

Problem Set: Linear Regression

Problem 1. *The following equation relates housing price (price) to the distance from a recently built garbage incinerator (dist):*

$$\widehat{\ln(\text{price})} = 9.40 + 0.312 \ln(\text{dist}) \quad n = 30, R^2 = 0.162$$

1. Interpret the coefficient on $\ln(\text{dist})$. Is the sign of this estimate what you expect it to be?
2. Do you think simple regression provides an unbiased estimator of the *ceteris paribus* elasticity of price with respect to dist ?
3. What other factors about a house affect its price? Might these be correlated with distance from the incinerator?

Problem 2. Consider

$$\text{sav} = \beta_0 + \beta_1 \text{inc} + u, \quad u = \sqrt{\text{inc}} \cdot e,$$

with $E[e] = 0$, $\text{Var}(e) = \sigma_e^2$, and $e \perp \text{inc}$.

1. Verify the zero conditional mean: $E[u \mid \text{inc}] = 0$.
2. Show $\text{Var}(u \mid \text{inc}) = \text{inc} \cdot \sigma_e^2$. Conclude the model is heteroskedastic and $\text{Var}(\text{sav} \mid \text{inc})$ rises with income.
3. Give an economic rationale for why savings variability increases with income.

Problem 3. Let $\hat{\beta}_0, \hat{\beta}_1$ be the OLS intercept and slope from the regression of y_i on x_i using n observations.

1. Let c_1 and c_2 be constants with $c_2 \neq 0$. Let $\tilde{\beta}_0, \tilde{\beta}_1$ be the intercept and slope from the regression of $c_1 y_i$ on $c_2 x_i$. Show that

$$\tilde{\beta}_1 = \frac{c_1}{c_2} \hat{\beta}_1 \quad \text{and} \quad \tilde{\beta}_0 = c_1 \hat{\beta}_0.$$

2. Now let $\tilde{\beta}_0, \tilde{\beta}_1$ be from the regression of $(c_1 + y_i)$ on $(c_2 + x_i)$ (no restriction on c_1, c_2). Show that

$$\tilde{\beta}_1 = \hat{\beta}_1 \quad \text{and} \quad \tilde{\beta}_0 = \hat{\beta}_0 + c_1 - c_2 \hat{\beta}_1.$$

3. Let $\hat{\beta}_0, \hat{\beta}_1$ be the OLS estimates from the regression $\log(y_i)$ on x_i (assume $y_i > 0$). For $c_1 > 0$, let $\tilde{\beta}_0, \tilde{\beta}_1$ be from the regression of $\log(c_1 y_i)$ on x_i . Show that

$$\tilde{\beta}_1 = \hat{\beta}_1 \quad \text{and} \quad \tilde{\beta}_0 = \log(c_1) + \hat{\beta}_0.$$

4. Assume $x_i > 0$ for all i . Let $\tilde{\beta}_0, \tilde{\beta}_1$ be from the regression of y_i on $\log(c_2 x_i)$. How do these compare with the intercept and slope from the regression of y_i on $\log x_i$?

Problem 4. The dataset [CEOSAL2](#) (click to download) contains the information about CEOs. Let salary be total annual compensation (in thousands of dollars) and ceoten be prior tenure as CEO (years). Data description is [here](#).

1. Compute the sample means of salary and ceoten.
2. How many CEOs have ceoten = 0? What is the maximum tenure observed?
3. Estimate the log-linear model

$$\log(\text{salary}_i) = \beta_0 + \beta_1 \text{ceoten}_i + u_i.$$

Report the results in the usual format ($\hat{\beta}_0, \hat{\beta}_1$, standard errors, R^2 , and n). Interpret $\hat{\beta}_1$ as the approximate percent change in salary from one additional year as CEO.

Problem 5. Consider

$$sleep_i = \beta_0 + \beta_1 totwrk_i + \beta_2 educ_i + \beta_3 age_i + u_i,$$

where *sleep* and *totwrk* (total work) are minutes/week and *educ*, *age* are years.

1. If adults trade off sleep for work, what sign do you expect for β_1 ?
2. What signs do you expect for β_2 and β_3 ? Briefly justify.
3. Using data, the estimated equation is

$$\widehat{sleep} = 3638.25 - 0.148 totwrk - 11.13 educ + 2.20 age, \quad n = 706, R^2 = 0.113.$$

If *totwrk* rises by 5 hours/week (= 300 minutes), by how many minutes is *sleep* predicted to fall? Is this a large tradeoff?

4. Interpret the sign and magnitude of the coefficient on *educ* (units: minutes/week per additional year of schooling).
5. Do *totwrk*, *educ*, and *age* explain much of the variation in *sleep*? What other factors might matter, and could they be correlated with *totwrk*?

Problem 6. Using the *CEOSAL2* data on $n = 177$ CEOs:

1. Estimate the constant-elasticity model

$$\log(salary_i) = \beta_0 + \beta_1 \log(sales_i) + \beta_2 \log(mktval_i) + u_i.$$

Report the estimates in equation form.

2. Augment (i) with profits:

$$\log(salary_i) = \beta_0 + \beta_1 \log(sales_i) + \beta_2 \log(mktval_i) + \beta_3 profits_i + u_i.$$

Why is $\log(profits)$ unsuitable? Do these performance variables explain most variation in *salary*?

3. Add tenure:

$$\log(salary_i) = \beta_0 + \beta_1 \log(sales_i) + \beta_2 \log(mktval_i) + \beta_3 profits_i + \gamma ceoten_i + u_i.$$

What is the estimated percentage return for another year of CEO tenure, holding other factors fixed?

4. Compute the sample correlation $\text{corr}(\log(mktval), profits)$. Are these variables highly correlated? What does this say about the OLS estimators?

Problem 7. Download [WAGE1 \(description\)](#). Verify the partialling out interpretation of the OLS coefficient on $educ$:

1. Regress $educ_i$ on $exper_i$ and $tenure_i$:

$$educ_i = \alpha_0 + \alpha_1 exper_i + \alpha_2 tenure_i + v_i,$$

and save the residuals $r_i \equiv \hat{v}_i$.

2. Regress $\log(wage_i)$ on r_i :

$$\log(wage_i) = \delta_0 + \delta_1 r_i + e_i.$$

3. Estimate the full model:

$$\log(wage_i) = \beta_0 + \beta_1 educ_i + \beta_2 exper_i + \beta_3 tenure_i + u_i.$$

4. Compare $\hat{\delta}_1$ with $\hat{\beta}_1$.