression: Next, take the original regression model for
Y and add the residual r from the first stage as an additional regressor.
For example, if our original model was Y = §y + 51X + controls + ¢,
we now estimate an augmented model

Y = By + 51X + 6r + (other controls) + error.

This augmented regression allows us to directly test whether any left-
over variation in X (the part not explained by the instrument and other
exogenous variables) has an effect on Y.

3. Test: Now we test whether the coefficient 6 on the residual r is signif-
icantly different from zero. The null hypothesis is Hy : # = 0 (which
would imply X is exogenous). The alternative is that § # 0 (which
implies X is endogenous).

e If the test fails to reject Hy (i.e. 0 is not significantly different from
zero), we do not find evidence that X is endogenous. The OLS
estimate for $; may be considered reliable (at least with respect
to endogeneity concerns).

e If the test rejects Hy (i.e. 0 is significantly non-zero), this is ev-
idence that X is endogenous. Intuitively, the residual r contains
the variation in X that is unrelated to the instruments and other
controls—essentially the variation that could be driven by Y itself
or omitted factors. A significant # means that variation is indeed
affecting Y, implying X was picking up that effect (and thus cor-
related with the error term). In such a case, the OLS estimate
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of B is biased, and one should rely on instrumental variables or
other techniques to obtain a consistent estimate.

Example 6.6 (Testing Endogeneity of Education). Continuing with the
theme of education and earnings, suppose we want to test whether years
of education X is endogenous in a wage regression (perhaps due to omit-
ted ability or other factors). We might have a candidate instrument Z for
education—common examples include variables like distance to the nearest
college, changes in schooling laws that affect certain cohorts, or other back-
ground characteristics that influence education but are plausibly unrelated
to individual wage potential aside from their effect on schooling.

We can perform a Durbin—-Wu-Hausman test as follows:

1. First, we would regress X (education) on the instrument Z and any
other exogenous controls (such as experience, demographic variables,
etc.). This yields a fitted value X capturing the part of education
predicted by these exogenous factors, and a residual r = X — X which
represents the part of education not explained by the instrument and
controls.

2. Second, we run the augmented wage regression including r: wage =
Bo + /1 X + 0r+ (other controls) +u.

3. Finally, we test whether 6 =0. If, for instance, we find g is positive and
statistically significant, it suggests that the portion of education not ex-
plained by the instrument has a positive association with wages—likely
capturing the effect of ability or other omitted factors. This indicates
education is endogenous (the OLS estimate of 3; was picking up ability
bias), and we would reject the null of exogeneity. On the other hand, if
0 is near zero (and statistically insignificant), we would not reject exo-
geneity, providing some reassurance that OLS was not severely biased
by omitted factors (at least those correlated with the instrument).

In practice, this testing procedure helps determine whether an instrumental
variable approach is necessary. If the test suggests endogeneity, one would
proceed with IV estimation to get a consistent estimate of ;. If the test does
not find evidence of endogeneity, researchers might be more confident in the
OLS results (though one must always consider the strength of the instrument
and power of the test when interpreting such outcomes).
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The Davidson-MacKinnon (Durbin-Wu-Hausman) test provides a formal
way to detect endogeneity, but it relies on having at least one valid instru-
ment for the suspect regressor. Without an instrument or some alternative
source of identification, simultaneity bias cannot be definitively diagnosed or
resolved. Nonetheless, the test is a useful diagnostic when instruments are
available, and it serves as a reminder that whenever we suspect a regressor
might be jointly determined with the outcome, we should not blindly trust
the OLS estimate. Instead, we must seek additional evidence or more robust
strategies to pin down the causal effect.

6.5 Conclusion

In this chapter, we explored three fundamental sources of endogeneity—omitted
variable bias, measurement error, and simultaneity—and examined how each
leads to a violation of the exogeneity assumption required for causal inference
in OLS regression. Through examples and derivations, we saw that:

e Omitting a relevant confounding variable can bias our coefficient es-
timates, sometimes severely, by attributing the effect of the missing
factor to the included regressors.

e Measurement error in regressors, especially when random (classical),
tends to attenuate estimated effects, making it harder to detect true
relationships.

e Simultaneity or reverse causality means that the direction of influence
between X and Y is blurred, so OLS estimates capture a mixture of
effects and cannot be given a straightforward causal interpretation.

All these issues result in OLS estimates that are biased and inconsistent for
the true causal parameters. In practice, recognizing potential endogeneity
is a crucial part of empirical research. Researchers must combine economic
reasoning (to suspect when an explanatory variable might be endogenous)
with statistical tests (like the Davidson—-MacKinnon test) and, importantly,
techniques to address endogeneity.
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Having identified the problems, the next step is to solve them. There are
several strategies to obtain credible causal estimates in the presence of en-
dogeneity. One powerful approach is the use of instrumental variables
(IV), which provide an external source of variation in the endogenous re-
gressor that can isolate the true causal effect. Another strategy is to use
panel data and fixed-effects models to difference out omitted variables that
are fixed within entities. Additionally, randomized experiments or natural
experiments can offer exogenous variation that circumvents endogeneity con-
cerns. These topics will be explored in subsequent chapters.

In sum, causal inference requires careful attention to the sources of endo-
geneity. By understanding omitted variable bias, measurement error, and
simultaneity, and by employing appropriate methods to mitigate these is-
sues, we can move closer to uncovering true causal relationships in economic
data, rather than being misled by mere correlations.
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