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Chapter 6

Linear Regression 1

6.1 The CEF and Causality

6.1.1 The Conditional Expectation Function (CEF) and
Decomposition of Y

In regression analysis and causal inference, conditional expectations E[Yi | Di]
play a pivotal role. A fundamental identity from probability theory is that
any random variable Y can be decomposed into a part explained by some
other variable(s) X and a residual part uncorrelated with X. Formally, for
any two random variables Y and X, we can write:

Y = E(Y | X) + u,

where u is the “unexplained” part of Y given X, satisfying E(u | X) = 0.
This equation is often referred to as the CEF decomposition of Y with
respect to X. It says that E(Y | X) is the best prediction of Y given X, and
u is the deviation of Y from this prediction. By construction, u has mean
zero conditional on X. In other words, E(u | X = x) = 0 for every value x of
X.1 An important implication is that u is mean-independent of X; in fact,
u is uncorrelated with any function of X. For any function h(X), we have

1This follows since E(u | X) = E(Y −E(Y | X) | X) = E(Y | X)−E[E(Y | X) | X] =
0.
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E[h(X)u] = E[E(h(X)u | X) ] = E[h(X)E(u | X)] = 0. Thus, u cannot be
linearly predicted by X (or any known transformation of X).

In this decomposition:

� E(Y | X) is called the conditional expectation of Y given X. It
represents the part of Y that is systematically “explained” by X.

� u (often called the error term) captures everything about Y that is
not explained by X. By construction, u has zero mean given X and
is uncorrelated with X. Intuitively, u is the variation in Y that is
unrelated (in a mean sense) to X.

This decomposition provides a natural way to think about the relationship
between X and Y . The function m(X) = E(Y | X) is often called the
conditional expectation function (CEF) of Y given X. It tells us the
expected value of Y for each value of X. If we know X, the best guess for Y
(in terms of least mean squared error) is E(Y | X). In fact, the CEF has an
important optimality property: it is the best predictor of Y given X in the
mean-squared error sense. Formally, E(Y | X) minimizes the mean squared
prediction error

E
[
(Y − g(X))2

]
over all measurable functions g(X). That is, for any other function g(X),

E
[
(Y − E(Y | X))2

]
≤ E

[
(Y − g(X))2

]
.

In other words,

E(Y | X) = argmin
g(·)

E
[
(Y − g(X))2

]
.

This can be shown by a simple argument: take any candidate function g(X)
and write

(Y − g(X))2 =
(
Y − E(Y | X) + E(Y | X)− g(X)

)2
.

Expanding this and taking expectations (conditioning on X), one finds

E
[
(Y − g(X))2

]
= E

[
(Y − E(Y | X))2

]
+ E

[
(E(Y | X)− g(X))2

]
,
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since E(Y | X)−g(X) is a function of X and E[Y −E(Y | X) | X] = 0. The
second term E[(E(Y | X)− g(X))2] is nonnegative (and is zero if and only if
g(X) = E(Y | X) almost surely). This establishes that E(Y | X) yields the
smallest possible mean squared error. In summary, the CEF E(Y | X) is:

� A natural way to summarize the relationship between X and Y (it tells
us the average Y for each X).

� The unique function of X that best predicts Y in terms of minimum
mean squared error.

Figure 6.1: For any given value of X, the distribution of Y is centered at
E(Y | X). The dots indicate the mean of Y for each given X.

Visualizing the CEF

It may help to visualize what the CEF represents. Imagine we have many ob-
servations of (X, Y ). For any fixed value of X = x, consider the distribution
of the corresponding Y values. The conditional expectation E(Y | X = x)
is the mean of this conditional distribution of Y given X = x. Figure 6.1
illustrates this idea. For several different values of X along the horizontal
axis, the figure depicts the distribution of Y (for example, as a cloud of points
or a histogram) at that X value. Each of these conditional distributions is
centered at its mean E(Y | X = x), indicated by a dot. If we plot the point
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(x,E(Y | X = x)) for every possible x, we trace out a curve: that curve is
the conditional expectation function E(Y | X) itself. Figure 6.2 shows the
CEF connecting the means of the conditional distributions. This curve is
fixed (for a given data-generating process) but generally unknown to us — it
is fundamentally a property of the population. Our goal as analysts is often
to learn or estimate this CEF from data. Figure 6.3 illustrates this goal: we
observe sample data (points) and wish to infer the underlying conditional
expectation function that relates Y to X.

Figure 6.2: The conditional expectation function E(Y | X) (solid line) con-
nects the means of the conditional distributions of Y for each X.

6.1.2 Linear Regression as the Best Linear Predictor
of the CEF

One of the most popular modeling approaches in empirical work is linear
regression. Linear regression provides a simple, transparent, and intuitive
way to summarize relationships in data. Even if our ultimate interest is not
causal inference, linear regression is useful as a descriptive tool. Here we
discuss how linear regression relates to the CEF.

In general, linear regression does not recover the full CEF unless the true
CEF happens to be linear. Instead, what linear regression provides is the
best linear approximation to the CEF. In other words, linear regression
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Figure 6.3: Our aim in regression analysis is often to learn or estimate the
CEF from sample data (points).

finds the linear function of X that comes closest (in a mean-squared sense)
to the actual E(Y | X).

To be concrete, consider a simple linear regression model with one regressor
X:

Y = α + βX + u.

Here (Y,X) are observable random variables, and α and β are fixed (un-
known) parameters. The term u represents everything that affects Y other
than X – it is the part of Y not captured by the linear function α + βX.
Importantly, u may encompass a wide range of factors (other variables, ran-
domness, etc.). We will usually assume E(u) = 0 (if not, the constant term
α can absorb any non-zero mean in u). Our goal in running a regression is
typically to estimate the slope coefficient β, which measures the association
between X and Y in this linear specification.

Now, how is β related to the CEF E(Y | X)? If the true conditional expec-
tation E(Y | X) is exactly a linear function of X, say

E(Y | X) = α∗ + β∗X,

then clearly α∗ + β∗X is the best possible linear predictor of Y given X. In
fact, in that case α∗ = α and β∗ = β in our regression model (the linear
regression would recover the true CEF parameters). But if E(Y | X) is
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nonlinear, no line can perfectly capture it. Nevertheless, there is a linear
function of X that is “best” in terms of approximating E(Y | X) as closely
as possible. This is known as the best linear predictor (BLP) of Y given
X (or equivalently, the best linear approximation to the CEF).

Formally, the BLP (αBLP , βBLP ) is defined as the solution to the following
minimization problem:

(αBLP , βBLP ) = argmin
α,β

E
[
(Y − α− βX)2

]
.

That is, out of all lines α+ βX, we choose the one that minimizes the mean
squared error when predicting Y . This optimization yields normal equations
(first-order conditions):

E[Y − αBLP − βBLPX ] = 0,

E[X(Y − αBLP − βBLPX) ] = 0.

These conditions can be solved for αBLP and βBLP . The first implies E(Y )−
αBLP − βBLPE(X) = 0, so

αBLP = E(Y )− βBLP E(X).

Substituting this into the second condition gives

E[X Y ]−
(
E(Y )− βBLPE(X)

)
E[X]− βBLPE[X2] = 0.

Simplifying,

E[X Y ]− E(X)E(Y )− βBLP
(
E[X2]− [E(X)]2

)
= 0.

Recognizing E[X Y ] − E(X)E(Y ) as Cov(X, Y ) and E[X2] − [E(X)]2 as
Var(X), we find:

βBLP =
Cov(X, Y )

V ar(X)
,

provided V ar(X) > 0. In other words, βBLP is the slope of the linear regres-
sion of Y on X in the population. The intercept then is

αBLP = E(Y )− βBLPE(X).

So the BLP line can be written as

αBLP + βBLPX = E(Y ) + βBLP (X − E(X)).

By construction, this BLP has some important properties:
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1. If the true conditional expectation is linear in X, then the BLP is the
true CEF. In fact, if E(Y | X) = α∗ + β∗X for some constants α∗, β∗,
it must be that αBLP = α∗ and βBLP = β∗. 2

2. αBLP + βBLPX is the minimum-MSE linear predictor of Y given X.
By definition of βBLP , no other linear combination of X yields a lower
mean squared error in predicting Y . In fact, one can show

βBLP (X − E(X)) = Proj(Y | X),

the projection of Y on the space of X (a one-dimensional space in this
simple case).

3. αBLP +βBLPX is the best linear approximation to the actual E(Y | X).
That is, it is the linear function of X that comes closest on average

to E(Y | X). More formally, (αBLP , βBLP ) = argminα,β E
[(
E(Y |

X)− (α + βX)
)2]

. This holds because

E
[
(Y − (α+ βX))2

]
= E

[(
E(Y | X)− (α+ βX)

)2]
+E

[
V ar(Y | X)

]
,

and the second term E[V ar(Y | X)] does not depend on α, β. Thus
minimizing E[(Y − (α + βX))2] is equivalent to minimizing E[(E(Y |
X)−(α+βX))2]. In other words, the BLP line is also the closest linear
fit to the CEF itself.

The phrase “best” above always means in the least-squares sense (minimum
mean squared error). Figure 6.4 provides a visual illustration. If the true
CEF E(Y | X) is non-linear (the curved solid line), the BLP is the straight
dashed line that best approximates that curve. Even though it is not exact,
it captures the overall increasing trend in E(Y | X) in this example.

An important consequence of the normal equations is that the popula-
tion regression residual u = Y − (αBLP + βBLPX) is uncorrelated with

2Proof: In this case, the linear function α∗ + β∗X achieves zero mean squared error
(since Y = α∗ + β∗X + u with E(u | X) = 0), so it must solve the minimization defining
the BLP. More directly, plugging E(Y | X) = α∗ + β∗X into the normal equations above,
we get E[X(Y − α∗ − β∗X)] = E[X(u)] = 0 and E[Y − α∗ − β∗X] = E(u) = 0, which
means α∗ and β∗ satisfy the same equations as αBLP , βBLP . Hence they must be equal.
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Figure 6.4: The population regression line (dashed) provides the best linear
approximation to a possibly nonlinear CEF (solid curve).

X. Indeed, E[Xu] = 0 by construction of βBLP . Also E[u] = 0 since
E(Y ) = αBLP + βBLPE(X). However, one should note that uncorrelated-
ness does not imply full independence; if the true relationship is nonlinear, u
will generally be correlated with nonlinear functions ofX. We can decompose
the regression residual into two parts:

u = Y−(αBLP+βBLPX) = Y − E(Y | X)︸ ︷︷ ︸
pure prediction error

+ E(Y | X)− (αBLP + βBLPX)︸ ︷︷ ︸
linear approximation error

.

The first part Y − E(Y | X) is the irreducible uncertainty in Y given X (it
has zero conditional mean by definition). The second part is the error from
approximating the true CEF with a line; if E(Y | X) is not exactly linear,
this term is generally not zero and, importantly, will generally be correlated
with X in a nonlinear way. Thus, the overall u is uncorrelated with X
(in fact, orthogonal to the space spanned by 1 and X), but not necessarily
independent of X.

Linear regression, therefore, gives us a very useful summary: even if E(Y | X)
is complicated, αBLP +βBLPX tells us the best linear approximation to that
relationship. This is one reason linear regression is so ubiquitous: it provides
a simple linear summary of possibly complex relationships, and it often serves
as a starting point for more complex models.



6.1. THE CEF AND CAUSALITY 11

6.1.3 Association versus Causality

Thus far, we have discussed linear regression as a descriptive tool for sum-
marizing associations between X and Y . We must be careful, however, not
to automatically interpret such associations as causal effects. The linear
regression line Ŷ = αBLP + βBLPX captures how Y varies with X on aver-
age, but this need not reflect the outcome change we would see if we actively
intervened on X.

In general, the coefficient βBLP measures the change in the predicted aver-
age of Y associated with a one-unit difference in X. Specifically, βBLP =
∂
∂X

(
αBLP+βBLPX

)
, so it is the slope of the best-fit line through the E(Y | X)

curve. If the CEF is exactly linear, then βBLP = ∂E(Y |X)
∂X

everywhere, and a
one-unit increase in X is associated with an increase of βBLP in Y on aver-
age. In such a case, if certain conditions hold (to be discussed below), one
could interpret βBLP as the causal effect of X on Y . However, if E(Y | X) is
nonlinear, βBLP is better thought of as an average rate of change or a linear
summary of the effect of X on Y . Even then, association is not causation
without further assumptions.

To draw causal conclusions from a regression, we typically need to assume
that X is exogenous or unconfounded with respect to Y—roughly speak-
ing, X must not be related to other unobserved factors that also affect Y .
The linear regression by itself cannot guarantee causality; it only describes
associations. In a regression like Y = α+βX+u, β captures the approximate
expected difference in Y associated with a one-unit difference in X, but this
difference is not necessarily due to X causing Y . To make a causal interpre-
tation, we require additional assumptions about u and its relationship with
X.

Key Assumptions for Causal Interpretation of OLS

The crucial assumption needed to interpret β causally is that X is unrelated
to the error term u, which contains all other determinants of Y . In our
simple model Y = α + βX + u, the conditions are:

Assumption 1: E(u) = 0. Without loss of generality we can assume the
error has zero mean. If it does not, a constant term in the regression
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can absorb any constant mean in u. This assumption is easily satisfied
by including an intercept (α) in the regression, so it is not restrictive.

Assumption 2: E(u | X) = E(u). This means that the average of the error
term does not depend on X. Given Assumption 1 (and an intercept in
the model), E(u) = 0, so Assumption 2 is equivalent to E(u | X) = 0
for all values of X. This is the conditional mean independence
(CMI) assumption. In words, it says: once we account for X, the
remaining factors u have the same average effect on Y regardless of the
value of X. Another way to put it is that X contains all the systematic
information about Y , and whatever u represents is essentially “noise”
that is unrelated to X on average.

Assumption 2 (CMI) is the formal statement that X is exogenous in this
model. It implies E(u | X = x) = 0 for every x. If this holds, then indeed
we have

E(Y | X = x) = α + βx+ E(u | X = x) = α + βx,

meaning the linear regression function α+ βX coincides with the true CEF.
In that case, a change in X is associated with a change in Y only through
this function, and we can interpret β as the causal effect of X on Y (under
the linearity assumption). If X changes from a to b, the expected change in
Y is:

E(Y | X = b)−E(Y | X = a) = [α+βb+E(u | X = b)]−[α+βa+E(u | X = a)].

Under CMI, E(u | X = b) = E(u | X = a) (both equal E(u), which is zero
if we centered u). Thus the above difference simplifies to β(b − a). This is
precisely what we would think of as the causal effect of changing X by b− a
(assuming linearity). Without CMI, however, the difference in conditional
means includes an extra term E(u | X = b) − E(u | X = a) reflecting how
the unobservables shift when X changes. For example,

E(Y | X = b)− E(Y | X = a) = β(b− a) + [E(u | X = b)− E(u | X = a)] .

Unless E(u | X) is constant, the second term is nonzero, meaning the differ-
ence in Y is not purely β(b − a). In short, the coefficient β represents
the causal effect of X on Y only if E(u | X) is the same for all X
(zero, without loss of generality). This conditional mean independence
assumption is the key to making a causal inference from an OLS regression.
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Correlation vs. Causation: When we run OLS on observational data,
Assumption 2 may or may not hold. If it fails, β will be biased as an estimator
of the causal effect. It is worth noting that:

� CMI (Exogeneity) implies that X is not only uncorrelated with u, but
in fact u has mean zero in every slice of the data defined by X. This
is a strong condition (no dependence of the error on X at all).

� A weaker condition is that X is merely uncorrelated with u: E[X u] =
0. This is enough to ensure the consistency of OLS estimates (as we will
discuss later), though not necessarily unbiasedness in finite samples.
Intuitively, if E[Xu] = 0, then as the sample size grows, the sample
covariance between X and the residual approaches zero, so the OLS
slope converges to the correct value. However, in small samples there
could still be correlation unless the stronger condition E(u | X) =
0 holds exactly. We often talk about regressors being exogenous or
uncorrelated with the error, referring to this moment condition.

In practice, we usually focus on whether an estimator is consistent for the
causal effect (i.e., whether it converges to the right answer as n → ∞). For
consistency we require E[Xu] = 0 (no overall correlation between X and u
in the population). For unbiasedness in finite samples (a stronger criterion),
one typically needs the full E(u | X) = 0. In most cases, it is hard to
guarantee unbiasedness in finite samples because we only have one realization
of X in our data. So econometric analysis emphasizes asymptotic properties
like consistency, which rely on moment conditions such as E[Xu] = 0. In
summary, we assume (or arrange, via research design) that X is as good
as randomly assigned with respect to the unobservables in u. When that
assumption is plausible, we can interpret β as the causal effect of X on Y .

How plausible is exogeneity? In many observational studies, one must
be cautious because there are plenty of reasons why X might fail to satisfy
CMI. The error term u captures “everything else” affecting Y , and it is hard
to believe that X is completely unrelated to all those other factors. In fact,
any of the following situations can violate the E(u | X) = 0 condition:

� Omitted variables: There may be some relevant variables that influ-
ence Y which we have not included in the model, and those omitted
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factors are correlated with X. For example, suppose Y is a student’s
test score and X is the number of hours the student studied. If we omit
the student’s innate ability or prior knowledge (which certainly affects
the score) and if that is correlated with study time, then X will pick up
not just the effect of studying but also the effect of ability differences,
leading to bias.

� Reverse causality (Simultaneity): X might be influenced by Y
(or by factors related to Y ). In this case, X is not a one-way causal
input but part of a simultaneous relationship. For instance, in supply-
and-demand settings, price and quantity are determined together; if we
regress quantity on price, price is not exogenous because it responds to
demand shocks (which are in u).

� Measurement error: If X is measured with error, then the observed
X is Xobs = Xtrue + (error). The measurement error will end up in the
residual u (since the regression uses Xobs in place of true X), and typ-
ically this error is correlated with Xobs, violating exogeneity. Measure-
ment error in the independent variable generally biases OLS estimates
toward zero (this is called attenuation bias).

(In econometrics jargon, any violation of E(u | X) = 0 is often referred to as
an “endogeneity problem”—meaning some endogenous determination or
correlation exists between X and the error term. It is always important to
be specific about what the source of endogeneity is in a given context, rather
than just stating that a model “has endogeneity.” The three broad categories
above cover most common sources of endogeneity: omitted confounders, si-
multaneity, and errors-in-variables.)

Examples illustrating potential violations of CMI: Example 1: CEO
Compensation and Firm Performance. Suppose we regress CEO salary (Y )
on the firm’s return on equity (ROE, denoted X) across companies:

Salaryi = α + βROEi + ui,

where Salary is annual CEO pay (say, in thousands of dollars) and ROE is
a percentage measure of firm profitability. We might find some association
(e.g., β > 0 perhaps). However, is β capturing a causal effect of profitability
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on salary? The error term ui contains all other factors that affect CEO salary
besides ROE. There are many such factors: firm size, industry, CEO experi-
ence, company growth opportunities, etc. If those factors are correlated with
ROE, then E(u | ROE) ̸= 0. For instance, more profitable firms might also
be larger firms, and larger firms tend to pay their CEOs more (even at equal
ROE). If we don’t control for firm size, then ROEi will partially proxy for
size in explaining salary, biasing the estimate. Or consider risk: unprofitable
firms might be facing higher bankruptcy risk, which (by trade-off theory in
corporate finance) would lead to more conservative capital structures and po-
tentially lower executive pay growth, etc. Conversely, firms with low profits
might have less internal cash and thus operate with more debt (pecking or-
der theory), which could also constrain or affect pay in different ways. These
stories indicate likely correlations between ROE and the unobserved factors
in u. Thus the simple regression would not isolate a clean causal effect of
ROE on salary; β would be biased due to omitted variables like firm size or
risk.

Example 2: Capital Structure and Profitability. Consider a regression exam-
ining whether less profitable firms use more debt (higher leverage):

Leveragei = α + βProfitabilityi + ui.

Here Leverage might be a debt-to-asset ratio, and Profitability could be re-
turn on assets, for firm i. Economic theories suggest contradictory influences:
one theory (the trade-off theory) posits that firms with higher bankruptcy
risk (often those with low profits) should borrow less to avoid financial dis-
tress costs, which would suggest a positive relation between profit and lever-
age (low profits → low leverage on average). Another theory (the pecking
order theory) suggests that less profitable firms have less internal funds and
therefore have to borrow more, implying a negative relation (low profits →
high leverage). If we run the regression, ui contains factors like bankruptcy
risk, asset tangibility, growth opportunities, etc. Profitability might be corre-
lated with those: unprofitable firms might indeed have higher risk or different
asset types, so E(u | Profitability) is not constant. Without controlling for
those factors, the coefficient β will not reliably measure a causal effect; it
will reflect a mix of those underlying forces.

These examples show why the conditional mean independence assumption
can fail: X often moves together with other relevant variables. In the salary
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example, ROE alone cannot fully isolate performance effect because it’s en-
tangled with firm characteristics; in the leverage example, profitability cor-
relates with other drivers of leverage decisions.

Can we test the exogeneity assumption? A common question is whether
we can use the regression residuals to diagnose endogeneity. Suppose after
running the OLS regression we obtain fitted values Ŷi = α̂+ β̂Xi and residu-
als ûi = Yi− Ŷi. One might consider checking if these residuals are correlated
with X. Unfortunately, this check is uninformative for exogeneity, because
by construction the OLS residuals in sample are uncorrelated with X. In
fact, the OLS estimation ensures that 1

n

∑
i ûi = 0 and 1

n

∑
i Xiûi = 0. Thus

one will always find that the sample correlation between X and û is zero,
regardless of whether E(Xu) = 0 in the population or not. The OLS resid-
uals also have mean zero in the sample even if E(u) ̸= 0 in reality, because
the intercept takes up any mean. Therefore, one cannot “prove” the CMI
assumption by looking at regression residual diagnostics alone. Exogeneity is
fundamentally an identifying assumption that must be justified by the study
design or substantive knowledge, or tested by external means (for example,
testing whether adding controls or using instrumental variables changes the
estimate).

To summarize this section: linear regression is a powerful tool for summa-
rizing the relationship between X and Y . It gives us the best linear approx-
imation to the true conditional expectation function. However, interpreting
regression coefficients as causal effects requires strong assumptions. The crit-
ical assumption is that the regressor(s) X are not systematically associated
with the unobserved determinants of Y (the error term). Violations of this
assumption (endogeneity) can arise from omitted variables, measurement er-
rors, simultaneity, etc. Much of econometric analysis (and many advanced
techniques) is devoted to mitigating these issues and achieving credible causal
inference.

In the remainder of this chapter, we delve into the mechanics of OLS es-
timation, interpretation of coefficients, and various practical considerations
like rescaling, functional form (log transformations, polynomial terms), and
extension to multiple regressors, all under the lens of the basic linear model.
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6.2 The Linear OLS Model

6.2.1 Ordinary Least Squares Estimation and Inter-
pretation

When we move from the population concepts of the previous section to ac-
tually using data, we rely on the ordinary least squares (OLS) method
to estimate the coefficients α and β. Suppose we have a random sample of
data {(Xi, Yi)}ni=1. The OLS estimates (α̂, β̂) are defined as the values that
minimize the sum of squared residuals:

(α̂, β̂) = argmin
α,β

1

n

n∑
i=1

(
Yi − α− βXi

)2
.

This is simply the sample analogue of the BLP problem discussed earlier.
Solving this minimization yields the well-known formulas:

β̂ =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
=

1
n

∑
iXiYi − X̄Ȳ

1
n

∑
i X

2
i − X̄2

,

α̂ = Ȳ − β̂ X̄,

where X̄ = 1
n

∑
i Xi and Ȳ = 1

n

∑
i Yi are the sample means. The formula

for β̂ can be recognized as the ratio of the sample covariance of X and Y to
the sample variance of X. It is the slope of the sample regression line. The
intercept α̂ ensures that the regression line goes through the point of means
(X̄, Ȳ ).

These OLS estimates α̂, β̂ are our estimates of the population BLP coeffi-
cients αBLP , βBLP . Under appropriate assumptions (particularly that X is
uncorrelated with u), β̂ will converge in probability to βBLP as the sample
size grows. Under the stronger assumption of exogeneity (E(u | X) = 0), β̂
is also an unbiased estimator of the true β.

Interpreting the Coefficients: In the simple regression Y = α+βX+u,
the estimated slope β̂ measures the average change in Y associated with
a one-unit increase in X. More precisely, it is the difference in predicted Y
when X increases by one (holding all else equal, though in a simple regression
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there’s no “else”). The intercept α̂ is the predicted value of Y when X = 0.
Depending on the context, X = 0 may be outside the range of the data or
may not make sense, so the intercept is not always meaningful on its own.
However, it ensures the regression line is correctly positioned vertically.

Let’s illustrate interpretation with a concrete example.

Example (CEO Pay and Performance). Suppose we regress CEO salary on
firm performance (ROE) using data on a set of companies. The model is:

Salaryi = α + β ROEi + ui,

where Salaryi is the annual salary of CEO i (in thousands of dollars) and
ROEi is the return on equity (as a percentage) of firm i. After running OLS,
we obtain:

Ŝalaryi = 963.2 + 18.5 ROEi,

with α̂ = 963.2 and β̂ = 18.5. How do we interpret these numbers?

� Slope (β̂ = 18.5): This means that an increase in ROE by 1 percentage
point is associated with an increase in CEO salary of about 18.5 (in
the units of the dependent variable, which is thousands of dollars).
In other words, if one firm has an ROE that is 1 point higher than
another similar firm, this model predicts its CEO’s salary would be
about $18,500 higher, on average. This is an association, not necessarily
a causal effect (for causality we’d need to believe ROE is exogenous or
control for other factors).

� Intercept (α̂ = 963.2): This suggests that a firm with ROE = 0 (zero
percent return, i.e., breaking even) would pay its CEO about $963.2
(thousand) = $963,200 per year, according to the regression line. This
is an extrapolation because in practice firms with exactly 0% ROE
might be rare, but it gives the baseline level of CEO pay when perfor-
mance is at zero. Often intercepts are not of primary interest unless
X = 0 is a meaningful baseline.

It is worth noting that in such a regression, the exogeneity assumption is
questionable: factors like firm size, industry, CEO tenure, etc., are omitted
and likely correlate with ROE and with salary. Thus, while β̂ = 18.5 tells us
about the pay-performance relationship in the data, we should be cautious in
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calling it a “return to performance” in a causal sense. We would likely need
to control for other variables or use an instrumental variable to get closer to
a causal effect.

Rescaling and Units of Measurement

Regression coefficients depend on the units of measurement of the variables.
Changing the scale (units) of X or Y will change the numerical values of
α̂ and β̂, but it will not change the underlying relationship or the statistical
significance of the coefficient. We often rescale variables for convenience or
interpretability. Let’s explore how rescaling works:

� Scaling the dependent variable Y : If we multiply Y by a constant c
(for example, converting thousands of dollars to actual dollars by taking
c = 1000), then all terms in the regression equation get multiplied by
c. The new model can be written as

cY = (cα) + (cβ)X + (c u).

This implies the new OLS estimates will be α̂new = c α̂ and β̂new = c β̂.
In other words, the intercept and slope are scaled by the same factor
c. The residuals also scale by c. For example, in the CEO salary
regression, if instead of measuring salary in thousands of dollars we
measure it in actual dollars (c = 1000), the regression would become:

Ŝalaryi($) = 963, 200 + 18, 500× ROEi.

The coefficient 18.5 (thousands per %) has become 18, 500 (dollars per
%). The interpretation is unchanged: a 1 percentage point increase
in ROE corresponds to $18,500 higher salary. We just express it in
different units. Note: While coefficients and standard errors scale,
the t-statistics (and p-values) for significance do not change, because
standard errors scale by the same factor, leaving β̂/SE(β̂) invariant.
Thus rescaling Y is essentially a cosmetic change for presentation or
interpretability; it does not affect inference or goodness-of-fit in a sub-
stantive way.

� Scaling the independent variable X: If we change the units of X,
the slope will adjust inversely. Suppose we replace X by kX (for some
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constant k). Then the model becomes

Y = α + β(kX) + u = α + (βk)X + u.

The new slope coefficient is βnew = βk. For example, ifX was originally
measured in percent and we decide to measure it in proportion (where
1 unit = 100%), then k = 0.01 (since Xnew = 0.01 × Xold). The new
slope would be βnew = β × 0.01. However, be careful: if we explicitly
multiply X by 0.01 in the equation, that’s equivalent to dividing the
coefficient by 0.01 (or multiplying it by 100). It’s often easier to think:
a one-unit change in the new X is a 100-unit change in the old X. Thus
the slope must become 100 times larger to reflect that difference. In
our example, originally β̂ = 18.5 (per 1% ROE). If we measure ROE in
decimals, then a 0.01 change in the new X is the same as a 1% change
in the old units. The slope in the new regression would be β̂new ≈ 1850
(per 1.0 change in decimal, i.e., per 100%). In effect, β̂new = β̂old×100.
Again, the interpretation remains consistent: now β̂new = 1850 (in
thousands) means if ROE goes up by 1.00 (i.e., 100 percentage points,
a full change from 0 to 100%), salary increases by 1850 (thousand $).
Equivalently, a 0.01 (1%) increase leads to 18.5 (thousand $) increase,
same as before.

� Scaling both X and Y : If we multiply Y by c and X by k simulta-
neously, the net effect is:

cY = cα +
c

k
β · (kX) + cu.

So α gets multiplied by c, and β gets multiplied by c/k. In other words,

α̂new = c α̂− β̂ c (units shift of X),

β̂new =
c

k
β̂.

(This formula also encompasses the previous cases: setting k = 1 or
c = 1 as needed.)

Why do we bother with rescaling variables? There are a few practical reasons:
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1. Readability of coefficients: If a coefficient is extremely small or ex-
tremely large in absolute value due to units, it can be hard to read
or interpret. For example, suppose Y is measured in dollars and X
in billions of dollars. The slope might come out as something like
0.000000456, which is awkward to discuss. By measuring X in mil-
lions instead, the coefficient becomes 0.456, which is easier to interpret
(“0.456 dollars increase per million dollars of X”). Conversely, if a co-
efficient is huge (e.g., 1234567890), perhaps the units are too small and
should be scaled up. Rescaling by powers of 10 can make coefficients
more modest in magnitude. Importantly, such rescaling will change the
standard error by the same factor, so the t-statistic remains the same.
Thus all hypothesis test conclusions remain identical.

2. Comparing effect sizes (standardization): Often we want to gauge
the relative economic importance of different variables. IfX and Y have
very different variances or units, the raw coefficients don’t directly tell
which has a “bigger effect” in a standardized sense. One way to get
a unit-free comparison is to standardize variables by their standard
deviations. For instance, define Xsd = X/σX and Y sd = Y/σY , where
σX and σY are the sample standard deviations. Regressing Y sd on
Xsd (with an intercept) will produce a slope β̂∗ that indicates how
many standard deviations Y changes, on average, for a one standard
deviation increase in X. This β̂∗ is essentially the correlation between
X and Y (if both are standardized and a constant is included, the
slope in simple regression equals the correlation rXY ). For example,
if we find β̂∗ = 0.25, we interpret that as: a one standard deviation
increase inX is associated with a 0.25 standard deviation increase in Y .
This provides a sense of whether the effect is large or small in practical
terms. A coefficient of 0.25 suggests a moderate effect, whereas 0.01
would be tiny. Standardized coefficients are often used to compare the
relative importance of different predictors in a multiple regression.

Shifting (Adding Constants) to Variables: Another transformation is
adding or subtracting a constant from variables. If we add a constant k to the
independent variable X, the slope coefficient does not change, because the
difference Xi−Xj between any two observations remains the same. However,
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the intercept will adjust. Consider Xnew = X + k. Then

Y = α + β(Xnew − k) + u = (α− βk) + βXnew + u.

So the new intercept αnew = α − βk, while βnew = β. Similarly, if we add a
constant c to Y ,

(Y + c) = (α + c) + βX + u,

so the intercept increases by c (to α + c) and the slope stays β. In short,
shifting the data left/right (in X) or up/down (in Y ) moves the regression
line vertically but does not tilt it.

A common and useful practice is to mean-center certain variables for in-
terpretability. For example, if X has sample mean X̄, you might define
Xc = X− X̄ and regress Y on Xc (including an intercept). The slope will be
the same as regressing on X itself, but the intercept now equals the expected
value of Y when Xc = 0, i.e. when X = X̄. In other words, α̂ from this
regression gives the predicted Y at the mean of X. This can be much more
meaningful than the predicted Y at X = 0 if 0 is outside the range or not
of interest. For instance, if X is years of education (ranging from 8 to 20 in
the sample), X = 0 is not relevant, but X̄ = 14 might correspond to a high
school graduate. Centering would make the intercept the predicted outcome
for an average person, which is interpretable.

We will see later that centering variables is also helpful in models with inter-
action terms or in differences-in-differences, to clarify the interpretation of
coefficients.

6.2.2 Incorporating Nonlinear Relationships in a Lin-
ear Model

The term “linear regression” refers to linearity in parameters, not necessarily
linearity in the raw variables. We can include transformations of variables
(like squares, logs, etc.) as regressors to capture nonlinear relationships,
while still using OLS to estimate the parameters linearly. Two very common
ways to introduce nonlinearity are:

1. Logarithmic transformations of Y or X (or both).
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2. Polynomial terms (e.g., X2, X3, etc.) or other nonlinear functions
(like interactions).

These transformations allow a linear regression to fit a much wider variety of
shapes, while maintaining ease of estimation and interpretation (with some
care).

Why logs? Taking logarithms of variables is a particularly useful trans-
formation in econometrics:

� Elasticities and percent changes: Logarithms convert multiplica-
tive relationships into additive ones. If a 1% change in X consistently
leads to a b% change in Y , then ln(Y ) and ln(X) will have a linear rela-
tionship: specifically b will be the elasticity. Even if the relationship is
not strictly constant elasticity, log transforms often stabilize variance
and linearize growth relationships.

� Reducing skewness and outlier impact: Taking logs of a positive
variable compresses the scale, so very large values are brought closer
to the bulk of the data. This can reduce heteroskedasticity and the
influence of extreme observations.

� Interpretation in percentage terms: Many times we care about
proportional changes rather than absolute changes (e.g., a $1 increase
means different things if base is 10 vs 100, but a 10% increase is com-
parable). Logs allow coefficients to be interpreted in percentage terms,
which are often more intuitive.

When we say “log” in economics or statistics, we typically mean the natural
logarithm (base e). We use notation ln(Y ).

Let’s consider four typical cases of how logs can enter a regression and how
to interpret coefficients in each case:

1. Level-Level: Neither X nor Y is logged. This is the standard linear
model Y = α + βX + u. Interpretation: β is the change in Y for a
one-unit change in X. (“A one unit increase in X is associated with β
units change in Y .”)
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2. Log-Level: The dependent variable is log-transformed, but the inde-
pendent variable is in levels: ln(Y ) = α + βX + u. Here 100 · β is
approximately the percentage change in Y for a one-unit increase in
X. This is because

∆ ln(Y ) = β∆X,

so for a small change ∆X, ∆ ln(Y ) ≈ ln(Y + ∆Y ) − ln(Y ) = ln(1 +
∆Y/Y ) ≈ ∆Y/Y (for small ∆Y ). Thus ∆Y

Y
≈ β∆X. Multiplying by

100,
%∆Y ≈ 100 β∆X,

where ∆X is in the original units. So if β = 0.083 and ∆X = 1, then
∆ ln(Y ) = 0.083 implies roughly an 8.3% increase in Y . This inter-
pretation is exact for infinitesimal changes and a good approximation
for small discrete changes. For larger changes, the approximation error
grows, and one should convert the log difference back to a percentage
(we will address this shortly).

3. Log-Log: Both Y and X are in logs: ln(Y ) = α+β ln(X)+u. In this
case, β itself is the elasticity of Y with respect to X. Specifically,

β =
∂ ln(Y )

∂ ln(X)
=

∂Y/Y

∂X/X
,

so β is the percentage change in Y for a 1% change in X. For example,
if β = 0.5, then a 10% increase in X is associated with a 5% increase
in Y . The relationship assumes constant elasticity: the proportional
effect does not depend on the level of X.

4. Level-Log: Y is in levels and X is in logs: Y = α + β ln(X) + u.
Here, β/100 represents the absolute change in Y for a 1% change in X.
Why? Because

∆Y = β∆ ln(X),

and 100∆ ln(X) is approximately %∆X. So,

∆Y ≈ β
∆X

X
,

thus for a 1% increase in X (∆X
X

= 0.01),

∆Y ≈ β · 0.01.
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Multiply both sides by 100:

100
∆Y

1
≈ β.

This suggests that increasing X by 1% changes Y by β
100

in the same
units Y is measured. For example, if we have

Salary = α + 1812.5 ln(Sales) + u,

where Salary is in $000s and Sales is in $, then β = 1812.5 means
that a 1% increase in Sales is associated with an increase in Salary of
1812.5/100 = 18.125 (in $000s), i.e. $18,125.

These cases are summarized in the following table for clarity:

Model Dep. Var. Ind. Var. Interpretation of β
Level-Level Y X dY = β dX (units of Y per unit of X)

Log-Level ln(Y ) X d(%Y ) = (100 β) dX (percent change in Y per unit of X)

Log-Log ln(Y ) ln(X) d(%Y ) = β d(%X) (percent change in Y per percent change in X)

Level-Log Y ln(X) dY = (β/100) d(%X) (change in Y per 1% change in X)

Table 6.1: Interpretation of β in different log/level specifications. Here dX
denotes a small change in X, and d(%X) denotes a small percentage change
in X.

As a concrete example, consider wages and education. If we believe each
additional year of education yields a constant percentage increase in wages
(rather than a constant dollar increase), a log-linear model is appropriate:

ln(wage) = α + β × education + u.

If β = 0.083, we interpret that as: each additional year of schooling is associ-
ated with approximately an 8.3% increase in hourly wage on average (holding
other factors constant, if it’s multivariate). If a person has 1 more year than
another, we expect their wage to be 8.3% higher. The intercept α in this
model would be ln(wage) for someone with zero years of education (which is
extrapolated and not meaningful except as part of the regression formula).

Another example: regress CEO salary on firm sales, both in log form:

ln(Salary) = α + 0.257 ln(Sales) + u.
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The slope 0.257 is an elasticity: it says a 1% increase in firm sales is associated
with a 0.257% increase in CEO salary. Or a doubling of sales (100% increase)
is associated with roughly a 25.7% increase in salary. This model assumes
the percentage increase in salary from a given percentage increase in sales
is constant regardless of the firm’s size (constant returns-to-scale in that
relationship, so to speak).

And for a level-log case: if

Salary000 = α + 1.8125 ln(Sales),

(where Salary is in thousands), β = 1.8125 indicates that a 1% increase in
Sales is associated with an increase of $1.8125 (in $000, which is $1,812.5) in
the CEO’s salary. A 10% increase in sales would correspond to about $18,125
higher salary.

Rescaling with Logs: Interestingly, if you change the units of a logged
variable, the coefficient is unaffected (except the intercept will absorb a con-
stant shift). For example, if Y is in dollars and you switch to thousands of
dollars, ln(Y000) = ln(Y )− ln(1000) = ln(Y )− 6.9078. The regression

ln(Y000) = α′ + βX + u

is equivalent to
ln(Y ) = (α′ + ln(1000)) + βX + u.

So the slope β remains the same; only the intercept changes by ln(1000).
Similarly, measuring X in different units inside a log has no effect on the
slope. E.g., if X is population, using ln(population) whether population is
counted in thousands or single units just shifts ln(X) by a constant ln(1000),
which again shifts the intercept but not β. This is convenient, because when
dealing with log variables, we need not worry about unit conversions for
interpretation of slopes.

Interpreting Large Changes in Log Models: The approximation 100β
as “percent change” works well for small β or small changes. But if β is
large or the change in X is large, one should interpret carefully. The exact
relationship in a log-linear model ln(Y ) = α + βX is:

ln(Ynew)− ln(Yold) = β(Xnew −Xold).
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Exponentiating both sides:

Ynew

Yold

= exp[β(Xnew −Xold)].

So the exact percentage change in Y when X changes from a to b is:

%∆Y = 100

(
Ynew − Yold

Yold

)
= 100 (exp[β(b− a)]− 1) .

If β(b − a) is small (say 0.05), exp(0.05) ≈ 1.051, and 100(exp(0.05) − 1) ≈
5.1%, close to 100β(b − a) = 5%. But if β(b − a) is large, the difference is
significant. For example, if β = 0.56 and b− a = 1 (a one-unit change in X),
then the approximation suggests 56% increase in Y , but the exact change is
100(e0.56 − 1) ≈ 75%. If β is negative, say −1.39 corresponding to a 75%
decrease, 100β = −139% is nonsensical, whereas 100(e−1.39 − 1) = −75%
is the correct interpretation (a 75% decrease). So, if a log-model implies a
very large percentage change (say more than 10-20%), it is better to compute
the exact effect: for a coefficient β and a change ∆X, the exact predicted
percentage change in Y is 100(eβ∆X − 1)%.

In practice, one can take the coefficient and apply this formula to be precise.
For instance, if β = −0.2 and ∆X = 5, then β∆X = −1. The exact effect is
100(e−1 − 1) ≈ −63%. The approximation would have given −100%, which
overstates the effect (implying an impossible scenario of negative values if
taken literally).

When to Use Log Variables: As a rule of thumb: - Logs are typically
used for variables that are positive and reasonably skewed (e.g., income,
sales, size measures, prices). They are great for modeling proportionate
effects or growth rates. Many economic theories suggest constant elasticity
or multiplicative effects, which logs handle naturally. - Do not log variables
that are already in percentage form (like an unemployment rate of 5% should
not be logged; it’s already a percentage. Logging it would answer a weird
question of percent changes in the percentage). Instead, you can use the
percentage (or a proportion 0.05) directly or consider logistic transforms if
bounded. - Do not log variables that take zero or negative values. ln(0) is
−∞ and undefined in regression. If a variable can be zero (e.g., number of
patents, or debt issuance which might be zero for some firms), one cannot
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straightforwardly log it. Some analysts use ln(1+Y ) to handle zeros (adding
a small constant before logging), but be cautious: ln(1 + Y ) does not have
a clean percentage-change interpretation, especially if Y can be large or if
many Y = 0. For example, ln(1 + Y ) for Y moving from 0 to 1 is a big
jump (0 to ln(2)), which does not correspond to a 100% increase or anything
intuitive. - For variables measured in years (like age, education in years) or
other inherently linear scales, logs are usually not used. An additional year of
education is easier to interpret than a percentage change in education (what
is a 10% increase in years of education? 1.2 years? Not so straightforward
meaning). - If you have a lot of zeros (e.g., many people have zero income
from a particular source), an alternative to ln(1+Y ) is to use models designed
for nonnegative data (like a Poisson regression or a tobit model if censoring is
an issue). There is recent research (e.g., Cohn, Liu, and Wardlaw (2022) in
JFE ) explaining problems with ln(1+Y ) and recommending alternatives such
as Poisson pseudo-maximum-likelihood regression, which effectively models
E(Y | X) in a multiplicative form and can handle zeros properly. In short:
avoid ln(1 + Y ) if possible; consider an appropriate model if Y has many
zeros.

Example: Percentage Point vs. Percent Change. As a tangential
clarification: if unemployment falls from 10% to 9%, it has decreased by 1
percentage point, which is a 10% relative decrease. It’s important to distin-
guish percentage points (absolute difference in a rate) from percent change
(relative difference). A drop from 10% to 8% is a 2 percentage point drop,
which is a 20% decrease relative to the initial level. In discussing regression
results, be precise: if X is a percentage (say, interest rate) and β = −0.5
(with Y not logged), one might say “a 1 percentage point increase in in-
terest rate is associated with a 0.5 unit decrease in Y .” Only use “percent
increase/decrease” when dealing with log specifications or when explicitly
talking about relative change.

Polynomial Terms (Quadratics): Another way to model nonlinearity is
to include X2 (and higher powers) as regressors. For example:

Y = α + β1X + β2X
2 + u.
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This quadratic model allows the effect of X on Y to change with the level of
X. The marginal effect of X is now:

∂Y

∂X
= β1 + 2β2X.

This means the impact of a one-unit increase in X depends on the current
value of X. If β2 is positive, the effect grows with X (convex relationship);
if β2 is negative, the effect diminishes with X (concave relationship).

When interpreting such a model: - If β2 ̸= 0, the effect of X is not constant.
We often evaluate the effect at some meaningful value of X (e.g., at the mean
of X, or at specific percentile values). For instance, “At the mean value of
X (which is 5), a one-unit increase in X is associated with a β1 + 2β2(5)
increase in Y .” - Quadratic models can exhibit a turning point. If β2 < 0 (an
inverted-U shape), the turning point (maximum) occurs at X = −β1/(2β2).
If β2 > 0 (U-shape), the turning point (minimum) is at the same formula. It’s
important to check if this turning point lies within the range of your data; if it
doesn’t, the model is suggesting a curvature that goes beyond your observed
data (which might not be relevant or might indicate the quadratic term is
just capturing a gentle bend rather than a full turn within the sample).
- Example: Suppose β̂1 = 10 and β̂2 = −1 in a model of Y on X and
X2. This implies a concave relationship. The turning point would be at
X = −10/(2 ·−1) = 5. That’s where Y is maximized. If your X data ranges
from, say, 0 to 10, then X = 5 is squarely in the range, and it indicates that
Y increases with X up to 5 and then decreases. If your data’s range was
6 to 10, then the estimated parabola has a peak at 5 which is outside the
range—within the observed range (6 to 10) the relationship would actually
be monotonically decreasing. In such a case, including the quadratic might
still help fit curvature, but one should be cautious in interpreting a turning
point that lies outside the data. - Always graph or think about the shape
implied by a polynomial. Sometimes a very large or very small turning point
indicates the quadratic term is just adding a slight curve. If the turning point
is extreme (e.g., negative or a huge number not in data range), it could mean
the quadratic term is not really needed (the relationship might be effectively
linear in the observed range) or it could mean one should consider a different
functional form if theory suggests a saturating or asymptotic behavior.

In summary, polynomial terms allow flexible curvature, but interpretability
becomes more complex since effects depend on levels. One strategy is to
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report predicted effects at a few values of X or to compute where the effect
is zero (if ever). We will later see that polynomials of higher order can be used
for even more flexibility (though one must avoid extrapolating polynomials
too far beyond data as they can behave wildly).

6.2.3 Multiple Regression: Adding More Regressors

So far we have focused on one independent variable X. Rarely in practice
do we have a situation where only one factor matters. Most analyses involve
multiple regressors. The multiple linear regression model can be written as:

Y = α + β1X1 + β2X2 + · · ·+ βkXk + u,

for k regressors (not counting the intercept). We can also use vector/matrix
notation: Y = α+X′β + u, where X = (X1, . . . , Xk)

′ and β = (β1, . . . , βk)
′.

The interpretation of coefficients in multiple regression is ceteris paribus—holding
all other included variables constant: - βj is the partial effect of Xj on Y ,
i.e., the change in Y associated with a one-unit increase in Xj, keeping
X1, . . . , Xj−1, Xj+1, . . . , Xk fixed. - The intercept α is the expected value
of Y when all X1, . . . , Xk = 0 (if such a scenario is reasonable). If zero is not
in the support for some variables or is not meaningful, the intercept is just a
baseline that ensures the line passes through the means or adjusts for scale
shifts. - The key assumption for causal interpretation generalizes: we need
E(u | X1, X2, . . . , Xk) = 0. That is, after controlling for all k regressors, any
remaining factors in u are not systematically related to the included X’s. In
practice, including more variables in X can reduce omitted variable bias by
absorbing some of the variation that could confound the relationship of inter-
est. However, we must also be careful about multicollinearity and overfitting
with many regressors.

Estimation: OLS extends naturally. The coefficients are chosen to min-
imize

∑
i(Yi − α − β1X1i − · · · − βkXki)

2. The normal equations lead to

matrix formulas: β̂ = (X ′X)−1X ′Y , where X is the n× (k + 1) design ma-
trix including a column of ones for the intercept and Y is the n × 1 vector
of outcomes. The solution exists if the X matrix has full column rank (no
exact collinearity among regressors).
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Interpreting Coefficients: Let’s use an example.

Example: Predicting College GPA. Suppose we regress college GPA (Y ) on
high school GPA (X1) and ACT score (X2) for a sample of 141 students:

̂College GPA = 1.29 + 0.453 HS GPA + 0.0094 ACT.

Here, high school GPA is on a 4-point scale, ACT is on (roughly) a 0-36 scale,
and college GPA is also on a 4-point scale. - β̂1 = 0.453 is the coefficient
on high school GPA. This means that, holding ACT constant, a one-point
higher high school GPA is associated with a 0.453 higher college GPA on
average. In other words, if Student A had a high school GPA one point
higher than Student B (e.g., 3.7 vs 2.7), and they had the same ACT score,
we predict Student A’s college GPA to be about 0.453 points higher than
B’s. This is a partial effect of high school GPA, net of ACT. - β̂2 = 0.0094
is the coefficient on ACT. It suggests that, holding HS GPA constant, each
additional point on the ACT is associated with only a 0.0094 increase in
college GPA. That is a very small effect: even a 10-point increase in ACT
(which is a big difference in scores) corresponds to 0.094 higher college GPA.
This might indicate that after accounting for high school GPA, ACT doesn’t
have much predictive power for college grades (or that the scaling is such
that 1 ACT point is minor). - The intercept 1.29 would be the predicted
college GPA for a student with HS GPA = 0 and ACT = 0. Of course,
that’s outside the plausible range (nobody has a 0 HS GPA if they made it
to college, and ACT 0 is meaningless because min ACT is typically around
11 or so for someone who took it). So the intercept here is not something we
interpret literally; it’s just anchoring the plane. We might consider centering
the predictors to give the intercept meaning (e.g., mean HS GPA and mean
ACT yields intercept = mean college GPA, likely around 2.9 or so).

We can also consider combined changes: If a student increased her HS GPA
by 1 point and her ACT by 1 point simultaneously, the predicted increase
in college GPA would be 0.453(1) + 0.0094(1) = 0.4624. If HS GPA rose
by 2 and ACT by 10 (say comparing a student with 2.0 GPA/20 ACT to
one with 4.0 GPA/30 ACT), the difference in predicted college GPA would
be 0.453(2) + 0.0094(10) ≈ 0.906 + 0.094 = 1.0 point. That is, the second
student would be predicted to have a college GPA one point higher than
the first, which is a substantial difference on a 4-point scale. Notice how
we just sum the contributions of each variable’s change, reflecting the linear
additivity of effects in this model.
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Fitted Values and Residuals in Multiple Regression: After estimat-
ing a multiple regression, each observation has a fitted value Ŷi = α̂+ β̂1X1i+
· · · + β̂kXki and a residual ûi = Yi − Ŷi. Several useful properties hold (as-
suming an intercept is included):

� The sample average of the residuals is zero: 1
n

∑n
i=1 ûi = 0. Conse-

quently, the average of the fitted values equals the average of the ac-
tual Y : 1

n

∑
i Ŷi = Ȳ . The regression line (or hyperplane) thus passes

through the point (X̄1, X̄2, . . . , X̄k, Ȳ ).

� Each independent variable is uncorrelated with the residuals: 1
n

∑
iXji ûi =

0 for each j = 1, . . . , k. This is essentially the sample version of the
normal equations X ′û = 0. It means in the sample, the residual has
zero sample covariance with each regressor.

Because of these properties, one should not try to “test” the model by re-
gressing residuals on included X’s: you will find no linear relationship by
construction. (However, plotting residuals against X can still reveal if a
nonlinear pattern remains or if there is heteroskedasticity, etc.)

Partial Regression (Frisch-Waugh-Lovell) Interpretation: Multiple
regression coefficients can be understood as reflecting the unique contribution
of each variable after “netting out” the influence of the others. A fundamental
result, the Frisch-Waugh-Lovell (FWL) theorem, states that one can
compute β̂1 (say) in a multiple regression Y on X1, X2, . . . , Xk by a three-
step procedure:

1. Regress Y on all the other regressors X2, . . . , Xk (excluding X1). Ob-
tain the residuals Ỹi from this regression. These residuals represent the
part of Y that is orthogonal to X2, . . . , Xk – effectively, Y with the
linear effects of X2, . . . , Xk removed.

2. Regress X1 on X2, . . . , Xk as well, and get residuals X̃1i. These resid-
uals are the portion of X1 not explained by X2, . . . , Xk – the variation
in X1 that is “left over” after accounting for those other factors.

3. Regress Ỹ on X̃1 (simple linear regression with no additional controls).
The slope coefficient in this regression will equal β̂1 from the full multi-
ple regression of Y on all X’s. Essentially, this final regression isolates
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the relationship between Y and X1 using only the variation that is
unique to X1 (unrelated to X2, . . . , Xk).

This result highlights an important insight: β̂1 measures the association be-
tween X1 and Y after removing any linear association of X1 (and Y ) with the
other covariates. That’s why we call β1 a partial effect or partial regression
coefficient.

To understand this concretely, suppose a researcher wanted the effect of X
on Y controlling for Z. A wrong approach some might take is: “First remove
the effect of Z on Y by regressing Y on Z and taking residuals, then regress
those residuals on X.” This by itself is incomplete. According to FWL, one
must also remove the effect of Z from X (get residuals of X on Z) and then
do the second regression. If you fail to partial out Z from X as well, the
coefficient you get will not generally equal the multiple regression coefficient
from including Z. The omitted step means some of the variation in X that
is correlated with Z could be erroneously attributed.

In practical terms, what FWL assures us is that the OLS coefficient on X1

in a multivariate regression is capturing exactly the relationship between Y
and the part of X1 that is uncorrelated with the other covariates. So multi-
ple regression correctly accounts for the overlapping influences of correlated
regressors.

Implication: If you ever difference out or residualize data to control for some-
thing (like “industry-adjusted” performance = performance - industry aver-
age), be careful if you later relate that to another variable. If the other
variable also has industry patterns, you should similarly adjust it. Other-
wise, you have not truly controlled for industry effects in the relationship
between the two. This is a common mistake: for example, subtracting out
industry means from Y but not from X and then regressing the adjusted
Y on X will generally not recover the coefficient you’d get if you included
industry dummies in a full regression of Y on X. You must adjust both or,
equivalently, just include the controls in a single regression.
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6.2.4 Goodness-of-Fit: R2 and Adjusted R2

After estimating a regression, one might ask how well the model explains the
data. The standard measure of goodness-of-fit in OLS is the R2, or coefficient
of determination. It is defined based on the sum of squares decomposition:

SST = SSE + SSR.

Here: - SST = Total Sum of Squares =
∑n

i=1(Yi − Ȳ )2. This measures the
total variation in Y around its mean (how spread out the Y values are). -
SSE = Explained Sum of Squares =

∑n
i=1(Ŷi − Ȳ )2. This is the variation

in the fitted values — how much of the variance in Y is captured by the
model’s linear prediction. - SSR = Residual (or Error) Sum of Squares =∑n

i=1 û
2
i =

∑
(Yi − Ŷi)

2. This is the variation in Y that remains unexplained
by the model.

The OLS normal equations ensure that SSE+SSR = SST (when an intercept
is included). This is analogous to the formula in ANOVA: Total variability
= Explained variability + Unexplained variability.

We then define:

R2 =
SSE

SST
= 1− SSR

SST
.

R2 is the fraction of the total variance in Y that is explained by the regression
model. Its value ranges from 0 to 1 (for a model with intercept): - R2 = 0
means the model explains none of the variability in Y (the best you can do is
just use Ȳ ; indeed β̂ = 0 would yield that). - R2 = 1 means a perfect fit: all
points lie exactly on the regression hyperplane (ûi = 0 for all i). - Typically,
R2 lies somewhere in between. It’s also true that R2 is the square of the
sample correlation between Y and Ŷ . In simple regression (k = 1), R2 is just
the square of the correlation between X and Y . In multiple regression, one
can’t reduce it to a simple pairwise correlation, but it still gives overall fit.

One caution: R2 always weakly increases as you add more regressors. If you
include an additional variable (even irrelevant ones), SSE cannot decrease (it
may stay the same if the variable adds no explanatory power, but usually
sample R2 will go up at least a tiny bit due to sample peculiarities). There-
fore, a high R2 doesn’t necessarily mean a good model in terms of causal
insight or parsimony; it could mean you’ve thrown many predictors at it,
some possibly spurious.



6.2. THE LINEAR OLS MODEL 35

Because of this, sometimes we look at the Adjusted R2:

R̄2 = 1− (1−R2)
n− 1

n− k − 1
,

where k is the number of regressors (excluding the intercept) and n is sample
size. Adjusted R2 imposes a penalty for each additional regressor. If a new
variable improves R2 only slightly (less than what would be expected by
chance given one degree of freedom), R̄2 might actually drop. It is possible
for R̄2 to go down when adding a variable, whereas R2 cannot.

Adjusted R2 is often used to compare models with different numbers of pre-
dictors. However, it’s not a strict test; it’s just heuristic. (More formal model
comparison can use F-tests or information criteria like AIC/BIC.)

Interpreting the magnitude of R2: R2 tells us how much variance is
explained, but the “importance” of this depends on context. For example:
- In a physics experiment, one might expect an R2 of 0.9 or above if the
model is correct (since physical laws often yield tight relationships). - In
cross-sectional microeconomic data, an R2 of 0.1 (10% explained variance)
is not uncommon or necessarily troubling, because human behavior has a lot
of idiosyncratic variation. A seemingly low R2 does not preclude the key
coefficient β from being statistically significant or economically important. -
If your goal is accurate prediction, you might want a high R2. If your goal
is estimating a causal effect reliably, R2 is secondary; you can have a low R2

but still estimate a coefficient precisely if you have enough data and low noise
on that dimension. Conversely, you could have a high R2 but if it’s mostly
due to some other variables and your key X is barely varying independently,
you might estimate β poorly.

So, a regression with R2 = 0.014 (1.4%) means 98.6% of the variance in Y is
left unexplained by the model. Is that “bad”? Not necessarily. It depends
on what we’re trying to do. If X is a policy variable that we suspect only
has a modest effect on Y but is important to identify, an R2 of 0.014 could
be expected, and if we have enough data, we might still get a significant
estimate of β. The low R2 just indicates that Y has a lot of other stuff
going on (which could be unobserved noise or many small factors). A classic
example: in individual-level studies, variables like education, experience, etc.,
might only explain a fraction of the variation in earnings because there are
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many unmeasured factors (skill, motivation, luck), but that doesn’t mean
those variables aren’t important or that the regression is useless.

On the flip side, a very high R2 could be suspicious if achieved too easily (like
overfitting with many polynomial terms or including outcomes in predictors,
etc.). One should use domain knowledge to judge if an R2 is reasonable.

6.2.5 Unbiasedness and Consistency of OLS

When can we trust OLS estimates as reflecting true relationships? Two key
theoretical properties are unbiasedness and consistency.

Unbiasedness: An estimator θ̂ is unbiased for θ if E[θ̂] = θ. In our context,
β̂j is unbiased for the true coefficient βj if the expectation of the sampling

distribution of β̂j equals βj.

For OLS in the multiple regression model, under the following assumptions,
the OLS estimates are unbiased:

1. Linear in parameters: The model indeed is Y = α+β1X1+· · ·+βkXk+u
for some true parameters (α, β1, . . . , βk), and we have an additive u.

2. Random sampling: We have a random sample of (Y,X1, . . . , Xk) from
the population (so that the data are representative and the error term
properties carry over to sample moments).

3. No perfect multicollinearity: The independent variables are not exact
linear combinations of each other (in the population and thus in the
sample).

4. Zero conditional mean (Exogeneity): E(u | X1, . . . , Xk) = 0. This
is essentially the same CMI assumption generalized to the vector of
regressors. It implies each Xj is uncorrelated with u (and actually any
function of X is uncorrelated with u).

If these hold, then E(β̂j) = βj for each j. The proof, in brief, is that

β̂ = (X ′X)−1X ′Y = (X ′X)−1X ′(Xβ + u) = β + (X ′X)−1X ′u. Taking



6.2. THE LINEAR OLS MODEL 37

expectations conditional on X (which is treated as non-random in deriving
expectation, or using law of iterated expectations):

E[β̂ | X] = β + (X ′X)−1X ′E[u | X] = β + (X ′X)−1X ′ · 0 = β.

Thus E[β̂] = β. So OLS hits the mark on average.

However, unbiasedness is a finite-sample concept and depends on strict con-
ditions. In many cases, especially with observational data, we worry that
E(u | X) ̸= 0. Then OLS is biased. But even if OLS is biased in small sam-
ples, it might still become accurate as n grows large under weaker conditions.
That’s consistency.

Consistency: An estimator θ̂n for θ is consistent if θ̂n
p−→ θ as n → ∞.

That means in large samples, the estimator will be arbitrarily close to the
true value with high probability.

For OLS, a sufficient condition for consistency is:

plimn→∞
1

n
X ′u = 0,

in addition to technical regularity conditions (like the law of large numbers
applying, which requires e.g. finite second moments and independent obser-
vations, etc.) and the regressors having full rank. The condition 1

n
X ′u → 0

essentially means E[Xju] = 0 for each regressor j. In other words, we need
no correlation between X and u in the long run. This is weaker than
E(u | X) = 0. It allows for some forms of mild dependence as long as the
covariance is zero.

For example, E(u | X) might not equal a constant, but it could vary in
a way that still yields zero overall covariance. A pathological scenario: if
u = Xϵ where ϵ is a mean-zero shock uncorrelated with X, then E(u | X) =
XE(ϵ) = 0 actually in that case, but something more tricky: if u has some
distribution that’s symmetric around 0 for each X but maybe not zero at
each X, E(u | X) might be zero anyway. Actually, if E(u | X) = 0 is needed
for unbiasedness, for consistency we just need E(Xu) = 0. If Cov(X, u) = 0,
as sample size increases β̂ will converge to the true β because the bias term
involves E(Xu). The formula we derived: β̂ = β + (X ′X)−1X ′u. When n
is large, (X ′X)/n ≈ E(XiX

′
i) and (X ′u)/n ≈ E(Xiui). If the latter is zero,

then β̂ → β in probability.
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Thus the key for consistency is zero correlation between each regressor
and the error term. This condition is often referred to as the regressors
being exogenous (in a moment sense).

In practice, we emphasize consistency more than unbiasedness because: -
Unbiasedness is nice but can be fragile (one small violation and it’s gone). -
We often rely on large samples; as long as the estimator is consistent, we can
get close to the truth with enough data even if it’s slightly biased in small
samples. - Some estimators are biased in small samples but consistent (e.g.,
certain nonlinear estimators or ridge regression etc. can be biased but aim
to reduce variance).

To reiterate: ifX and u are uncorrelated (zero covariance) but E(u | X) is not
zero, OLS can be consistent but biased in finite samples. One classic scenario
is measurement error in Y : Y obs = Y true+noise. The noise might have mean
0 and be independent of X (so E(u | X) = 0 in fact, giving unbiasedness in
that case). But if we had some slight dependence that averages out, that’s
more unusual. More common is the reverse: E(u | X) = 0 might fail but
E(Xu) = 0 holds? Possibly if the distribution of u changes with X but in
a symmetric way around 0 such that overall correlation cancels out. It’s a
technical distinction.

Finally, note that even if OLS is unbiased/consistent for the best linear ap-
proximation of E(Y | X), that still doesn’t guarantee β is the true causal
effect unless the exogeneity assumption holds. Bias and inconsistency as de-
fined here mean with respect to the “true parameter” of the regression model.
If the regression model itself is misspecified (due to omitted variables, etc.), β
might consistently estimate a wrong quantity (like the association including
bias).

Summary

Let’s recap the major points covered:

-CEF and Best Prediction: The conditional expectation functionm(x) =
E(Y | X = x) is central to thinking about Y vs X. It gives the true average
relationship. It also minimizes mean squared error of prediction. Linear
regression does not directly give E(Y | X) unless the latter is already linear.
Instead, OLS yields the best linear predictor (BLP) of Y given X, i.e., the
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closest linear approximation to the CEF.

- Causality vs Association: For the regression slope to have a causal in-
terpretation, we require that the error term u is (on average) unrelated to
X (exogeneity). If E(u | X) = 0, then the regression line coincides with
the causal CEF. Otherwise, regression may pick up spurious associations
(endogeneity issues). We discussed common sources of endogeneity: omit-
ted confounders, simultaneity, and measurement error. In practice, a lot of
econometric work is about finding ways to ensure or approximate the condi-
tion E(u | X) = 0 (through study design, instruments, fixed effects, etc.).

- Scaling and shifting variables: We can change units or origin of variables
for convenience without affecting the substantive relationship. Scaling Y by
c scales all coefficients by c. Scaling Xj by k scales βj by 1/k. Shifting X
(adding a constant) leaves slopes unchanged, only intercept shifts. A useful
trick is centering variables (especially when interaction terms or nonlinearities
are present) to make the intercept or main effects meaningful (like the effect
at average levels). Also, standardizing variables (dividing by std. dev.) can
help compare effect sizes in standard deviation terms.

- Log transformations: Taking logs of Y and/or X allows interpretation
in terms of percentage changes and elasticities. We have to be careful to
interpret correctly (especially for large changes, use the exact formula). Logs
can handle wide distributions and often linearize growth relationships. But
avoid logs when data can be zero/negative; consider alternative approaches
for zeros.

- Nonlinear relationships: We can accommodate them by including trans-
formed regressors (squares, cubes, interactions, piecewise linear terms, etc.).
The model remains linear in parameters, so OLS still applies. For example,
a quadratic term allows diminishing or increasing effects. The interpreta-
tion becomes: β1 + 2β2X is the marginal effect at a given X. Always check
whether the implied curve makes sense in the observed range.

- Multiple regression: Introduce more variables X2, . . . , Xk to control for
other factors. Coefficients become partial derivatives (ceteris paribus effects).
The hope is that controlling for enough confounders moves us closer to an
unbiased estimate of the variable of interest. We saw that OLS will en-
sure residuals have zero correlation with each included regressor (in sample).
We explained how partial regression works: the coefficient on X1 is really
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measuring the correlation between Y and X1 after both have had the linear
influence of other regressors removed.

- R2 and fit: R2 tells us the proportion of variance explained by the model.
While an important descriptive statistic, a low R2 does not invalidate a
model if our purpose is estimation rather than prediction. Adjusted R2 is a
variant that accounts for model complexity. But neither R2 nor R̄2 speaks
to causality or correctness of specification; they only gauge in-sample fit.

- Unbiasedness and consistency: Under assumptions including exogene-
ity, OLS is an unbiased estimator of the true coefficients. Even if strict
exogeneity fails, as long as regressors are uncorrelated with the error in ex-
pectation, OLS is consistent (with enough data, it converges to the best
linear approximation parameters). However, if X is correlated with u, OLS
will be biased and generally inconsistent for the causal effect. In such cases,
other methods (instrumental variables, etc.) are needed, which are topics for
subsequent chapters.

In conclusion, linear regression is a powerful and flexible tool that serves
as a foundation for more advanced econometric techniques. It provides an
easily interpretable summary of relationships and, under the right conditions,
allows us to make causal inferences. The challenge in applied work is ensuring
those right conditions (or approximations to them) hold, and being aware
of the limitations of linear models when relationships are complex or data
distributions violate assumptions. We will build on these concepts as we
move into methods for dealing with endogeneity and enriching the model
structure.
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