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Chapter 6

Linear Regression 2

6.1 Homoskedasticity, Heteroskedasticity, and

OLS Variance

Before turning to formal hypothesis testing, it is important to understand the
variance of the OLS estimators under different assumptions about the error
term. In particular, we distinguish between homoskedastic errors (constant
variance) and heteroskedastic errors (variance depends onX). This will guide
us in obtaining the correct standard errors for inference.

Definition 6.1. We say the error term ui is homoskedastic if V ar(ui | Xi =
x) = σ2 is a constant, i.e. the disturbance variance does not depend on the
level of the regressors. Conversely, if V ar(ui | Xi = x) varies as a function of
x, the errors are heteroskedastic. In other words, under heteroskedasticity
the disturbance variance changes with X.

Consider a simple investment regression example: Investmenti = α+β Qi+
ui. Homoskedasticity would mean that the variability of the investment un-
explained by Q is the same for firms of all sizes or characteristics. In practice,
this is often unrealistic — one can easily imagine that firms with higher Q or
different sizes have more volatile investment, violating the constant variance
assumption. Thus, in many economic settings, heteroskedasticity is a safer
and more realistic assumption.
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4 CHAPTER 6. LINEAR REGRESSION 2

Importantly, the presence of heteroskedasticity does not introduce bias into
the OLS slope estimates, so long as our core assumption E(ui | Xi) = 0 holds.
Recall that the unbiasedness of OLS requires zero conditional mean of errors,
which is a separate assumption from homoskedasticity. Heteroskedasticity af-
fects the variance and efficiency of the estimators, but not their expectation.
In particular, OLS remains consistent for the true coefficients even if the
errors have non-constant variance. However, as we will see, when errors are
heteroskedastic the usual formulas for standard errors (which assume ho-
moskedasticity) are no longer valid, and OLS is no longer the most efficient
linear estimator.

6.1.1 Variance of OLS Estimators under Homoskedas-
ticity

Under the classical linear model assumptions, including homoskedasticity, we
have a well-known formula for the covariance matrix of the OLS estimator.
Suppose our linear model (with intercept) is

Y = Xβ + u,

where X is the N×(k+1) design matrix (first column all 1’s for the intercept,
and k regressors). If V ar(u | X) = σ2IN (homoskedasticity and no serial
correlation), then the variance of the OLS estimator is

V ar(β̂ | X) = σ2(X ′X)−1. (6.1)

In particular, the variance of each coefficient β̂j is given by the jth diagonal
element of σ2(X ′X)−1. This can be unpacked to see how various factors
influence the precision of β̂j.

Theorem 6.2 (Variance of a Coefficient Estimate). Consider the jth re-
gressor Xj in a multiple regression with an intercept and define R2

j as the
R-squared from regressing Xj on all the other independent variables (and an
intercept). Then under assumptions including homoskedasticity,

V ar(β̂j) =
σ2

(1−R2
j )

∑N
i=1(Xij − X̄j)2

,

where X̄j =
1
N

∑N
i=1Xij is the sample mean of Xj.
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Proof. The idea of the proof is to apply the Frisch–Waugh–Lovell theorem
to isolate the contribution of Xj. First, regress Xj on all other regressors to

obtain the fitted values X̂ij and residuals vij = Xij−X̂ij for each observation
i. By construction, these residuals {vij} are orthogonal to the other regressors
and have mean zero. Let S2

vj
=

∑N
i=1 v

2
ij denote the total variation of the

residual vij. It can be shown that

S2
vj

= (1−R2
j )

N∑
i=1

(Xij − X̄j)
2 , (6.2)

since R2
j is the fraction of Xj’s sample variance explained by the other re-

gressors. Equation (6.2) follows directly from the definition of R2
j :

R2
j = 1−

∑N
i=1 v

2
ij∑N

i=1(Xij − X̄j)2
,

so rearranging gives
∑

i v
2
ij = (1−R2

j )
∑

i(Xij − X̄j)
2.

Now, by Frisch–Waugh–Lovell, the OLS estimate β̂j can be obtained in a
two-step: (i) purge Y of the influence of the other regressors (regress Y on
the other X−j to get residuals Ỹi), and (ii) regress Ỹ on vj (the residuals of
Xj) in a simple regression. In this equivalent regression, the “x” variable is
vij and the error term is the same original ui (since the part of Y explained by
other X has been removed). The slope estimate from this simple regression

is β̂j =
∑

i vij Ỹi∑
i v

2
ij
. Because vij is uncorrelated with the other regressors, one

can show V ar(Ỹi | vij) = V ar(ui | X) = σ2 (homoskedasticity of ui). Thus,
the variance formula for a simple regression slope applies here, giving

V ar(β̂j | X) =
σ2∑N
i=1 v

2
ij

.

Finally, substitute the identity (6.2) for
∑

v2ij to obtain the stated result.

The formula in Theorem 6.2 provides intuition about what influences the
estimator’s variance:

� The factor
∑

i(Xij − X̄j)
2 is the total sample variation in regressor Xj.

A larger spread or variance in Xj reduces V ar(β̂j). Intuitively, more
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variation in the independent variable helps us pin down its effect on Y
more precisely. This is one reason larger sample sizes (which typically
offer more variability in X as well as more observations) lead to more
precise estimates.

� The error variance σ2 = V ar(ui) appears in the numerator: more in-
trinsic noise in Y (due to unobserved factors) makes it harder to pre-
cisely estimate βj, thus increasing the variance of β̂j. If a lot of the
variability in Y comes from factors unrelated to Xj (i.e., a large σ2),
then our estimate of βj will naturally be more noisy. Including addi-
tional relevant variables that absorb some of this variation in Y (thereby
reducing σ2) can improve the precision of all coefficient estimates.

� The term (1 − R2
j ) in the denominator shows the impact of multi-

collinearity. Here R2
j is how well Xj can be predicted by the other

regressors. If Xj is nearly a linear combination of other X’s (i.e., R2
j

is high, close to 1), then (1 − R2
j ) is small, making V ar(β̂j) large. In

other words, when Xj is highly collinear with other covariates, it is
difficult to disentangle the separate effect of Xj on Y , so the variance

of β̂j is inflated. This phenomenon is known as variance inflation
due to multicollinearity. In the extreme case where Xj is an exact

linear combination of other regressors (R2
j = 1), V ar(β̂j) would be in-

finite and the regression cannot be estimated (perfect multicollinearity
causes the X ′X matrix to be singular).

The term 1
1−R2

j
is often called the variance inflation factor (VIF) for the

jth variable. It measures how much the variance of β̂j is multiplied due to the
presence of other correlated regressors. A V IF of 1 means Xj is uncorrelated
with others (no inflation of variance), while a very large V IF indicates that
multicollinearity is a serious concern for that coefficient.

To summarize, we prefer to have high independent variation in each regressor
and not too much collinearity between them, in order to minimize standard
errors. Adding an irrelevant regressor (one that truly has no effect on Y )
will not bias our estimates, but it can increase the R2

j for the other variables
and thus inflate their variances. Therefore:

� Including unnecessary regressors (especially if they are correlated with
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other X’s) tends to make it harder to find statistically significant ef-
fects, because the standard errors of the estimates increase.

� On the other hand, omitting relevant regressors can bias our estimates
(violating E(u | X) = 0). So in model selection there is a trade-off: in-
clude enough variables to satisfy the zero conditional mean assumption,
but avoid including extraneous ones that only add noise.

Example 6.3 (Irrelevant Regressor). Suppose the true model is Y = β0 +
β1X1 + u, so X2 is irrelevant (its true coefficient is 0). We nonetheless esti-
mate an expanded model Y = β0 + β1X1 + β2X2 + u. OLS will still recover
an unbiased estimate of β1. In fact, under E(u | X1, X2) = 0, one can show
E[β̂1] = β1 and E[β̂2] = 0. Thus the inclusion of an irrelevant X2 does not
bias β̂1. However, β̂1 will typically have a larger variance than it would in a
regression without X2. This follows from Theorem 6.2: here X2 is uncorre-
lated withX1 in expectation (sinceX2 is irrelevant, there is no reason for it to
be correlated with X1 in the data-generating process), but in any given sam-
ple it may introduce some sample correlation (increasing R2

1 slightly above
0). Moreover, X2 adds another degree of freedom used, slightly reducing the
effective sample variation in X1 around its mean. Thus the standard error
of β̂1 will generally rise. In practice, if β̂2 turns out insignificantly different
from 0 (as expected) and including it does not dramatically change β̂1, one
might drop X2 in the final model to regain some precision.

6.1.2 Heteroskedasticity and Robust Standard Errors

We have established the OLS variance formula under homoskedastic errors.
When the error variance is not constant (heteroskedasticity), OLS is still
unbiased but Equation (6.1) no longer holds with σ2(X ′X)−1. In fact, under
heteroskedasticity the true variance of β̂ (conditional on X) is

V ar(β̂ | X) = (X ′X)−1
( N∑

i=1

V ar(ui | X)xix
′
i

)
(X ′X)−1,

which generally cannot be simplified to a scalar times (X ′X)−1. The usual
OLS standard error formulas (which assume homoskedasticity) will mis-
estimate the true sampling variability. In particular, the conventional formula
σ̂2(X ′X)−1 will be biased if the errors are heteroskedastic.
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If we proceed with inference (e.g., t-statistics) using the wrong standard er-
rors, our hypothesis tests and confidence intervals may be incorrect. For ex-
ample, the conventional t-statistic might not actually follow a t-distribution
under the null, or the calculated p-value could be misleading (maybe too
small, claiming significance where there is none, or vice versa). Thus, detect-
ing and addressing heteroskedasticity is crucial for valid inference.

The good news is that we can correct the standard errors for heteroskedastic-
ity without changing our coefficient estimates. The most common solution is
to use heteroskedasticity-robust standard errors (also known as Eicker–
Huber–White standard errors). These are sometimes simply called “robust”
standard errors. The idea is to use an estimator of V ar(β̂) that does not
assume V ar(ui) is constant. One such estimator (for large samples) is:

V̂ ar(β̂) = (X ′X)−1
( N∑

i=1

û2
i xix

′
i

)
(X ′X)−1, (6.3)

where ûi are the OLS residuals. Intuitively, we weight the outer product xix
′
i

by û2
i for each observation, allowing each observation to contribute a different

amount to the variance (since a larger residual suggests that observation had
a higher error variance). The square roots of the diagonal entries of (6.3) give
us the robust standard errors for each coefficient. Under mild assumptions,
(6.3) is a consistent estimator for the true variance of β̂ even when the errors
are heteroskedastic.

Remark 6.4. In most regression software (e.g., R, Stata, Python statsmodels),
the default reported standard errors assume homoskedasticity. It is typically
up to the user to request robust standard errors (for instance, by using a
command or option like robust or HC3). If one has any doubt about the
homoskedasticity assumption, it is safer to use robust standard errors. In
practice, robust SEs often turn out to be slightly larger than homoskedastic
SEs (reflecting the fact that OLS was not fully efficient). In some cases,
the robust SEs may be much larger, altering the conclusions of a hypothesis
test. On rare occasions, a robust SE might even be slightly smaller than the
conventional one; this can happen if the pattern of heteroskedasticity is such
that the OLS formula over -estimates variability. In any case, a prudent rule
is to use the larger of the two estimates for inference. Robust SEs ensure
valid hypothesis tests even when the form of heteroskedasticity is unknown.

In summary, heteroskedasticity by itself does not bias the OLS coefficients,
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but it does invalidate the default standard error formulas and thereby the
usual t-tests and p-values. By using heteroskedasticity-robust standard er-
rors, we can perform correct inference without having to explicitly model the
variance of the errors.

6.1.3 Weighted Least Squares (WLS)

Rather than just adjusting the standard errors for heteroskedasticity, one
might attempt to directly account for the unequal error variances in estima-
tion. Weighted Least Squares is an estimation technique that can yield
more efficient (i.e., lower-variance) estimates than OLS in the presence of
heteroskedasticity, provided we know or can accurately model the variance
function. The idea is to give each observation a weight inversely proportional
to the variance of its error term. Intuitively, observations that are measured
with less noise (lower variance) get more weight in fitting the regression line,
since they contain more information about the true relationship.

Theorem 6.5 (Efficiency of Weighted Least Squares). Suppose the true vari-
ance of the error term is V ar(ui | Xi = xi) = σ2 ω(xi) for some known
function ω(xi) > 0. Define weights wi =

1√
ω(xi)

. Consider the transformed

model

wiYi = β0wi + β1(wiXi1) + · · · + βk(wiXik) + wiui.

If we apply OLS to this transformed model (i.e., minimize the weighted sum
of squared residuals

∑
i w

2
i (Yi − β0 −

∑
j βjXij)

2), then the errors wiui are

homoskedastic with variance σ2. In this scenario, the WLS estimator is the
Best Linear Unbiased Estimator (BLUE), achieving the smallest variance
among linear unbiased estimators of β.

In less formal terms, if we know the variance of each observation’s error,
we can improve efficiency by using WLS: we divide each observation by the
standard deviation of its error, thereby equalizing the error variance across
observations, and then run OLS on the rescaled data. This yields more
precise estimates than unweighted OLS (which implicitly gives equal weight
to all observations).
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Example 6.6 (WLS in action). Suppose in the investment example that
larger firms (with higher Q) have more volatile investment, say V ar(ui |
Qi) = σ2Q2

i . Here ω(Qi) = Q2
i . If we know this, we can perform WLS by

weighting each observation by wi = 1/Qi. The transformed regression would
be

Yi

Qi

= α

(
1

Qi

)
+ β

(
Qi

Qi

)
+

ui

Qi

.

This simplifies to
Yi

Qi

= α · 1

Qi

+ β + ũi, where V ar(ũi) = V ar(ui/Qi) = σ2

is now constant. In effect, we have stabilized the variance and can estimate
β more precisely.

Remark 6.7. In practice, the true variance function ω(xi) is usually not
known. A feasible WLS (FWLS) procedure can be used: first run an OLS,
obtain residuals ûi, then model V ar(ui) as a function of xi (for instance,
regress log(û2

i ) on X to estimate how the variance changes with X). From
this, generate predicted variances σ̂2

i for each observation and use weights
wi = 1/

√
σ̂2
i to re-run a weighted regression. This two-step estimator is

consistent if the variance model is correctly specified. However, if the vari-
ance model is misspecified, WLS can perform poorly (even yielding biased
estimates in finite samples). By contrast, OLS with robust standard errors
remains consistent and will give valid (if perhaps slightly less efficient) infer-
ence regardless of the form of heteroskedasticity.

In many cases, the efficiency gains fromWLS over OLS are modest, especially
if the heteroskedasticity is not severe or the variance model is approximate.
Unless we have strong prior knowledge of the variance structure, it is often
recommended to simply use OLS with robust standard errors for inference.
This approach avoids the risk of misspecifying the weights and keeps the
interpretation of coefficients straightforward (the OLS estimates still repre-
sent the best linear approximation of the conditional expectation function).
In summary, WLS is a useful tool when the variance function is known or
reliably estimated, but otherwise one “should not bother” with WLS as a
default, and rely on OLS with robust inference instead.
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6.2 Hypothesis Testing in Linear Regression

We often hear the phrase: “the estimate β̂ is statistically significant.” What
does this mean in the context of regression analysis? It means that based
on a hypothesis test, we have evidence that the true coefficient β is different
from zero (or some other benchmark value) at a given significance level.
Hypothesis testing allows us to quantify the uncertainty in our estimates
and make probabilistic statements such as “we are 95% confident that β
exceeds zero.”

In this section, we focus on testing a single coefficient, typically the null
hypothesis H0 : βj = 0 against the alternative H1 : βj ̸= 0. This is the

test underlying the claim of “statistical significance” for β̂j. We will discuss
test statistics, p-values, and the distinction between statistical and economic
significance.

6.2.1 The t-Test for a Single Coefficient

Because OLS estimates are random variables (functions of the random sam-
ple), we can construct test statistics to evaluate hypotheses about the true
coefficients. Under the classical assumptions (including that either the er-
rors ui are normally distributed, or the sample size is large enough to apply
asymptotic normality), the OLS estimator β̂j is approximately normally dis-
tributed around βj. We can standardize this estimator by subtracting the
null hypothesis value and dividing by its standard error:

tj =
β̂j − βj,0

ŜE(β̂j)
.

Typically, for testing significance we take βj,0 = 0, so the t-statistic simplifies

to tj = β̂j/ŜE(β̂j). This statistic measures how many standard deviations
away from zero our estimate is.

If the null hypothesis is true (βj = 0) and classical assumptions hold, this tj
statistic follows a t-distribution with N− (k+1) degrees of freedom (in finite
samples with normal errors) or approximately a standard normal distribution
(for large N , by the Central Limit Theorem). We can then conduct a test
by comparing |tj| to critical values of the t (or normal) distribution. For
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example, at the 5% significance level in a two-sided test, the critical value
is about 1.96 (for large N), meaning if |tj| > 1.96 we reject H0 : βj =
0. Equivalently, one can compute the p-value of the test, which is more
informative.

Definition 6.8. The p-value for testing a given null hypothesis is the proba-
bility, under the assumption that the null is true, of obtaining a test statistic
as extreme as (or more extreme than) the one actually computed from the
sample. In a two-sided test for H0 : βj = 0, the p-value is Pr(|T | ≥ |tj|)
where T denotes the test statistic under the null distribution.

If the p-value is below the chosen significance level α (say 0.05), we reject the
null hypothesis. For instance, a p-value of 0.03 indicates that if βj were truly
zero, there is only a 3% chance we would observe an estimate as far from
zero as β̂j purely due to random sampling variation. Such a low probability
leads us to conclude that βj is likely not zero (i.e., the estimate is statistically
significant at the 5% level).

On regression output tables, one often sees the t-statistic and p-value re-
ported for each coefficient. The phrase “β̂j is statistically significant” typi-
cally implies that H0 : βj = 0 was rejected at some conventional level (often
5%). Many tables also mark coefficients with stars to denote significance:
for example, ∗∗∗ for p < 0.01, ∗∗ for p < 0.05, ∗ for p < 0.1.

It is important to remember that the standard error ŜE(β̂j) used in the t-
statistic should be the appropriate one given our assumptions. If we have
heteroskedasticity, we must use the robust standard error in computing tj;
otherwise, the test will not be valid. Most statistical software can report
robust t-statistics when requested.

6.2.2 Statistical vs. Economic Significance

Rejecting H0 : βj = 0 tells us that we have evidence βj ̸= 0, but it does not
by itself tell us whether the effect is large or important in a practical sense.
We must distinguish between statistical significance and economic (or
substantive) significance:

� A coefficient can be statistically significant (different from zero in a
precise sense) but economically trivial in magnitude.
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� Conversely, a coefficient can be economically large in magnitude but
not statistically significant (often due to a small sample or high noise
making the estimate imprecise).

Statistical significance relates to our confidence that an effect is non-zero.
Economic significance relates to the size of the effect in real-world terms.
Always examine the magnitude of β̂j and consider its context. For example,
with a very large sample, one might find that a policy intervention has an
effect on income that is statistically different from zero but extremely small
(say, $1 increase in annual income on a base of $50,000). Such an effect, while
“statistically significant,” is economically negligible. On the other hand, if
we have an estimate that increasing education by one year raises wages by
10%, that is economically meaningful; but if our sample is tiny, the estimate
might come with a huge standard error, and we cannot be statistically sure
that the true effect isn’t zero.

Example 6.9. Imagine a regression of a country’s GDP growth on the num-
ber of new libraries built. Suppose we obtain β̂ = 0.0005 with a standard
error of 0.0001 from a very large dataset, yielding a t-statistic of 5. This
is statistically significant at 1% level (p < 0.01). However, the magnitude
suggests that even building 100 new libraries would increase GDP growth
by only 0.05%—an economically tiny effect. Now consider a different study
where β̂ = 0.5 (meaning a very large effect of libraries on growth), but the
standard error is 0.4 because the sample size is small. This gives a t-statistic
of 1.25, which is not statistically significant at conventional levels (p ≈ 0.22).
We cannot rule out that the true effect is zero, even though the point estimate
is large. In the first case, we have statistical but not economic significance;
in the second, possibly economic significance but not statistical significance
(due to imprecision).

Always report and discuss both the magnitude and the significance
of key estimates. A good practice is to translate the coefficient into a more
interpretable effect size. For instance, if β̂1 corresponds to the effect of an
additional year of education on earnings, one could compute: “according
to our estimate, an increase of one standard deviation in education (about
2.5 years) is associated with a $5,000 increase in annual income.” Then
judge if $5,000 is a large or small change relative to typical incomes, and
discuss whether that is a meaningful impact economically. If an effect seems
implausibly large or small, it may signal model misspecification or data issues.
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In summary, statistical significance addresses the question “is the effect likely
non-zero?” whereas economic significance asks “how large is the effect, and
does it matter in context?”. Both questions are important for a complete
analysis.

6.3 Miscellaneous Topics in OLS Regression

We now address a collection of additional issues in linear regression modeling:
multicollinearity, use of binary (dummy) variables, interaction terms, and
proper presentation of regression results.

6.3.1 Multicollinearity and Irrelevant Regressors

As discussed earlier, multicollinearity refers to the presence of high corre-
lation or linear relationships among the regressors. Perfect multicollinearity
(an exact linear dependence) prevents OLS estimation altogether, whereas
imperfect multicollinearity (high but not perfect correlation among X’s) can
lead to large standard errors for the affected coefficients.

It is important to note that multicollinearity does not bias the OLS estimates;
it only affects their variance. If two regressors X2 and X3 are highly collinear,
we can still interpret the regression as long as an exact linear relationship
does not exist. However, β̂2 and β̂3 will individually be very imprecise (large
standard errors) because the data does not contain enough independent vari-
ation in X2 versus X3 to precisely attribute effects to each one. In contrast,
the combination of them might be estimated more precisely (for example,
β2 + β3 could be well-identified even if β2 and β3 separately are not).

Example 6.10 (Effect of Correlated Regressors). Consider a model

Y = β0 + β1X1 + β2X2 + β3X3 + u,

and suppose X2 and X3 are highly correlated with each other (say, X3 ≈ X2

for most observations). This might happen if, for instance, X2 is years of
education and X3 is age at which a person started working—these tend to
move together (more education implies entering the workforce later). In this
case, β̂2 and β̂3 will each have a large variance (as reflected by big standard
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errors) because it is difficult for the regression to distinguish the separate
impacts of X2 and X3. However, this multicollinearity does not affect β̂1’s
variance directly, as long as X1 is not collinear with X2 or X3. In fact, if
X1 is orthogonal to the other two (R2

1 = 0 in regressing X1 on X2, X3), then
V ar(β̂1) is unchanged by whether X2 and X3 are in the model or not.

The key takeaways regarding multicollinearity are:

� It does not cause bias or inconsistency in β̂. The OLS estimates are
still centered on the true values (assuming exogeneity holds).

� It does inflate the standard errors of the affected coefficients, making it
harder to find those coefficients statistically significant. You might have
an important variable that shows up as insignificant simply because it
moves in tandem with another variable.

� If two variables essentially measure the same thing, it’s often unnec-
essary to include both. Avoid redundant controls that are highly cor-
related with your variable of interest unless they are needed to satisfy
E(u|X) = 0. Include control variables that are necessary for validity,
but be mindful that adding controls which are not essential can increase
multicollinearity and thus reduce precision.

� The remedy for multicollinearity is usually more data. With a larger
sample, even highly correlated variables can eventually be estimated
precisely because you are more likely to find variation that separates
them. In the short run, if multicollinearity is severe, you may consider
dropping one of the collinear variables (especially if it is theoretically
less central) to gain precision on the other.

6.3.2 Dummy Variables and Interaction Terms

Many of our regressors of interest are not continuous measurements but
rather categorical or binary characteristics. A dummy variable (also called
an indicator or binary variable) is a variable that takes the value 0 or 1 to
indicate the absence or presence of a particular attribute. For example, we
might have a dummy variable Femalei which is 1 if individual i is female
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and 0 if male. Dummy variables allow us to model qualitative differences
between groups in a regression framework.

Definition 6.11. A dummy variable (indicator)D is a variable that equals
1 if a certain condition is met or if an observation belongs to a certain cate-
gory, and 0 otherwise. It is used in regression to shift intercepts or interact
to allow different effects for different groups.

Models with a Single Dummy Variable

Including a dummy variable as a regressor allows for a shift in the intercept
for the group indicated by the dummy. For instance:

Wagei = β0 + δ0 Femalei + β1Educi + ui.

In this wage regression, Femalei is the dummy (1 for women, 0 for men). The
coefficient δ0 measures the difference in wages between females and males,
holding education constant. To see this, consider the expected wage for men
versus women:

E[Wage | Female = 0, Educ] = β0 + β1Educ,

E[Wage | Female = 1, Educ] = β0 + δ0 + β1Educ.

The difference is E[Wage | Female = 1] − E[Wage | Female = 0] = δ0 for
the same education level. Thus δ0 is the gender wage gap (female minus
male) at a given education level. The intercept for males is β0 (the baseline
group when the dummy is 0), and the intercept for females is β0+ δ0. In this
specification, the only effect of gender is a parallel shift in the wage equation
(an intercept shift); the slope on education β1 is assumed to be the same for
men and women.

Example 6.12 (Gender Wage Gap). Suppose we estimate:

Ŵage = −1.57 − 1.80 Female + 0.57 Educ + 0.03 Exp + 0.14 Tenure.

All else equal, the coefficient on Female is δ̂0 = −1.80, indicating that women
earn $1.80 less per hour than men with the same education, experience, and
tenure. Here the unit of the dependent variable is in dollars per hour (as-
suming Wage is measured that way), so the difference is $1.80/hour. The
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intercept β0 = −1.57 is the predicted wage for a male with zero education,
zero experience, and zero tenure. That intercept is not economically mean-
ingful in this context (a negative wage is impossible and nobody has zero
years of education in the sample), reminding us that we should not over-
interpret the intercept. The key result is the gap of $1.80/hour attributable
to gender after controlling for other factors.

If the dependent variable is in logarithms, dummy variable coefficients can
be interpreted in percentage terms (approximately). For example:

ln(Price) = β0 + 0.054Colonial + 0.17 ln(LotSize) + 0.71 ln(SqFt) + · · · ,

where Colonial is a dummy for a house being of colonial style. The coefficient
0.054 on Colonial suggests a colonial house is associated with about 5.4%
higher price compared to a non-colonial house with similar lot size, square
footage, etc. (To be precise, one could compute e0.054 − 1 ≈ 5.55% increase.)

Multiple Categories and the Dummy Variable Trap

If a categorical variable has more than two categories, we represent it with
multiple dummy variables. For example, marital status could have categories
{single, married, divorced, widowed}. We would introduce three dummy
variables (since one category will serve as the baseline). Generally, for a cat-
egorical variable withM categories, we includeM−1 dummy variables in the
regression in addition to the intercept. Including all M would cause perfect
multicollinearity (the sum of all dummies would equal 1 for each observation,
duplicating the intercept). This is known as the dummy variable trap.
Always omit one category as the reference group.

Which category to omit is arbitrary for model fit, but it changes the interpre-
tation of coefficients. Each included dummy’s coefficient measures the effect
relative to the omitted baseline category.

Example 6.13 (Multiple Dummy Variables). Suppose we want to estimate
wage differences by gender and marital status. There are 4 groups: {single
men, married men, single women, married women}. We can set single men
as the baseline. Then include dummies for married men, single women, and
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married women:

ln(Wage) = β0 + δ1 (MarriedMale) + δ2 (SingleFemale)

+ δ3 (MarriedFemale) + β1Educ + u.

Here,

� β0 = intercept for single men (baseline group).

� δ1 = difference in log-wage between married men and single men (with
same education).

� δ2 = difference between single women and single men.

� δ3 = difference between married women and single men.

If the estimation yields (standard errors omitted for brevity):

ln(Wage) = 0.30 + 0.21MarriedMale − 0.11 SingleFemale

− 0.20MarriedFemale + 0.08Educ,

we interpret these as:

� Single men (baseline): intercept exp(0.30) ≈ 1.35, meaning baseline
average wage $1.35 (this number itself isn’t meaningful, since no one
in the sample likely has 0 education, but it anchors the other compar-
isons).

� Married men earn about 21% more than single men, ceteris paribus
(since 0.21 in logs is approximately 0.21 in percentage).

� Single women earn about 11% less than single men, ceteris paribus.

� Married women earn about 20% less than single men, ceteris paribus.

We can also compare married women to married men: add δ2 and δ3 vs δ1.
For example, married women are about 0.21−0.20−0.11 = −0.10 (10%) lower
than married men (this kind of comparison can be done after estimation).
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Whether we include separate dummy variables for each combination (as
above) or use an interaction of simpler dummies (as we will see next) the
fitted values and overall model fit will be identical. It’s purely a matter of
parameterization. The golden rule is to avoid including a full set of dum-
mies for all categories along with an intercept; always omit or leave out one
category as the reference.

If you accidentally include all categories (e.g., a dummy for each mari-
tal/gender combination plus an intercept), most software will automatically
drop one for you to resolve the multicollinearity. It’s then up to you to
recognize which was dropped and interpret accordingly.

Interactions Between Dummy Variables

We can achieve the same model as the above example using fewer dummy
variables and an interaction. For instance, we could define two main dum-
mies: Female (1 for women, 0 for men) and Married (1 for married, 0 for
single). Then include both and their interaction:

ln(Wage) = β0 + β1Married + β2 Female + β3 (Married×Female) + β4Educ + u.

Let’s interpret the coefficients:

� Baseline (when Female = 0,Married = 0) is single men: intercept β0.

� β1: effect of being married if male (Female = 0). So married men vs
single men difference.

� β2: effect of being female if single (Married = 0). So single women vs
single men difference.

� β3: the interaction term captures the additional effect of being female
and married, beyond the sum of being female + being married. In
other words, β3 adjusts the wage for married women specifically.

For a married female, the log-wage would be:

β0 + β1(1) + β2(1) + β3(1 · 1) + β4Educ = β0 + β1 + β2 + β3 + β4Educ.

For a married male: β0 + β1. For a single female: β0 + β2. For a single male:
β0. Thus:
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� Difference married male vs single male = β1.

� Difference single female vs single male = β2.

� Difference married female vs single male = β1 + β2 + β3.

� Difference married female vs married male = (β2 + β3).

To connect with the previous example, if we estimate the interaction model
we might get:

ln(Wage) = 0.30 + 0.21Married − 0.11Female − 0.30 (Married× Female)

+ 0.08Educ.

For a married female, her log-wage relative to a single male baseline is 0.21−
0.11 − 0.30 = −0.20, which is a 20% deficit. Married female vs married
male: −0.11− 0.30 = −0.41. This matches the alternative parameterization
above. Thus the interaction specification yields the same predictions, just
distributed differently among the coefficients:

� β1 = +0.21 (main effect of Married, effectively the married male pre-
mium).

� β2 = −0.11 (main effect of Female, the single female gap).

� β3 = −0.30 (interaction: additional penalty for being a married female
on top of being female and being married).

The key point is that you can either create a dummy for each category
or use main dummies and interactions; the model flexibly captures different
intercepts for each group either way. The choice of parameterization does not
affect the fitted values or predictions, only how the coefficients are presented.

Example 6.14 (Using Dummy Interactions: Computer Use and Wages).
In a famous study, Krueger (1993) examined the return to computer use on
wages. One of his regressions included two dummies: ComputerWork (1 if
the person uses a computer at work) and ComputerHome (1 if the person
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uses a computer at home), as well as their interaction. A simplified result
was:

ln(Wage) = β0 + 0.18ComputerWork + 0.07ComputerHome

+ 0.02 (ComputerWork × ComputerHome) + · · ·

The omitted category here is people who use no computer at all. From these
coefficients:

� Using a computer at work is associated with an ≈ 18% higher wage
(for those who don’t use a computer at home).

� Using a computer at home (but not at work) is associated with ≈ 7%
higher wage.

� The interaction term 0.02 suggests that using a computer both at work
and at home has an extra 2% premium on top of the individual effects.
So a person who uses computers both at work and home would have
roughly 0.18 + 0.07 + 0.02 = 0.27 (27%) higher wages than someone
using no computer.

If we convert to exact percentage: a coefficient of 0.27 in logs means about
e0.27 − 1 ≈ 31% higher wages. This reflects a slightly higher combined ef-
fect than the sum (due to the compounding in logs). The interaction being
positive (0.02) means the two forms of computer use complement each other
slightly in their association with wages.

Interactions between Continuous Variables

An interaction term need not involve only dummies; we can also include
interactions between continuous variables, or between a continuous and a
dummy. An interaction allows the effect of one regressor to depend on the
level of another regressor.

For example, consider a model with an interaction between two continuous
variables X1 and X2:

Y = β0 + β1X1 + β2X2 + β3(X1 ×X2) + u.
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This specification implies that the partial effect of X1 on Y is not constant
but varies with X2. Specifically, holding X2 constant,

∂Y

∂X1

= β1 + β3X2.

If β3 ̸= 0, the slope on X1 depends on the value of X2.

Interpretation:

� If β3 > 0, then X1’s effect on Y is larger (steeper) when X2 is larger.

� If β3 < 0, then X1’s effect on Y is smaller (flatter) when X2 is larger.
In other words, X2 “dampens” the influence of X1 on Y .

For a concrete scenario, suppose X1 is years of education and X2 is years of
job experience, and Y is log-wage. If we find β1 > 0 (education raises wages)
but β3 < 0 (negative interaction), it could mean additional education yields
a smaller percentage wage increase for those with more experience. Perhaps
early in one’s career, an extra year of education has a big payoff, but later
in the career (with high experience), the marginal effect of another degree is
less.

One must be careful in interpreting the coefficients in the presence of inter-
actions:

� β1 is the partial effect of X1 when X2 = 0 (since ∂Y/∂X1 = β1 + β3X2

and plugging X2 = 0 gives β1). Thus, β1 is the slope on X1 for the
special case when X2 = 0. If X2 = 0 is outside the range or not
meaningful, then β1 alone may not be directly relevant. Similarly, β2

is the effect of X2 when X1 = 0.

� β3 itself indicates how much the slope on X1 changes when X2 increases
by 1 (or vice versa, how X2’s slope changes with X1).

Example 6.15 (Interactions Between Continuous Variables). Consider firms
where X1 is capital investment and X2 is market size, and Y is profit. The-
ory might suggest diminishing returns to investment in larger markets. An
interaction model

Profit = β0+β1Investment+β2MarketSize+β3(Investment×MarketSize)+u
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with β1 > 0 and β3 < 0 would mean investment boosts profit, but the
boost is less in big markets (X2 large) than in small markets. For a given
high MarketSize, the marginal profit from an extra unit of investment
(∂Profit/∂Investment) could be quite small or even zero if β3 is sufficiently
negative. If the average market size X̄2 is such that β1+β3X̄2 is still positive,
then at the average market size the effect of Investment is positive. However,
if one naively looked at β1 alone, one might misstate the average effect if X̄2

is not 0.

A common mistake in interpretation is to quote β1 as “the effect of X1”
without conditioning on X2. If X2 = 0 is not a typical scenario, β1 is not
very meaningful by itself. To get the effect of X1 for a more relevant scenario
(say, the average value of X2), one can plug that in: effect at X2 = x̄2 is
β1 + β3x̄2. Alternatively, one can reparameterize the model by centering
the variables.

Centering for Interpretation. If we subtract the mean from each vari-
able (sometimes called mean-centering or demeaning), the interaction coeffi-
cient remains the same but the main effects become the effect at the mean of
the other variable. For example, define X̃1 = X1 − µX1 and X̃2 = X2 − µX2 ,
where µX1 and µX2 are sample means. Now run:

Y = δ0 + δ1X̃1 + δ2X̃2 + δ3(X̃1 × X̃2) + u.

In this specification,
∂Y

∂X1

= δ1 + δ3X̃2,

so at X̃2 = 0 (which corresponds to X2 = µX2 , the average value of X2),

∂Y

∂X1

∣∣∣∣
X2=µX2

= δ1.

Thus δ1 now represents the effect of X1 at the average level of X2. Similarly,
δ2 would be the effect of X2 at the average level of X1. The interaction term’s
coefficient δ3 will be identical to β3 from before (centering does not affect the
interaction slope, only the interpretation of main effects and the intercept).
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Example 6.16 (Centering Example). Returning to the education and expe-
rience on wages example:

ln(Wage) = 0.39 − 0.23Female + 0.08Educ − 0.01 (Female×Educ) + u.

In this model, β̂Female = −0.23 indicates that, at Educ = 0, women earn 23%
less than men. Of course, nobody has zero years of education in the data
(assume all have at least, say, 8 years of schooling). If the average education
in the sample is µEduc = 12 years, a more relevant comparison is at 12 years
of schooling: the female effect at 12 years is −0.23+(−0.01)×12 = −0.35. So
at the mean education, women earn about 35% less than men. If we center
education at 12, the coefficient on Female will directly give −0.35. Indeed,

if we define Ẽduc = Educ− 12 and regress

ln(Wage) = β̃0 + δ̃0 Female + β̃1 Ẽduc + δ̃1 (Female× Ẽduc) + u,

then δ̃0 will equal −0.35 (the gender gap at 12 years of education). The
interaction coefficient δ̃1 remains −0.01. The intercept also changes accord-

ingly. The slopes on Ẽduc (for men) and the additional slope for women are
unchanged by centering.

The main lesson: when using interactions, one must interpret coefficients
carefully. Non-interacted coefficients (like β1, β2) usually represent effects
at the zero value of the other variable, which might not be of interest. By
centering variables, you can make those coefficients represent effects at more
meaningful baseline levels (often the mean).

One must also be cautious about extrapolating interaction effects beyond the
data range. In the earlier scenario with β1 > 0, β3 > 0 (women have lower
starting wage but higher return to education), one might find a crossing point
where women’s predicted wages overtake men’s at very high education levels.
If that crossing point (solve β0 + β1X1 + β2(female = 1) + β3X1(female =
1) = β0 + β1X1 to find when female = male wage) occurs at, say, 25 years of
education, but the maximum education in the data is 20 years, then within-
sample women never actually catch up. You should not claim “with enough
education, women earn more than men” unless that regime is supported by
the data. Always check whether interaction-driven crossings occur within
the support of your data. The crossing point for when two regression lines
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intersect (for example, men’s and women’s wage lines) can be found by setting
the predicted outcomes equal and solving: in the example,

β0 + β2 + (β1 + β3)X = β0 + β1X,

implying X = −β2

β3
(if β3 ̸= 0). If −β2

β3
is outside the sample range of X, the

lines cross only out of sample.

Interactions Involving Dummy Variables and Continuous Variables

Combining the two ideas, we often interact dummy variables with continu-
ous variables to allow different slopes for different groups. For example, to
allow males and females to have different returns to education, we include
an interaction Female× Educ in the wage model:

ln(Wage) = β0 + δ0 Female+ β1Educ+ δ1 (Female× Educ) + u.

Now we have:

� Intercept (for males): β0.

� Intercept for females: β0 + δ0 (when Female = 1).

� Slope on education for males: β1.

� Slope on education for females: β1 + δ1.

So δ0 represents the gender gap when Educ = 0 (again, careful if 0 is not
realistic), and δ1 represents how much the female education slope differs from
the male education slope. If δ1 < 0, women have a lower return to education
than men.

We can visualize such a model as two lines on a wage vs. education plot: one
line for men and one for women. If δ0 < 0 and δ1 < 0, the female line starts
lower and has a flatter slope (so is always below the male line). If δ0 < 0
but δ1 > 0, the female line starts lower but is steeper—so it might eventually
catch up or cross the male line. However, as cautioned, check whether the
crossing happens beyond the data.
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If we find a crossing within the data range, it means at some level of edu-
cation, predicted female wages equal male wages, and beyond that, female
wages would exceed male wages (according to the model). If this result is
trusted, one could say “for education beyond X years, women are predicted to
earn more than men, reversing the wage gap.” If the crossing is out-of-sample,
we should refrain from such a statement, as it would be extrapolation.

Again, to interpret δ0 as the gender gap at a meaningful education level, one
can center education at its mean. Often researchers will report the gender
gap at the average education or at some relevant value, which can be obtained
by centering or by manually plugging values into the equation.

The general advice is: if you want the coefficient on a non-interacted
dummy to be interpretable as the difference at the “average” value
of the other covariates, then center those covariates around their
means before interacting. This will not change the fit or the interaction
coefficient, but will yield more interpretable intercept and main effects.

Ordinal Independent Variables

A brief digression: sometimes we encounter an independent variable that
is ordinal, meaning it represents a ranking or level, but differences between
levels are not necessarily equal. An example is credit rating: AAA, AA, A,
BBB, BB, B, etc. If we naively assign numbers (AAA=1, AA=2, A=3, etc.)
and include this as a numeric regressor, we are imposing a linear structure:
we assume the difference between AAA and AA is the same as between BBB
and BB, etc. This might be a strong assumption if those rating notches have
nonlinear effects on, say, interest rates.

A safer approach is to treat an ordinal variable as categorical and use dummy
variables for each category (minus one). For the credit rating example, create
dummies D(AAA), D(AA), . . . , D(B). Choose one category (perhaps the
lowest rating, or highest) as the baseline. The regression might look like:

IR = β0+γAAAD(AAA)+γAAD(AA)+γAD(A)+· · ·+γBBD(BB)+β1Xother+u,

omitting D(D) or whichever lowest category is chosen as the reference group.
Each γRating then measures how much higher (or lower) the interest rate is
for that rating compared to the omitted category. This allows for a non-
linear pattern: maybe the jump from BBB to BB has a much bigger effect
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on interest rates than the jump from AA to A, etc., which a linear coding
would not capture.

The trade-off is that using indicators for each category uses more degrees of
freedom and yields many coefficients, but it avoids a potentially incorrect
linearity assumption. If the ordinal variable truly has a linear effect, the
dummy method will still capture it (the γ’s might form a roughly linear
pattern). If not, the dummy method is more flexible and thus preferred to
avoid bias.

6.3.3 Presenting and Reporting Regression Results

Finally, a few words on effectively reporting regression results, especially in
academic writing (like a paper or thesis).

Typically, regression results are presented in a table format. A well-constructed
regression table should include:

� Clear column labels indicating the dependent variable for each re-
gression (or each column can represent a different model specification
with possibly the same dependent variable). If all columns share the
same dependent variable, indicate it clearly in the table title or heading.

� Row labels for each independent variable included. Use descriptive
names so the reader knows what each variable is (e.g., use “Female”
rather than a generic “D2”).

� Coefficient estimates with their standard errors (or t-statistics) in-
dicated below in parentheses or ± notation. It is common to report
something like: β̂ = 0.105 (0.032), where 0.032 is the standard er-
ror. Alternatively, some use symbols to denote significance and place
standard errors in the table note.

� Statistical significance indicators (stars or bolding) for quick visual
reference of which coefficients are significant at conventional levels.

� R2 (and possibly adjusted R2) for each regression, to indicate goodness-
of-fit.

� Number of observations used in each regression (N).
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� Optionally, other model diagnostics or fixed effects dummies, etc., can
be noted (often at the bottom of the table, one might say “Year dum-
mies: Yes” or “Estimation: OLS”).

An example stub of a regression table could be:

(1) (2) (3)
Dependent variable: Wage (or ln(Wage) in col. (3))
Education (years) 0.57 0.50 0.08

(0.10) (0.12) (0.01)
Experience (years) 0.03∗ 0.02

(0.01) (0.01)
Tenure (years) 0.14 0.10

(0.05) (0.06)
Female (dummy) −1.80 −1.50 −0.23∗

(0.60) (0.80) (0.08)
Female × Educ −0.01

(0.005)
Constant −1.57 −0.50 0.39

(1.00) (1.10) (0.20)
Observations 500 500 500
R2 0.25 0.27 0.30
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses.

(This is just a fabricated example for illustration.)

In the text of your paper or report, you should not simply restate all the
numbers in the table. Instead, focus on the key results:

� Highlight the coefficients of interest (the ones related to your main
hypotheses). Comment on their sign (positive/negative), magnitude,
and statistical significance.

� Interpret the economic meaning: e.g., “We find that the coefficient on
Educ is 0.08 (column 3), implying that each additional year of educa-
tion is associated with an 8% higher wage, significant at the 1% level.”

� For dummy variable effects: e.g., “The coefficient on Female in column
3 is -0.23, indicating that at the average education level, women earn
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about 23% less than men, holding other factors constant. This gender
gap is statistically significant at the 5% level.”

� Discuss any surprises or notable points, such as significant interactions
or unexpected signs.

� Do not waste text describing uninteresting coefficients unless needed
for completeness. Control variables can usually be summarized briefly.

� Mention N and R2 only if relevant. They are secondary to the coeffi-
cients but can be important for context or comparison across specifica-
tions.

Ensure that every regression table you include is discussed in the text. If a
table presents multiple specifications, guide the reader through them: “Col-
umn 1 presents the baseline specification without interactions; column 2 adds
additional controls; column 3 introduces the interaction term. We see that
the coefficient on Female becomes more negative once we add the interaction,
suggesting that part of the gender gap is associated with different returns to
education.” If a table or regression is not important enough to talk about,
consider omitting it.

In summary, when reporting regression results: present them clearly in tables
with all necessary information, and interpret them in writing focusing on
what matters for your argument. Discuss both statistical significance and the
practical significance of the findings. Avoid simply listing numbers; instead,
tell the story of what the numbers mean.

With that, we conclude this chapter on linear regression extensions. We cov-
ered the implications of heteroskedasticity and how to handle it, the concept
of hypothesis testing in regression, the difference between statistical and eco-
nomic significance, issues of multicollinearity and irrelevant regressors, and
how to use and interpret interaction terms and dummy variables. These tools
and insights will be invaluable as we delve deeper into causal inference and
more complex regression models.
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