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Causality

Professor Ji-Woong Chung
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This lecture note is based on Todd Gormley’s.
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Motivation

▶ As researchers, we are interested in making causal statements.

▶ Example #1: What is the effect of a change in corporate taxes
on firms’ leverage choice?

▶ Example #2: What is the effect of giving a CEO more stock
ownership in the firm on the CEO’s desire to take on risky
investments?

▶ We don’t like to just say variables are ‘associated’ or ‘correlated’
with each other.

4 / 68



What do we mean by causality?

Recall from earlier lecture that if our linear model is the following:

y = β0 + β1x1 + · · ·+ βkxk + u

And we want to infer β1 as the causal effect of x1 on y holding all else
equal, then we need to make the following assumptions. . .
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The Basic Assumptions

▶ Assumption #1: E (u) = 0
▶ Assumption #2: E (u|x1 . . . xk) = E (u)

▶ In words, the average of u (i.e., unexplained portion of y) does
not depend on the value of x .

▶ “Conditional mean independence” (CMI).
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Three Main Ways This Will Be Violated

▶ Omitted variable bias

▶ Measurement error bias

▶ Simultaneity bias

Now let’s go through each in turn. . .
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Omitted Variable Bias (OVB)

▶ Probably the most common concern you will hear researchers
worry about.

▶ Basic idea = the estimation error u contains another variable,
e.g., z that affects y and is correlated with an x .

▶ Please note! The omitted variable is only problematic if
correlated with an x .
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OVB More Formally with One Variable

You estimate:
y = β0 + β1x + u

But the true model is:

y = β0 + β1x + β2z + v

Then
β̂1 = β1 + δxzβ2

where δxz is the coefficient you’d get from regressing the omitted
variable z on x .

δxz =
cov(x , z)

var(x)
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Interpreting the OVB Formula

β̂1 = β1︸︷︷︸
Effect of x on y

+
cov(x , z)

var(x)︸ ︷︷ ︸
Regression of z on x

β2︸︷︷︸
Effect of z on y︸ ︷︷ ︸

Bias

▶ Easy to see the estimated coefficient is only unbiased if
cov(x , z) = 0 [i.e., x and z are uncorrelated] or z has no effect
on y [i.e., β2 = 0].
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Direction and Magnitude of the Bias

β̂1 = β1 +
cov(x , z)

var(x)
β2

▶ Direction of bias given by signs of β2, cov(x , z).
▶ E.g., if we know z has a positive effect on y [i.e., β2 > 0] and x

and z are positively correlated [cov(x , z) > 0], then the bias will
be positive.

▶ Magnitude of the bias will be given by magnitudes of β2,
cov(x ,z)
var(x) .
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Example – One Variable Case

Suppose we estimate:

ln (wage) = β0 + β1educ + w

But the true model is:

ln (wage) = β0 + β1educ + β2ability + u

What is likely bias on β1? Recall

β̂1 = β1 + β2
cov(educ, ability)

var(educ)

.
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Example – Answer

▶ Ability & wages are likely positively correlated so β2 > 0.

▶ Ability & education are likely positively correlated so
cov(education, ability) > 0.

▶ Thus, the bias is likely to be positive! β̂1 is too big!
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OVB – General Form

▶ Once you move away from the simple case of just one omitted
variable, determining the sign (and magnitude) of bias will be a
lot harder.
▶ Let β be the vector of coefficients on k included variables.
▶ Let γ be the vector of coefficients on l excluded variables .
▶ Let X be the matrix of observations of included variables.
▶ Let Z be the matrix of observations of excluded variables.
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OVB – General Form Intuition

β̂ = β+
E [X ′

Z ]

E [X ′
X ]︸ ︷︷ ︸

Vector of regression
coefficient

γ︸︷︷︸
Vector of partial effects
of excluded variables

▶ Same idea as before but more complicated.

▶ This can be a real mess!
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Eliminating Omitted Variable Bias

How we try to get rid of this bias will depend on the type of omitted
variable:

▶ Observable omitted variable

▶ Unobservable omitted variable

How can we deal with an observable omitted variable?
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Observable Omitted Variables

▶ This is easy! Just add them as controls.
▶ E.g., if the omitted variable z in my simple case was ‘leverage,’

then add leverage to regression.

▶ A functional form misspecification is a special case of an
observable omitted variable.

▶ Let’s now talk about this. . .
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Functional Form Misspecification

Assume true model is:

y = β0 + β1x1 + β2x2 + β3x
2
2 + u

However, we omit the squared term x22 .

▶ Just like any OVB, bias on (β0, β1, β2) will depend on β3 and
correlations among (x1, x2, x

2
2 ).

▶ You get the same type of problem if you have an incorrect
functional form for y [e.g., it should be ln(y) not y ].

In some sense, this is a minor problem. . . Why?
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Tests for Correction Functional Form

▶ You could add additional squared and cubed terms and look to
see whether they make a difference and/or have non-zero
coefficients.

▶ This isn’t as easy when the possible models are not nested. . .
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Non-Nested Functional Form Issues

Two non-nested examples

y = β0 + β1x1 + β2x2 + u

versus y = β0 + β1 ln(x1) + β2 ln(x2) + u

y = β0 + β1x1 + β2x2 + u

versus y = β0 + β1x1 + β2z + u

Let’s use the first example and see how we can try to figure out which
is right

Nonnested models: neither equation is a special case of the other.
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Davidson-MacKinnon Test, 1981 [Part 1]

To test which is correct you can try this. . .

▶ Take fitted values ŷ1 from 1st model and add them as a control
in 2nd model.

y = β0 + β1 ln(x1) + β2 ln(x2) + θ1ŷ + u

▶ If 2nd model is correct, then θ1 should be insignificant. If
significant, rejects 2nd model!

▶ Then do the reverse and look at t-stat on θ2 in:

y = β0 + β1x1 + β2x2 + θ2ỹ + v

where ỹ is predicted value from 2nd model. . . if significant, then
1st model is also rejected.
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Davidson-MacKinnon Test, 1981 [Part 2]

Number of weaknesses to this test:

▶ A clear winner may not emerge.
▶ Both might be rejected.
▶ Both might be accepted [If this happens you can use the R2 to

choose which model is a better fit].

▶ And rejecting one model does NOT imply that the other model is
correct.

24 / 68



Bottom Line Advice on Functional Form

Practically speaking, you hope that changes in functional form won’t
affect coefficients on key variables very much. . .

▶ But if it does. . . You need to think hard about why this is and
what the correct form should be.

▶ The prior test might help with that. . .

But, if the effects of key independent variables on y are not very
different, then it does not really matter which model is used.
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Eliminating Omitted Variable Bias

How we try to get rid of this bias will depend on the type of omitted
variable:

▶ Observable omitted variable

▶ Unobservable omitted variable

Unobservables are much harder to deal with but one possibility is to
find a proxy variable.
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Unobserved Omitted Variables Example

▶ Consider the estimation:

ln (wage) = β0 + β1educ + β2ability + u

Problem: we don’t observe & can’t measure ability.

What can we do?
Answer: Find a proxy variable that is correlated with the
unobserved variable, e.g., IQ.
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Proxy Variables [Part 1]

Consider the following model:

y = β0 + β1x1 + β2x2 + β3x
∗
3 + u

where x∗3 is unobserved but we have a proxy, x3. Then suppose:

x∗3 = δ0 + δ3x3 + v3

▶ v3 is the error associated with the proxy’s imperfect
representation of unobservable x∗3 .

▶ Intercept just accounts for different scales [e.g., ability has
different average value than IQ]
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Proxy Variables [Part 2]

▶ If we are only interested in β1 or β2, we can just replace x3 with
x∗3 and we run the regression of y on x1, x2, and x3.

▶ But for this to give us consistent estimates of β1 and β2, we need
to make some assumptions.

#1 – We’ve got the right model.

#2 – Other variables don’t explain our unobserved variable after
we’ve accounted for our proxy.
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Proxy Variables – Assumptions

y = β0 + β1x1 + β2x2 + β3x
∗
3 + u

x∗3 = δ0 + δ3x3 + v3

#1 – E (u|x1, x2, x∗3 ) = 0; i.e., we have the right model and x3 would
be irrelevant if we control for x1, x2, x

∗
3 such that:

E (u|x1, x2, x∗3 , x3) = E (u|x1, x2, x∗3 )(= 0)

▶ This is a common (and important) assumption.

#2 – E (v3|x1, x2, x3) = 0; i.e., x3 is a good proxy for x∗3 such that
after controlling for x3, x

∗
3 does not depend on x1 or x2.

▶ I.e., E (x∗3 |x1, x2, x3) = E (x∗3 |x3) = δ0 + δ3x3
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Why the Proxy Works. . .

Recall the true model:

y = β0 + β1x1 + β2x2 + β3x
∗
3 + u

Now plug-in for x∗3 using x∗3 = δ0 + δ3x3 + v3

y = (β0 + β3δ0)︸ ︷︷ ︸
α0

+β1x1 + β2x2 + (β3δ3)︸ ︷︷ ︸
α1

x3 + (u + β3v3)︸ ︷︷ ︸
e

Prior assumptions ensure that E (e|x1, x2, x3) = 0 such that the
estimates of α0, β1, β2, α1 are consistent.

Note: β0 and β3 are not identified.
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Proxy Assumptions are Key [Part 1]

Suppose assumption #2 is wrong such that x∗3 is correlated to all of
the observed variables:

x∗3 = δ0 + δ3x3 + γ1x1 + γ2x2 + w︸ ︷︷ ︸
v

where E (w |x1, x2, x3) = 0

If the above is true, E (v |x1, x2, x3) ̸= 0, and if you substitute into the
model of y you’d get. . .
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Proxy Assumptions are Key [Part 2]

Plugging in for x∗3 you’d get:

y = (β0 + β3δ0)︸ ︷︷ ︸
α0

+(β1 + β3γ1)︸ ︷︷ ︸
α1

x1 + (β2 + β3γ2)︸ ︷︷ ︸
α2

x2 + (β3δ3)︸ ︷︷ ︸
α3

x3 + e

▶ E.g., α1 captures effect of x1 on y (β1) but also its correlation
with unobserved variable.

▶ We’d get consistent estimates of α0, α1, α2, α3.

▶ But that isn’t what we want!
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Proxy Variables – Example #1

Consider the earlier wage estimation:

ln (wage) = β0 + β1educ + β2ability + u

▶ If we use IQ as a proxy for unobserved ability , what assumption
must we make? Is it plausible?

▶ Answer: We assume E (ability |educ , IQ) = E (ability |IQ),

i.e., average ability does not change with education after
accounting for IQ. . . Could be a questionable assumption!
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Proxy Variables – Example #2

Consider the Q-theory of investment:

Investment = β0 + β1Q + u

▶ Can we estimate β1 using a firm’s market-to-book ratio (MTB)
as a proxy for Q?

▶ Answer: Even if we believe this is the correct model (Assumption
#1) or that Q only depends on MTB (Assumption #2), e.g.,
Q = δ0 + δ1MTB, we are still not getting an estimate of β1. . .
see next slide for the math.
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Proxy Variables – Example #2 [Part 2]

Even if assumptions held, we’d only be getting consistent estimates of:

Investment = α0 + α1MTB + e

where α0 = β0 + β1δ0 and α1 = β1δ1.

▶ While we can’t get β1, is there something we can get if we make
assumptions about the sign of δ1?

▶ Answer: Yes, the sign of β1.
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Proxy Variables – Summary

▶ If the coefficient on the unobserved variable isn’t what we are
interested in, then a proxy for it can be used to identify and
remove/mitigate OVB from the other parameters.

▶ A proxy can also be used to determine the sign of the coefficient
on an unobserved variable.
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Random Coefficient Model

So far we’ve assumed that the effect of x on y (i.e., β) was the same
for all observations.

▶ In reality, this is unlikely true; the model might look more like:

yi = ai + bixi

where ai = α+ ci , bi = β + di
▶ α is the average intercept, E (ai ), and β is what we call the

“average partial effect” (APE) , E (bi ).
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Random Coefficient Model [Part 2]

Regression would seem to be incorrectly specified but if willing to
make assumptions, we can identify the APE.

▶ Plug in for ai and bi :

yi = (α+ ci ) + (β + di )xi

= α+ βxi + (ci + dixi )︸ ︷︷ ︸
ui

▶ The error term contains an interaction between an unobservable,
di , and the observed explanatory variable, xi .

▶ Identification requires

E (u|xi ) = E (ci + dixi |xi ) = 0

1

What does this imply?
1The error term is heteroskedastic: Var(ui |xi ) = σ2

c + σ2
dx

2
i
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Random Coefficient Model [Part 3]

This amounts to requiring:

E (ci |xi ) = E (ci ) = 0 ⇒ E (ai |xi ) = E (ai )

E (di |xi ) = E (di ) = 0 ⇒ E (bi |xi ) = E (bi )

∵ ai = α+ ci , bi = β + di

▶ We must assume that the individual intercepts (ai ) and slopes
(bi ) are mean independent (i.e., uncorrelated with the value of x)
in order to estimate the APE.

▶ I.e., knowing x does not help us predict the individual’s partial
effect.
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Random Coefficient Model [Part 4]

Implications of APE

▶ Be careful interpreting coefficients when you are implicitly
arguing elsewhere in the paper that the effect of x varies across
observations.

▶ Keep in mind the assumption this requires.

▶ And describe results using something like. . . “we find that
on average an increase in x causes a β change in y .”
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Measurement Error (ME) Bias

Estimation will have measurement error whenever we measure the
variable of interest imprecisely.

▶ Example #1: Altman-Z-score is a noisy measure of default risk.

▶ Example #2: Average tax rate is a noisy measure of marginal tax
rate.

Such measurement error can cause bias, and the bias can be quite
complicated.
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Measurement Error vs. Proxies

Measurement error is like a proxy variable but very different
conceptually.

▶ A proxy is used for something that is entirely unobservable or
unmeasurable (e.g., ability).

▶ With measurement error, the variable we don’t observe is
well-defined and can be quantified. . . it’s just that our measure
of it contains error.
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ME of Dependent Variable [Part 1]

It could not a big issue (in terms of bias); sometimes just causes our
standard errors to be larger.

▶ Example:
y∗ = β0 + β1x1 + u

But we measure y∗ with error e = y − y∗ Because we only
observe y we estimate:

y = β0 + β1x1 + (u + e)
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ME of Dependent Variable [Part 2]

As long as E (e|x) = 0 the OLS estimates β̂1 are consistent and
unbiased.

▶ I.e., as long as the measurement error of y is uncorrelated with
the x ’s we’re okay.

▶ Only issue is that we get larger standard errors when e and u are
uncorrelated [which is what we typically assume] because
Var(u + e) > Var(u).

46 / 68



ME of Dependent Variable [Part 3]

What are some common examples of ME?

▶ Market leverage – typically use book value of debt because
market value is hard to observe.

▶ Firm value – again hard to observe market value of debt so we
use book value.

▶ CEO compensation – value of options are approximated using
Black-Scholes.

Is assuming e and x are uncorrelated plausible?
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ME of Dependent Variable [Part 4]

Answer = Maybe. . . maybe not.

▶ Example: Firm leverage is measured with error; hard to observe
the market value of debt so we use book value.

▶ But the measurement error is likely to be larger when firms are in
distress. . . Market value of debt falls; book value does not.

▶ This error could be correlated with x ’s if it includes things like
profitability (i.e., ME larger for low-profit firms).

▶ This type of ME will cause inconsistent estimates.
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ME of Independent Variable [Part 1]

▶ Let’s assume the model is:

y = β0 + β1x
∗ + u

But we observe x∗ with error e = x − x∗

▶ We assume that E (y |x∗, x) = E (y |x∗) [i.e., x doesn’t affect y
after controlling for x∗; this is standard and uncontroversial
because it is just stating that we have written the correct model].
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ME of Independent Variable [Part 2]

There are lots of examples!

▶ Average Q measures marginal Q with error.

▶ Altman-Z score measures default probability with error.

Will this measurement error cause bias?
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ME of Independent Variable [Part 3]

Answer depends crucially on what we assume about the measurement
error e.

▶ Literature focuses on two extreme assumptions:

#1 Measurement error e is uncorrelated with the observed measure
x .

#2 Measurement error e is uncorrelated with the unobserved
measure x∗.

51 / 68



Assumption #1: e Uncorrelated with x

Substituting x∗ with what we actually observe x∗ = x − e into the
true model we have:

y = β0 + β1x
∗ + u = β0 + β1(x − e) + u = β0 + β1x + (u − β1e)

▶ Is there a bias?

▶ Answer = No. x is uncorrelated with e by assumption and x is
uncorrelated with u by earlier assumptions.

▶ What happens to our standard errors?

▶ Answer = They get larger; error variance is now
Var(u) + β2

1Var(e).
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Assumption #2: e Uncorrelated with x∗

We are still estimating: y = β0 + β1x
∗ + u, but now x is correlated

with e.

▶ e uncorrelated with x∗ guarantees e is correlated with x :
Cov(x , e) = E (xe) = E (x∗e) + E (e2) = σ2

e

▶ I.e., an independent variable will be correlated with the error. . .
we will get biased estimates!

This is what people call the Classical Error-in-Variables (CEV)
assumption.
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CEV with 1 variable = Attenuation Bias

If you work out the math, you can show that the estimate of β1 in the
prior example (which had just one independent variable) is:2

plim(β̂1) = β1
var(x∗)

var(x∗) + var(e)

▶ The estimate is always biased towards zero; i.e., it is an
attenuation bias.

▶ And if the variance of error Var(e) is small, then attenuation bias
won’t be that bad.

2plim(β̂1) = β1 +
Cov(x,u−β1e)

Var(x)
= β1 − β1var(e)

var(x∗)+var(e)
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Measurement Error. . . Not So Bad?

Under the current setup, measurement error doesn’t seem so bad. . .

▶ If the error is uncorrelated with the observed x , no bias.

▶ If the error is uncorrelated with the unobserved x∗ we get an
attenuation bias. . . so at least the sign on our coefficient of
interest is still correct.

Why is this misleading?
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Nope, Measurement Error is Bad News

Truth is, measurement error is probably correlated a bit with both the
observed x and unobserved x∗.

▶ I.e., some attenuation bias is likely.

Moreover, even in the CEV case, if there is more than one
independent variable, the bias gets horribly complicated. . .
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ME with more than one variable

If estimating:
y = β0 + β1x1 + β2x2 + u

and just one of the x ’s is mismeasured, then. . .

▶ ALL the β’s will be biased if the mismeasured variable is
correlated with any other x [which presumably is true since it was
included!].

▶ Sign and magnitude of biases will depend on all the correlations
between x ’s; i.e., big mess!
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ME Example

Fazzari, Hubbard, and Petersen (1988) is a classic example of a paper
with ME problem.

▶ Regresses investment on Tobin’s Q (it’s a measure of investment
opportunities) and cash.

▶ Finds a positive coefficient on cash; argues there must be
financial constraints present.

▶ But Q is a noisy measure; all coefficients are biased!

Erickson and Whited (2000) argue the positive coefficient disappears
if you correct the ME.
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Simultaneity Bias

This will occur whenever any of the supposedly independent variables
(i.e., the x ’s) can be affected by changes in the y variable; e.g.:

y = β0 + β1x + u

x = δ0 + δ1y + ν

I.e., changes in x affect y and changes in y affect x ; this is the
simplest case of reverse causality.

An estimate of β1 will be biased. . .
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Simultaneity Bias Continued. . .

To see why estimating y = β0 + β1x + u won’t reveal the true β1,
solve for x :

x = δ0 + δ1y + ν

= δ0 + δ1(β0 + β1x + u) + ν

x =

(
δ0 + δ1β0
1− δ1β1

)
+

(
ν

1− δ1β1

)
+

(
δ1

1− δ1β1

)
u

x is correlated with u! I.e., bias!
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Simultaneity Bias in Other Regressors

▶ Prior example is a case of reverse causality (the variable of
interest is affected by y).

▶ But if y affects any x , there will be a bias; e.g.:

y = β0 + β1x1 + β2x2 + u

and:
x2 = γ0 + γ1y + w

▶ Easy to show that x2 is correlated with u; and there will be a bias
on all coefficients.

▶ This is why people use lagged x ’s.
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Simultaneity Bias – Summary

▶ If your x might also be affected by the y (i.e., reverse causality),
you won’t be able to make causal inferences using OLS.

▶ Instrumental variables or natural experiments will be helpful with
this problem.

▶ Also, you can’t get causal estimates with OLS if controls are
affected by the y .
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“Bad Controls”

▶ Like simultaneity bias. . . but this is when one x is affected by
another x ; e.g.:

y = β0 + β1x1 + β2x2 + u

where:
x2 = γ0 + γ1x1 + ν

▶ Angrist-Pischke call this a ”bad control,” and it can introduce a
subtle selection bias when working with natural experiments [we
will come back to this in later lecture]
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“Bad Controls” continued

▶ But just to preview it. . . If you have an x that is truly exogenous
(i.e., random) [as you might have in a natural experiment], do
not put in controls that are also affected by x!

▶ Only add controls unaffected by x or just regress your various y ’s
on x and x alone!

▶ We will revisit this in a later lecture. . .
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Summary of Today [Part 1]

▶ We need conditional mean independence (CMI) to make causal
statements.

▶ CMI is violated whenever an independent variable x is correlated
with the error u.

▶ Three main ways this can be violated:
▶ Omitted variable bias
▶ Measurement error bias
▶ Simultaneity bias
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Summary of Today [Part 2]

The biases can be very complex.

▶ If more than one omitted variable or the omitted variable is
correlated with more than one regressor, the sign of bias is hard
to determine.

▶ Measurement error of an independent variable can (and likely
does) bias all coefficients in ways that are hard to determine.

▶ Simultaneity bias can also be complicated.
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Summary of Today [Part 3]

To deal with these problems there are some tools we can use.

▶ E.g., Proxy variables [discussed today].
▶ We will talk about other tools later, e.g.:

▶ Instrumental variables
▶ Natural experiments
▶ Regression discontinuity
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