

Problem Set: Linear Regression 2

Problem 1. Consider the model that satisfies the classical linear model assumptions (linear in parameters, random sampling, no perfect collinearity, zero conditional mean, and homoskedasticity):

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i,$$

and the null $H_0 : \beta_1 - 3\beta_2 = 1$.

1. Let $\hat{\beta}_1, \hat{\beta}_2$ be the OLS estimates. Derive

$$Var(\hat{\beta}_1 - 3\hat{\beta}_2)$$

in terms of $Var(\hat{\beta}_1)$, $Var(\hat{\beta}_2)$, and $Cov(\hat{\beta}_1, \hat{\beta}_2)$. Hence give $SE(\hat{\beta}_1 - 3\hat{\beta}_2)$.

2. Write the t-statistic for testing H_0 and state the reference distribution (degrees of freedom).
3. Define $u_1 \equiv \beta_1 - 3\beta_2$ and $\hat{u}_1 \equiv \hat{\beta}_1 - 3\hat{\beta}_2$. Write a regression equation involving β_0 , u_1 , β_2 , and β_3 that allows you to directly obtain \hat{u}_1 and its standard error.

Problem 2. Regression analysis can be used to test whether the market efficiently uses information in valuing stocks. Let $return$ be a firm's 4-year stock return. The efficient markets hypothesis implies $return$ should not be systematically related to variables known in the beginning of the 4-year period: debt-to-capital ratio (dkr), earnings per share (eps), net income ($netinc$), and CEO pay ($salary$). To test this hypothesis, we estimated the following regression equation (standard errors in parentheses):

$$\widehat{return} = -14.37 + 0.321 dkr + 0.043 eps - 0.0051 netinc + 0.0035 salary$$

$$(6.89) \quad (0.201) \quad (0.078) \quad (0.0047) \quad (0.0022)$$

$$n = 142, R^2 = 0.0395$$

1. Test whether dkr , eps , $netinc$, $salary$ are jointly significant at the 5% level (report the F-test). Are any coefficients individually significant at 5%?
2. Refit with logs for $netinc$ and $salary$:

$$\widehat{return} = -36.30 + 0.327 dkr + 0.069 eps - 4.74 \ln(netinc) + 7.24 \ln(salary)$$

$$(39.37) \quad (0.203) \quad (0.080) \quad (3.39) \quad (6.31)$$

$$n = 142, R^2 = 0.0330.$$

Do your conclusions about joint/individual significance change?

3. Some firms have $dkr = 0$ and negative eps . Should $\log(dkr)$ or $\log(eps)$ be used to improve fit? Briefly justify.

4. Overall, is the evidence for predictability of returns by 1990 information strong or weak?

Problem 3. We have the estimated regression:

$$\widehat{rdintens} = 2.613 + 0.0003 \text{ sales} - 0.000000007 \text{ sales}^2, \quad n = 32, R^2 = 0.1484,$$

where $rdintens$ is $R&D$ spending (as percent of sales) and $sales$ is firm sales (millions \$)

1. At what $sales$ level does the marginal effect of $sales$ on $rdintens$ become negative?
2. Would you retain the quadratic term in the model? Justify your answer.
3. Define $salesbil \equiv sales/1000$ (billions of dollars). Rewrite the estimated equation using $salesbil$ and $salesbil^2$ as regressors, reporting the transformed coefficients, standard errors, and the same R^2 . Hint: $salesbil^2 = sales^2/1000^2$.
4. For reporting, which specification do you prefer—the original in dollars or the rescaled in billions—and why?

Problem 4. Use the data set [WAGE1](#) (description).

1. Estimate by OLS:

$$\log(wage) = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{exper} + \beta_3 \text{exper}^2 + u,$$

and report the results in the usual format (point estimates, standard errors, n , R^2).

2. Test whether exper^2 is statistically significant at the 1% level (i.e., test $H_0 : \beta_3 = 0$).
3. Using the semi-elasticity approximation

$$\% \Delta \text{wage} \approx 100(\hat{\beta}_2 + 2\hat{\beta}_3 \text{exper}) \Delta \text{exper},$$

compute the approximate return to the fifth year of experience and to the twentieth year (exper is measured in years).

4. At what value exper^* does an additional year of experience begin to reduce predicted $\log(wage)$? How many workers in the sample have $\text{exper} > \text{exper}^*$?

Problem 5. An OLS regression explaining CEO salary yields

$$\widehat{\log(\text{salary})} = 4.59 + 0.257 \log(\text{sales}) + 0.011 \text{roe} + 0.158 \text{finance} + 0.181 \text{consprod} + 0.283 \text{utility},$$

with $n = 209$ and $R^2 = 0.357$, where *finance*, *consprod*, and *utility* are binary variables indicating the financial, consumer products, and utilities industries. The omitted industry is transportation. The data are from *CEOSAL1*.

1. Holding *sales* and *roe* fixed, compute the approximate percentage difference in expected salary between the *utility* and *transportation* industries. Is this difference statistically significant at the 1% level?
2. Using the exact log-level transformation, obtain the exact percentage difference for *utility* versus *transportation*, and compare it with part (i).
3. What is the approximate percentage difference between the *consumer products* and *finance* industries? Write an equation that would allow you to test whether the difference is statistically significant.

Problem 6. Let $d \in \{0, 1\}$ indicate treatment and let the potential outcomes be $y(0)$ and $y(1)$. Assume complete random assignment: $d \perp\!\!\!\perp \{y(0), y(1)\}$. Define

$$m_0 \equiv \mathbb{E}[y(0)], \quad m_1 \equiv \mathbb{E}[y(1)], \quad \sigma_0^2 \equiv \text{Var}[y(0)], \quad \sigma_1^2 \equiv \text{Var}[y(1)].$$

1. Define the observed outcome $y \equiv (1 - d)y(0) + dy(1)$. Let $\tau \equiv m_1 - m_0$ be the average treatment effect. Show that

$$y = m_0 + \tau d + (1 - d)v(0) + dv(1),$$

where $v(0) \equiv y(0) - m_0$ and $v(1) \equiv y(1) - m_1$.

2. Let $u \equiv (1 - d)v(0) + dv(1)$ be the error term in

$$y = m_0 + \tau d + u.$$

Show that $\mathbb{E}[u | d] = 0$. What does this imply about the unbiasedness and consistency of the OLS estimator of τ from the simple regression y_i on d_i in a random sample of size n ? What happens as $n \rightarrow \infty$?

3. Show that

$$\text{Var}(u | d) = \mathbb{E}[u^2 | d] = (1 - d)\sigma_0^2 + d\sigma_1^2.$$

Is the error variance generally heteroskedastic?

4. If you suspect $\sigma_1^2 \neq \sigma_0^2$ and $\hat{\tau}$ is the OLS estimator, how would you obtain a valid standard error for $\hat{\tau}$?
5. After obtaining the OLS residuals \hat{u}_i for $i = 1, \dots, n$, propose a regression that allows consistent estimation of σ_0^2 and σ_1^2 . [Hint: First square the residuals.]