BUSS975 Causal Inference in Financial Research

Linear Regression - |

Professor Ji-Woong Chung
Korea University

This lecture note is based on Todd Gormley's.
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Motivation

Conditional expectations, E[Y; | Dj], are pivotal in causal analysis.
How can we estimate conditional expectation functions (CEF)?

Linear regression is arguably the most popular modeling approach in
empirical research

» Transparent and intuitive
» Very robust technique; easy to build on

» Even if not interested in causality, it is useful for describing the
data
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Motivation continued

Can be used to answer descriptive, predictive, and causal questions.

Linear regression is easy to compute but very difficult to interpret.
» Linear regression does not estimate the CEF directly!

P Linear regression estimates the best linear approximation of the
CEF.
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A bit about random variables

It is useful to write any random variable Y as
Y=E(Y|X)+e¢
where (Y, X, €) are random variables and E(e | X) = 01

» E(Y | X) is the expected value of Y given X

» In words, Y can be broken down into the part ‘explained’ by X,
E(Y | X), and a piece that is mean independent of X, ¢.2

YE(e| X)=E(Y —E(Y | X) | X)=E(Y | X)—E[E(Y | X)|X]=0
€ is independent of any functions of X. Let h(X) be any function of X.
E(h(X)e) = E[E(h(X)e | X)] = E[h(X)E(e | X)] =0

o —
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Conditional expectation function (CEF)

E(Y | X) is what we call the CEF and it has very desirable properties:

» Natural way to think about the relationship between X and Y

» And it is the best predictor of Y given X in a minimum
mean-squared error sense

» le., E(Y | X) minimizes E[(Y — m(X))?] where m(X) can be
any function of X.3

*Hint: add and subtract E(Y | X).
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CEF visually
E(Y | X) is fixed but unobservable.

» Intuition: For any value of X, the distribution of Y is centered
about E(Y | X).
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CEF visually

The CEF connects these conditional distributions’ means.

$120,000
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CEF visually

Our goal is to learn about the CEF.
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Linear regression and the CEF

If done correctly, a linear regression can help us uncover what the CEF
is.

» Consider the linear regression model

Y=a+8X+u

(Y, X, u) are random variables

(Y, X) are observable

(u, @, B) are unobservable

u captures everything that determines Y after accounting for X
— This might be a lot of stuff!

We want to estimate (3

vvyyvyy

v
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Best Linear Predictor (BLP)

BLP is «, 8 that minimize the mean-squared error:
argming gE[(Y — o — BX)?]*
Using first order condition:
E[lY —a—pX]=0and E[X(Y —a—X)]|=0

Hence, oBLP = E(Y) — BE(X) and
BBLP — E(XY)—E(X)E(Y) _ Cov(X,Y)
= TEXD_EX)? T Var(X) -

Note: By definition, the residual from this regression Y — oBLP — BBLP X is uncorrelated
(not independent) with X.

Note: u=Y — (aBP 4+ BBLPX) = (Y — E(Y | X)) + (E(Y | X) — (aBLP + gBLP X)),
Prediction error 4+ Linear approximation error.

*Equivalent problem: argming, sE[(E[Y | X] — a — 8X)?]
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What's great about this linear regression?

It can be shown that
1. If E(Y | X) is linear, E(Y | X) = oBLP 4 gBLP X 5
2. oBLP 4 ,BBLPX is the best linear prediction of Y given X6
3. oBLP 4 BBLP X is the best linear approximation of E(Y | X)”

(‘best’ in terms of minimum mean-squared error)

This is quite useful. l.e., even if E(Y | X) is nonlinear, the regression gives us the
best linear approximation of it.

®Use the fact that E[u] = 0 and E[Xu] =0
®By definition, i.e., (o, B) € argmina sE[(Y — a — X)?]
le., (a,B) € argmina gE[(E(Y | X) — a — BX)?]
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What's great about this linear regression? (Cont'd)

Adding the population regression function

$120,000
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Outline

The CEF and causality

Causality and linear regression
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What about causality?

Need to be careful here

> How X explains Y, which this regression helps us understand is
(descriptive), not the same as learning the causal effect of X on
Y.

» Captures the approximate expected level of Y associated with a
level of X.8

» For that, we need more assumptions

83 — % only if E(Y | X) is linear.
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The basic assumptions [Part 1]

Assumption 1: E(u) =0
» With intercept, this is totally innocuous.

» Just change the regression to Y = a + X + u where « is the
intercept term.

» Any non-zero mean is absorbed by the intercept.
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The basic assumptions [Part 2]

Assumption 2: E(u | X) = E(u)
» In words, the average of u (i.e., the unexplained portion of Y')
does not depend on the value of X.

» This is “conditional mean independence” (CMI)

» True if X and v are independent of each other.
» Implies u and X are uncorrelated.

This is the key assumption being made when people make
causal inferences.

19/101



CMI Assumption

Basically, the assumption says you've got the correct CEF model for
the causal effect of X on Y.

» CEF is causal if it describes differences in average outcomes for a
change in X.

» |.e., change in Y if X increases from values a to b is equal to
E(Y| X=b)—E(Y|X=a)

» This is only true if E(u | X) = E(u)
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Example of why CMI is needed

With model Y = a+ 8X 4+ u

> E(Y| X=a)=a+Pa+E(u| X =a)

> E(Y|X=b)=a+pb+E(u| X =0>)

» Thus, E(Y | X=b)—E(Y | X=a)=p(b—a)+E(u| X =
b) — E(u| X = a)

» This only equals what we think of as the ‘causal’ effect of X
changing from ato bif E(u| X =b) = E(u| X = a) i.e,, CMI
assumption holds.
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Tangent — CMI versus correlation

CMI is needed for no bias — a finite sample property®

However, we only need to assume a zero correlation between X and u
for consistency — a large sample property'®

We typically care about consistency which is why we often refer to correlations
rather than CMI.

"With y = XS + u, we have § = (X'X)"*X'y = B+ (X'X)" X"u. Hence
=B« Eu|X]=0

03 = B4 (X'X/n)"Y(X"u/n), where 3 2 8 = E[Xu] =0
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Is it plausible?

Admittedly there are many reasons why this assumption might be
violated.

» Recall u captures all the factors that affect Y other than X. It
will contain a lot!

P> Let's just do a couple of examples
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Exaxmple — Capital structure regression

Consider the following firm-level regression:

Leverage; = a 4 [Profitability; + u;

» CMI implies average u is the same for each profitability.

» Easy to find a few stories why this isn't true
1. Unprofitable firms tend to have higher bankruptcy risk which by
tradeoff theory should mean lower leverage.
2. Unprofitable firms have accumulated less cash which by pecking
order means they should have more leverage.
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Is there a way to test for CMI?

> Let Y be the predicted value of Y i.e. Y = &+ AX where & and
[ are OLS estimates.

» And let i = Y — Y be the residual.

» Can we prove CMI if residuals are E({) = 0 and if § is
uncorrelated with X7

> Answer: No! By construction, these residuals are mean zero and
uncorrelated with X.
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Three reasons why CMI is violated

» Omitted variable bias
» Measurement error bias

» Simultaneity bias

We will look at each of these in much more detail in the “Causality”
lecture.
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Outline

Linear OLS model
Basic interpretation
Rescaling & shifting of variables
Incorporating non-linearities
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Outline

Linear OLS model
Basic interpretation
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Ordinary Least Square (OLS)

BLP is an approximation to E[Y | X].
The BLP and its coefficients (a8, 3BLP) are theoretical concepts.

OLS estimates these coefficients using real data.
A A . 1 5
(én. Bn) € argmin,s— (Y; = (o + Xif))

@n:%ZY,:%ZX,Bn
EEXY-(GEX) G5 W)
%EX? - (%ZX")2

Bn:
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Interpreting the estimates

Suppose we estimate the following model of CEO compensation
Salary; = a + BROE; + u;
— Salary for CEO i is in 000s; ROE is a %

If you get Salary; = 963.2 + 18.5ROE; + u;
» What do these coefficients tell us?

» 1 percentage point increase in ROE is approximately associated
with $18,500 increase in salary.
> Average salary for CEO with ROE = 0 was equal to $963,200.

» Is CMI likely satisfied? Probably not.
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Outline

Linear OLS model

Rescaling & shifting of variables
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Scaling the dependent variable

What if | change the measurement of salary from 000s to $s by
multiplying it by 1,0007

» Estimates were & = 963.2 and 3 = 18.50
> Now they will be & = 963,200 and 3 = 18,500

Scaling Y by an amount c¢ just causes all the estimates to be scaled

by the same amount
» cy = (ca)+ (cB)X + cu
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Scaling Y continued

Notice the scaling has no effect on the relationship between ROE and
salary
> |l.e., because Y is expressed in $s now, BA = 18,500 means that a
one percentage point increase in ROE is still associated with
18,500 increase in salary.
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Scaling the independent variable

What if | instead change the measurement of ROE from percentage
to decimal? (i.e., multiply ROE by 1/100)

> Estimates were & = 963.2 and 3 = 18.50

» Now they will be & = 963.2 and 3 = 18,500

Scaling X by an amount k causes the slope on X to be scaled by 1/k
Y=a+8X+u
Y=a+ kﬁ% +u

» New slope = kf3
» Will interpretation of estimates change? Answer: Again no!
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Scaling both X and Y

If we scale Y by an amount ¢ and X by amount k then we get
» Intercept scaled by ¢
» Slope scaled by ¢/k
Y=a+8X+u

X
cy = coz—i—kcﬁ;—i—cu

When is scaling useful?
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Practical application of scaling #1:

> No one wants to see a coefficient of 0.000000456 or
1234567890.
» Just scale the variables for cosmetic purposes!
» It will affect coefficients & SEs.
> However, it won't affect t-stats or inference.
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Practical application of scaling #2

To improve interpretation in terms of estimated magnitudes it's
helpful to scale the variables by their sample standard deviations.

» Let 0, and o, be sample standard deviations of X and Y
respectively.

» Let c the scalar for Y be equal to 1/0,.
» Let k the scalar for X be equal to 1/0.

» |.e., units of X and Y are now standard deviations.
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Practical application of scaling #2 continued..

With the prior rescaling, how would we interpret a slope coefficient of
0.257

» Answer = a 1 s.d. increase in X is associated with a % s.d.
increase in Y.

» The slope tells us how many standard deviations Y changes on
average for a standard deviation change in X.

» Is 0.25 large in magnitude? What about 0.017
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Shifting the variables

Suppose we instead add ¢ to Y and k to X (i.e., we shift Y and X up
by ¢ and k respectively)

Only the estimated intercept will change
Y=a+8X+u
Y+c=a+c+pX+u
Y+tc=a+c+p(X+k)—pk+u
Y+c=(a+c—Bk)+B(X+k)+u

> New intercept = oo+ ¢ — Bk
» Slope the same = 3
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Practical application of shifting

To improve interpretation, sometimes it is helpful to demean X by its
sample mean

> Let uy be the sample mean of X; regress Y on X — uy

» Intercept now reflects the expected value of Y for X =

Y = (a+Bux) + B(X —px) +u
E(Y | X = px) = (o + Bux)

» This will be very useful when we get to diff-in-diffs.

40/101



Outline

Linear OLS model

Incorporating non-linearities

41/101



Incorporating nonlinearities [Part 1]

Assuming that the causal CEF is linear may not always be that
realistic

> E.g., consider the following regression
wage = « + feducation + u

» Why might a linear relationship between # of years of education
and level of wages be unrealistic? How can we fix it?
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Incorporating nonlinearities [Part 2]

Better assumption might be that each year of education leads to a
constant proportionate (i.e., percentage) increase in wages

» Approximation of this intuition captured by
In(wage) = o + Beducation + u

» |.e., the linear specification is very flexible because it can capture
linear relationships between non-linear variables.
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Common nonlinear function forms

P> Regressing Levels on Logs
» Regressing Logs on Levels

> Regressing Logs on Logs

Let's discuss how to interpret each of these
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The usefulness of log

Log variables are useful because 100A In(Y) ~ %A Y

> Note: When people say “Log” we really mean the natural
logarithm “In". E.g., if you use the “log” function in Stata it
assumes you meant “In".

Yy ~ Inyo + %(yl — ). Hence. Iny1 —Inyp = Aln(Y) = i—; — 1, by Taylor
expansion.
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Interpreting log-level regressions

If you estimate the In(wage) equation, 1003 will tell you the %A
wage for an additional year of education. To see this

In(wage) = o + Beducation + u
AIn(wage) = SAeducation

100 x Aln(wage) = (1003)Aeducation
%Awage ~ (1003)Aeducation
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Log-level interpretation continued

The proportionate change in Y for a given change in X is assumed
constant.

> The change in Y is not assumed to be constant it gets larger as
X increases.

» Specifically, In(Y) is assumed to be linear in X; but Y is not a
linear function of X

In(Y)=a+pBX+u
Y =exp(a+ X + u)
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Example: interpretation

Suppose you estimated the wage equation (where wages are /hour)
and got
In(wage) = 0.584 + 0.083education

What does an additional year of education get you?

» Answer = 8.3% increase in wages.
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Interpreting log-log regressions

If you alternatively estimate the following

In(salary) = 4.822 + 0.257 In(sales)

> (3 is the elasticity of Y w.r.t. X!

> i.e., B is the percentage change in Y for a percentage change in
X.

P> Note: regression assumes constant elasticity between Y and X
regardless of the level of X.
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Example: interpretation of log-log

Suppose you estimated the CEO salary model using logs and got the
following:
In(salary) = 4.822 + 0.257 In(sales)

What is the interpretation of 0.2577

» Answer = For each 1% increase in sales, salary increases by
0.257%.
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Interpreting level-log regressions

If estimating the following

Y=a+pFIn(X)+u

» (/100 is the change in Y for 1% change X.

Y=a+pFIn(X)+u

AY = BAIn(X)

AY = (3/100)(100A In(X))
AY = (8/100)(%AX)
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Example: interpretation of level-log

Suppose you estimated the CEO salary model using logs and got the
following, where salary is expressed in $000s:

salary = 4.822 + 1812.5In(sales)
What is the interpretation of 1812.57

» Answer = For each 1% increase in sales, salary increases by
$18,125(= 1,812.5 x 1,000 X 155).

52/101



Summary of log functional forms

Model Dep. Var. Ind. Var. Interpretation of 3

Level-Level Y X dy = Bdx
Log-Level In(Y) X %dy = (1005)dx
Log-Log In(Y) In(X) %dy = %dx
Level-Log Y In(X) dy = (8/100)%dx

Now let's talk about what happens if you change units (i.e., scale) for
either Y or X in these regressions
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Rescaling logs doesn't matter [Part 1]

What happens to intercept & slope if rescale (i.e., change units) of Y
when in log form?

» Answer = Only intercept changes; slope unaffected because it
measures proportional change in Y in Log-Level model.

In(Y)=a+pX+u
In(c) +In(Y)=In(c)+a+ X +u
In(cy) = (In(c) + o) + X + u
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Rescaling logs doesn't matter [Part 2]

Same logic applies to changing the scale of X in level-log models only
intercept changes.

Y=a+FIn(X)+u
Y 4+ BIn(c) = a+ B(In(X) + In(c)) + u
Y =(a—BlIn(c)) + Bln(ex) + u

Basic message — If you rescale a logged variable, it will not affect the
slope coefficient because you are only looking at proportionate
changes.
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Log approximation problems

A paper argues that allowing capital inflows into the country caused
—120% change in stock prices during crisis periods

» Do you see a problem with this?

» A 120% drop in stock prices isn't possible. The true percentage
change was —70%. Here is where that author went wrong
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Log approximation problems [Part 1]

Approximation error: as the true %AY becomes larger
100AIn(Y) ~ %AY becomes a worse approximation.

» To see this consider a change from Y to Y’
> Ex. #1: Y =100 and Y’ =105 (5%) and 100A In(Y) = 4.9%
> Ex. #2: Y =100 and Y’ =175 (75%) but 100A In(Y) = 56%
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Log approximation problems [Part 2]

Problem also occurs for negative changes
» Ex. #1: Y =100 and Y’ =95 (—5%) and
100AIn(Y) = —-5.1%
> Ex. #2: Y =100 and Y’ =25 (—75%) but
100AIn(Y) = —139%
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Log approximation problems [Part 3]

So if the implied percent change is large, it is better to convert it to
the true % change before interpreting the estimate.

In(Y)=a+pX+u
In(Y") —In(Y) = B(X' — X)
In(Y'/¥) = BX' — X)
Y'Y = exp(B(X' - X))
%AY = 100[exp(B(X" — X)) — 1]
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Log approximation problems [Part 4]

We can now use this formula to see what the true % change in Y is
for X'-X =1

%AY — 100[exp(B(X — X)) — 1]
%AY = 100[exp(8) — 1]

> If 3 =0.56 the percent change isn't 56% it is

100[exp(0.56) — 1] = 75%
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Recap of last two points on logs

Two things to keep in mind about using logs
> Rescaling a logged variable doesn’t affect slope coefficients; it
will only affect intercept.

» Log is only an approximation for % change; it can be a very bad
approximation for large changes.
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Usefulness of logs — Summary

Using logs gives coefficients with appealing interpretation

Can be ignorant about the unit of measurement of log variables since

they're proportionate As.

Logs of Y or X can mitigate the influence of outliers.
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“Rules of thumb” on when to use logs

Helpful to take logs for variables with
» Positive currency amount

» Large integral values (e.g., population)

Don't take logs for variables measured in years or for variables that

can equal zero
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What about using In(1 + Y)?

Because In(0) doesn't exist, some use In(1 + Y') for non-negative
variables i.e., Y > 0.
» However, you should not do this!

» Nice interpretation no longer true, especially if a lot of zeros or
many small values in Y. [Why?]
> Ex. #1: What does it mean to go from In(0) to In(X > 0)?
> Ex. #2: And In(X’ + 1)-In(X + 1) is not percent change of X

See Cohn, Liu, Wardlaw (JFE 2022) for solutions & more details on

why using In(14Y) is problematic. Use Poisson regression (with fixed
effects).
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Tangent — Percentage Change

What is the percent change in unemployment if it goes from 10% to
9%?

» This is a 10 percent drop.

P It is a 1-percentage point drop.

> Percentage change is [(X1 — x0)/x0] x 100
» Percentage point change is the raw change in percentages.

Please take care to get this right in the description of your
empirical results.
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Models with quadratic terms [Part 1]

Consider Y = By + f1.X + foX? + u.
Partial effect of X is given by

oY
X b1+ 26X

What is different about this partial effect relative to everything we've
seen thus far?
» Answer = It depends on the value of X. So we will need to pick
a value of X to evaluate it (e.g., X).
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Models with quadratic terms [Part 2]

If 51 > 0,82 < 0 then it has a parabolic relation
» Turning point = Maximum = |(1/2/,|
» Know where this turning point is! Don't claim a parabolic
relation if it lies outside the range of X!
» Odd values might imply misspecification or simply mean the
quadratic terms are irrelevant and should be excluded from the
regression.
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Outline

Multivariate estimation
Properties & Interpretation
Partial regression interpretation
R? bias and consistency
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Outline

Multivariate estimation
Properties & Interpretation
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Basic multivariable model

Example with constant and k regressors

Y=a+B8#X1+...+BXc+u

» Similar identifying assumptions as before

> No collinearity among covariates [why?]
> E(U|X1,...,Xk):0
- Implies no correlation between any X and u which means we have

the correct model of the true causal relationship between Y and
(X1, -0, Xk).
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Interpretation of estimates

Estimated intercept & is the predicted value of Y when all X = 0;
sometimes this makes sense, sometimes it doesn't.

Estimated slopes Bj have a more subtle interpretation now
Y=a+K/X1+...+ 06X+ 0

How would you interpret ﬁAl?
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Interpretation — Answer

Estimated slopes Bj have partial effect interpretations

» Typically, we think about a change in just one variable e.g., AX3;
holding constant all other variables i.e., (AXa,..., AX all equal
0).

> This is given by AY = 31AX;.
> l.e., 31 is the coefficient holding all else fixed (ceteris paribus).
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Interpretation continued

However, we can also look at how changes in multiple variables at
once affect the predicted value of Y.

> l.e., given changes in X; through X, we obtain the predicted
change in Y, AY.

AY = B1AX1 + ... + B AX,
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Example interpretation — College GPA

Suppose we regress college GPA onto high school GPA (4-point scale)
and ACT scores for N = 141 university students.

colGPA = 1.29 + 0.453hsGPA + 0.0094ACT

» What does the intercept tell us?
» What does the slope on hsGPA tell us?
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Example — Answers

Intercept meaningless person with zero high school GPA and ACT
doesn't exist
Example interpretation of slope

» Consider two students Ann and Bob with identical ACT scores
but Ann's GPA is 1 point higher than Bob's. Best prediction of
Ann's college GPA is that it will be 0.453 higher than Bob's.
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Example continued

Now what is the effect of increasing high school GPA by 1 point and
ACT by 1 point?

AcolGPA = 0.453AhsGPA + 0.0094AACT
AcolGPA = 0.453 4 0.0094
AcolGPA = 0.4624
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Example continued

Lastly, what is the effect of increasing high school GPA by 2 points
and ACT by 10 points?

AcolGPA = 0.453AhsGPA + 0.0094AACT
AcolGPA = 0.453 x 2+ 0.0094 x 10
AcolGPA =1
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Fitted values and residuals

Definition of residual for observation i, i;:

6 =Y~V

» Properties of residual and fitted values:

>

>

Sample average of residuals = 0; implies that sample average of Yy
equals the sample average of Y.

Sample covariance between each independent variable and
residuals = 0.

Point of means (Xi, Xa,..., Y) lies on the regression line.
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Tangent about residuals

Again it bears repeating
» Looking at whether the residuals are correlated with the X's is
NOT a test for causality.
» By construction, they are uncorrelated with X.

» There is no “test” of whether the CEF is the causal CEF; that
justification will need to rely on economic arguments.
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Outline

Multivariate estimation

Partial regression interpretation
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Question to motivate the topic

What is wrong with the following? And why?

P Researcher wants to know the effect of X on Y after controlling
for z.

» So researcher removes the variation in Y that is driven by z by
regressing Y on z & saves residuals.

P> Then the researcher regresses these residuals on X and claims to
have identified the effect of X on Y controlling for z using this
regression.

> We'll answer why it's wrong in a second
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Partial regression [Part 1]

The following is quite useful to know

» Suppose you want to estimate the following:
Y=a+/X+0Xo+u

» Is there another way to get /31 that doesn’t involve estimating
this directly?

> Answer: Yes! You can estimate it by regressing the residuals
from a regression of Y on X5 onto the residuals from a regression
of Xi onto X5.
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Partial regression [Part 2]

To be clear you get 5’1 by!?
> #1 — Regress Y on Xp; save residuals (call them Y).
» #2 — Regress Xj on Xp; save residuals (call them )N(l).

> #3 — Regress Y onto Xi; the estimated coefficient will be the
same as if you'd just run the original multivariate regression!!!

2Called the Frisch-Waugh—Lovell theorem
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Partial regression — Interpretation

Multivariate estimation is basically finding the effect of each
independent variable after partialing out the effects of other variables.

» l.e., the effect of X7 on Y after controlling for X, (i.e., what
you'd get from regressing Y on both Xj and X) is the same as
what you get after you partial out the effect of X5 from both X;
and Y and then run a regression using the residuals.
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Partial regression — Generalized

This property holds more generally
» Suppose Xj is a vector of independent variables.
> X, is a vector of more independent variables.

» And you want to know the coefficients on X; that you would get
from a multivariate regression of Y onto all the variables in X;
and Xo
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Partial regression — Generalized Part 2

You can get the coefficients for each variable in X by

» Regress Y and each variable in Xj onto all the variables in X5 (a

once); save residuals from each regression.

» Do a regression of residuals; i.e., regress Y onto variables of X

but replace Y and Xj with the residuals from the corresponding
regression in step #1.

t
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Practical application of partial regression

Now what is wrong with the following?

» Researcher wants to know the effect of X on Y after controlling
for z.

» So the researcher removes the variation in Y that is driven by z
by regressing Y on z & saves residuals.

» Then the researcher regresses these residuals on X and claims to
have identified the effect of X on Y controlling for z using this
regression.
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Practical application — Answer

It's wrong because it didn't partial the effect of z out of X!
Therefore it is NOT the same as regressing Y onto both X and z!

Unfortunately, it was commonly done by researchers in finance [e.g.,
industry-adjusting].

> We will see how badly this can mess up things in a later lecture.
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Outline

Multivariate estimation

R? bias and consistency
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Goodness-of-Fit (R?)

A lot is made of R?; so let's quickly review exactly what it is
» Start by defining the following:

» Sum of squares total (SST)
» Sum of squares explained (SSE)
> Sum of squares residual (SSR)
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Definition of SST, SSE, SSR

If N is the number of observations and the regression has a constant
then
SST = Z, 1(Y; = Y)2  SST is total variation in Y

- SSE is total variation in predicted Y
SSE = Y (Yi - V)2 [mean of predicted Y=mean of Y]

SSR is total variation in residuals
SSR =YL, if [mean of residual=0]
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SSR, SST, and SSE continued

The total variation SST can be broken into two pieces the explained
part SSE and unexplained part SSR.

SST = SSE + SSR

R? is just the share of total variation that is explained! In other words

2 SSE _, SR
T SST T SsT
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More about R?

As seen on the last slide R2 must be between 0 and 1

It can also be shown that R? is equal to the square of the correlation
between Y and predicted Y.

If you add an independent variable, R? will never go down.
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Adjusted R?

Because R? always goes up we often use what is called Adjusted R?
= N-—1
RP=1-1-R>) | —-——
( ) (N —k— 1>

> k = # of regressors excluding the constant.

» Basically, you get penalized for each additional regressor such
that adjusted R? won't go up after you add another variable if it
doesn’t improve fit much [it can go downl].
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Interpreting R?

If | tell you the R? is 0.014 from a regression what does that mean? Is
it bad?

» Answer #1 = It means I'm only explaining about 1.4% of the
variation in Y with the regressors that I'm including in the
regression.

» Answer #2 = Not necessarily! It doesn’t mean the model is
wrong; you might still be getting a consistent estimate of the 3
you care about!
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Unbiasedness versus Consistency

When we say an estimate is unbiased or consistent, it means we think
it has a causal interpretation

» |.e., the CMI assumption holds and the X's are all uncorrelated
with the disturbance u.

Bias refers to a finite sample property; consistency refers to an
asymptotic property.
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More formally

An estimate 3 is unbiased if E(BA) =0

> l.e., on average the estimate is centered around the true
unobserved value of .

» Doesn't say whether you get a more precise estimate as sample
size increases.

An estimate is consistent if plimy_,.o3 = 413

» |l.e., as sample size increases the estimate converges (in
probability limit) to the true coefficient.

13A sequence X, of random variables converges in probability towards the

random variable X if for all € > 0, limp—oc Pr(|X, — X| >€) =0
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Unbiasedness of OLS

OLS will be unbiased when
» Model is linear in parameters.
» We have a random sample of X.

» No perfect collinearity between X's.

» E(ul| Xiy,...,Xk) = 0: Earlier CMI assumptions #1 and #2 give
us this.

Unbiasedness is a nice feature of OLS; but in practice, we care more
about consistency.
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Consistency of OLS

OLS will be consistent when

» Model is linear in parameters.

» u is not correlated with any of the X's: CMI assumptions #1
and #2 give us this; a lack of correlation is a weaker assumption
than CMI. CMI precludes both linear and non-linear relationships
while correlations only measure linear relationships.
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Summary of Today [Part 1]

The CEF E(Y | X) has desirable properties
» Linear OLS gives the best linear approximation of it.

» If the correlation between error u and independent variables X's
is zero, it has a causal interpretation.

Scaling & shifting of variables doesn't affect inference but can be
useful.

> E.g., demean to give intercepts a more meaningful interpretation
or rescale for cosmetic purposes.
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Summary of Today [Part 2]

Multivariate estimates are partial effects
> |.e., the effect of X holding X5,..., X, constant.

> Can get the same estimates in two steps by first partialing out
some variables and regressing residuals on residuals in the second

step.
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