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Chapter 5

Hypothesis Testing

5.1 Introduction and Recap

In the previous chapter, we discussed the problem of estimation: constructing
estimators for unknown parameters and characterizing their properties in
finite samples and asymptotically. We emphasized that an estimator θ̂n is a
random variable that may differ from the true (fixed but unknown) parameter
θ. In this chapter, we turn to the formal analysis of questions concerning
whether a parameter equals or differs from some particular value (or falls in
a certain range). This leads us to the framework of hypothesis testing.

For example, consider the causal parameter

τATT = E[Yi(1)− Yi(0) | Di = 1] ,

the average treatment effect on the treated (such as the expected return to a
college education for those who attended college). We might be specifically
interested in whether τATT > 0, i.e. whether the expected return to education
is positive. Hypothesis testing provides a systematic way to answer such
questions with statistical rigor.
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5.2 Formulating Statistical Hypotheses

A statistical hypothesis is a claim or assertion about a population param-
eter (or the distribution of a random variable). To conduct a test, we begin
by formalizing the question of interest as two competing hypotheses:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

where θ is the parameter of interest, Θ is the set of all possible values for θ,
and Θ0 and Θ1 are disjoint subsets of Θ that partition it (so Θ0 ∪ Θ1 = Θ
and Θ0 ∩Θ1 = ∅).

� H0 is called the null hypothesis. It represents the baseline claim or
status quo that we seek evidence against.

� H1 is called the alternative hypothesis. It represents the competing
claim we will accept if the null is rejected.

� If Θ0 = {θ0} is a single point (i.e. we are testing that θ equals a specific
value), then H0 is a simple hypothesis.

� If Θ0 contains multiple values (a range or composite condition), then
H0 is a composite hypothesis.

Example 5.1. (Simple vs. Composite Hypotheses) Let Y be hourly wages
and D indicate being a college graduate. Suppose we want to test whether
college graduates earn at least $600 per week on average. Define µY |1 = E[Y |
D = 1] as the mean weekly wage of college graduates. We can formulate:

H0 : µY |1 ≥ 600 versus H1 : µY |1 < 600.

Here the null allows any value µY |1 greater or equal to 600, soH0 is composite.
The alternative asserts the mean is less than 600.

If instead we ask, “Do college graduates earn $600 per week on average?”
the hypotheses would be:

H0 : µY |1 = 600 versus H1 : µY |1 ̸= 600,

testing equality against any difference. In this case H0 is simple (Θ0 =
{600}).
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In both cases, we have translated an economic or substantive question into
a hypothesis about a statistical parameter. The next step is to design a
procedure for deciding between H0 and H1 using sample data.

5.3 Test Statistics and Decision Rules

To test a hypothesis, we need a rule that maps the observed sample to a
decision: either “do not reject H0” (i.e. continue to regard H0 as plausible)
or “reject H0” (and conclude H1 instead). We construct a test statistic
Tn = Tn(X1, . . . , Xn), which is a known function of the sample. Being a
function of random data, Tn is itself a random variable with some probability
distribution. The test statistic is chosen so that extreme values of Tn provide
evidence against H0.

Once we have a test statistic, we select a rejection region R, a subset of
possible values of Tn. The decision rule is:

{
Reject H0, if Tn ∈ R,

Do not reject H0, if Tn /∈ R.

Typically, the rejection region is chosen such that Tn falling in R corresponds
to Tn being “large” in magnitude, meaning far from the typical values ex-
pected under H0. In this chapter, for simplicity, we will mostly consider
rejection regions of the form

R(c) = {t : t > c},

for some threshold (critical value) c. In other words, we define Tn so that
larger values indicate more evidence against H0, and we reject for sufficiently
large Tn. (For two-sided tests, “large” will effectively mean large in absolute
value; we will address this later.)

The choice of the critical value c is crucial. It will be determined based on
controlling the probability of making an error, as we discuss next.
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5.3.1 Type I and Type II Errors

Because our decision is based on random data, there is a chance we draw the
wrong conclusion. There are two types of errors in hypothesis testing:

� A Type I error occurs when we reject H0 even though H0 is actually
true (a “false positive”).

� A Type II error occurs when we fail to reject H0 even though H0 is
false (a “false negative”).

Any hypothesis test can result in one of four possible outcomes, as summa-
rized in Table 5.1.

Do not reject H0 Reject H0

H0 true Correct decision Type I error
H0 false Type II error Correct decision

Table 5.1: Outcomes of a hypothesis test and associated error types.

There is an inherent trade-off between Type I and Type II errors: if we
make the rejection region R very “conservative” (small) to rarely reject H0

(thus minimizing Type I errors), we increase the chance of missing real effects
(more Type II errors). Conversely, if we make R very permissive (reject H0

for even slight evidence), we reduce Type II errors but incur more Type I
errors.

In practice, hypothesis testing procedures are usually designed to control
the probability of a Type I error at some pre-specified low level (denoted α).
This α is called the significance level of the test. It represents the tolerable
probability of wrongly rejecting a true null hypothesis.

A classical analogy (attributed to Wasserman, 2003) is that hypothesis test-
ing is like a criminal trial: the accused is presumed innocent (H0 true) until
proven guilty. The court requires “strong evidence” to convict (reject H0)
because convicting an innocent person (Type I error) is deemed worse than
letting a guilty person go free (Type II error). Thus, we bias the procedure
toward not rejecting H0 unless the data provide compelling evidence against
it.
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“Hypothesis testing is like a legal trial. We assume someone is inno-
cent unless the evidence strongly suggests that they are guilty. Simi-
larly, we don’t reject H0 unless there is strong evidence against H0.”

— Wasserman (2003)

5.3.2 Size, Power, and p-Values

We now define measures to quantify the error probabilities of a test:

Definition 5.2 (Size (Significance Level) and Power). The size of a test is
the probability of committing a Type I error, evaluated at the worst case
under H0. In other words, it is the maximal rejection probability when the
null hypothesis is true:

α = sup
θ∈Θ0

Pθ(Tn ∈ R | H0 true) = Pθ0(Tn ∈ R | H0 true),

if H0 is simple with θ = θ0. Often α is chosen in advance (common values
are 0.10, 0.05, or 0.01, with α = 0.05 being a popular convention).

The power of a test at a particular alternative θ ∈ Θ1 is the probability of
correctly rejecting the null when that alternative is true:

Power(θ) = Pθ(Tn ∈ R | H0 false).

The power function of the test is the function θ 7→ Pθ(reject H0) for θ in the
parameter space. A test’s power (at a given alternative) is 1− β, where
β is the probability of Type II error (i.e. β = P (fail to reject H0 | θ ∈ Θ1)).

When we say a test has level (size) α, we mean its Type I error probability
is controlled to be α (often exactly α in the worst case), and we often seek
tests that maximize power among those with a given size α.

In practice, we choose the critical value c (and thus the rejection region
R) to achieve a desired size α. For example, we might choose c such that
P (Tn > c | H0) = α. This ensures P (Type I error) = α. We then hope that
for plausible alternatives, P (Tn > c | H1) is as large as possible (high power),
but there is usually a trade-off.

Traditionally, researchers often use α = 0.05 as a benchmark for “statistical
significance.” This choice is somewhat arbitrary (why not 0.01 or 0.10?),
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and in some contexts a different significance level may be more appropriate.
Instead of focusing solely on a fixed α, it is often useful to consider the p-value
of a test outcome:

Definition 5.3 (p-Value). Given the observed value tobs of the test statis-
tic Tn, the p-value is the smallest significance level α at which the null
hypothesis would be rejected. Formally, it is

p-value = inf{α ∈ (0, 1) : tobs ∈ R(cα)},

where cα is the critical value that yields a test of size α. Equivalently, the
p-value is the probability (under H0) of obtaining a test statistic as extreme
as or more extreme than the observed tobs.

A small p-value indicates that the observed data are very unlikely under H0,
hence provides strong evidence against H0. We reject H0 if the p-value is
less than our chosen α. For example, if we observe a p-value of 0.003, this
is much smaller than α = 0.05, so we would reject H0 (and typically report
the result as “significant at the 5% level” or even the 1% level, since 0.003
< 0.01).

It is crucial to understand that a large p-value does not constitute evidence
that H0 is true; it merely indicates a lack of evidence against H0. A high
p-value could occur either because H0 is true or because H0 is false but our
test had low power or the particular sample did not exhibit a strong effect.

Having defined the general framework of hypothesis testing, we next discuss
specific common tests: two-sided tests for an equality hypothesis, and one-
sided tests for an inequality hypothesis.

5.4 Two-Sided Hypothesis Tests

Suppose we have a sample X1, X2, . . . , Xn
iid∼ FX (i.e. i.i.d. observations

from some distribution), and we are interested in a real-valued parameter
θ = θ(FX) (for example, θ could be E[X], the population mean). We have
an estimator θ̂n for θ. In many cases, we know (or can derive) the approx-
imate sampling distribution of θ̂n. A very common situation is that θ̂n is
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asymptotically normal:

θ̂n − θ

s.e.(θ̂n)

d−→ N(0, 1) as n → ∞,

where s.e.(θ̂n) denotes the standard error of θ̂n (the standard deviation of its
sampling distribution, or an estimate of that). This was the case for many
estimators discussed in the previous chapter (by the Central Limit Theorem
or other large-sample results).

Now we consider testing whether θ equals some specific value θ0. The hy-
potheses are:

H0 : θ = θ0, H1 : θ ̸= θ0,

a two-sided hypothesis (the alternative allows θ to be either less or greater
than θ0). Intuitively, if the estimator θ̂n is much different from θ0, that would
be evidence against H0.

A natural choice of test statistic in this scenario is the standardized difference
between θ̂n and the null value θ0:

Tn =

∣∣∣∣∣ θ̂n − θ0

s.e.(θ̂n)

∣∣∣∣∣ .
We take the absolute value because departures on either side (too high or
too low relative to θ0) are both evidence against H0. By taking Tn to be non-
negative (absolute value), we can use a single rejection region of the form
Tn > c. In words, if θ̂n is sufficiently far from θ0 in either direction, we reject
H0.

How do we choose the critical value c? Under H0 (which specifies θ = θ0), for
large n the statistic Tn should approximately follow a half-normal or (more

conveniently) we can say θ̂n−θ0
s.e.(θ̂n)

≈ N(0, 1). Thus Tn = |Z| for Z ∼ N(0, 1)

under H0 in the large-sample limit. We want

PH0(Tn > c) = α,

to achieve size α. If Z ∼ N(0, 1),

P (|Z| > c) = 2 [1− Φ(c)],
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since P (|Z| > c) is the probability of falling in either tail beyond c. Setting
this equal to α, we get

2 [1− Φ(c)] = α,

which implies 1− Φ(c) = α/2, so Φ(c) = 1− α
2
. Thus c should be the 1− α

2

quantile of the standard normal distribution. We denote this critical value
by

z1−α/2 = Φ−1(1− α
2
),

the (1 − α
2
)-quantile of N(0, 1). For example, if α = 0.05, then 1 − α/2 =

0.975, so z0.975 ≈ 1.96. This is the familiar 1.96 appearing in 95% confidence
intervals and two-sided 5% tests.

The following theorem formalizes the justification of this test in large samples:

Theorem 5.4 (Asymptotic size of two-sided Z-test). Let θ̂n be an estimator
for θ such that

θ̂n − θ

s.e.(θ̂n)

d−→ N(0, 1).

Consider the test statistic Tn =
∣∣∣ θ̂n−θ0
s.e.(θ̂n)

∣∣∣. Then under H0 : θ = θ0, we have

P
(
Tn > z1−α/2

∣∣H0 true
)

→ α,

as n → ∞. In other words, the test that rejects H0 if Tn > z1−α/2 has
(asymptotic) size α.

Proof. Under H0, θ = θ0. By assumption,

θ̂n − θ0

s.e.(θ̂n)

d−→ N(0, 1) as n → ∞.

Let Zn = θ̂n−θ0
s.e.(θ̂n)

and note Tn = |Zn|. We want the probability of rejection:

P (Tn > c | H0) = P
(
|Zn| > c | H0

)
= P (Zn > c | H0) + P (Zn < −c | H0)

= 1− P (Zn ≤ c | H0) + P (Zn < −c | H0)

= 1− P (Zn ≤ c | H0) + P (Zn ≤ −c | H0).
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As n → ∞, Zn converges in distribution to N(0, 1), so by the Continuous
Mapping Theorem the above probability converges to

1− P (Z ≤ c) + P (Z ≤ −c),

where Z ∼ N(0, 1). But P (Z ≤ −c) = Φ(−c) = 1 − Φ(c) (since Φ is the
CDF of N(0, 1)). Therefore the limit is

1− Φ(c) + (1− Φ(c)) = 2 [1− Φ(c)].

Setting c = z1−α/2, by definition 1−Φ(c) = α/2. Thus 2[1−Φ(c)] = 2(α/2) =
α. This proves that

lim
n→∞

P (Tn > z1−α/2 | H0) = α,

as required.

This result shows that for large n, our test rejects H0 with probability about
α when H0 is true (thus controlling the Type I error rate at α).

In practice, then, we reject H0 : θ = θ0 at significance level α if

Tn =

∣∣∣∣∣ θ̂n − θ0

s.e.(θ̂n)

∣∣∣∣∣ > z 1−α/2.

Equivalently, we can phrase the decision in terms of the p-value. The p-value
in this two-sided test is

p-value = 2
[
1− Φ

(
|zobs|

)]
,

where zobs =
θ̂n−θ0
s.e.(θ̂n)

is the observed standardized value. This formula 2(1 −
Φ(|z|)) gives the two-tail area under the standard normal beyond the observed
|z|. We reject H0 at level α if and only if p-value < α.

Let’s derive that explicitly: the observed test statistic is T obs
n = |zobs|. The

p-value is the probability (under H0) of seeing a result as extreme as what
we saw. “As extreme as” means |Z| ≥ |zobs| if Z ∼ N(0, 1). So

p-value = PH0

(
|Z| ≥ |zobs|

)
= 2 [1− Φ(|zobs|)].

Setting this equal to α and solving for |zobs| yields |zobs| = z1−α/2. Thus
rejection |zobs| > z1−α/2 is equivalent to p-value < α, as it should be.
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Remark. In finite samples, if the distribution of the estimator is known,
one could use the exact critical value from that distribution. For example,
if Xi are i.i.d. normal and θ̂n = X̄, and we estimate the variance from data,
then (X̄ − θ0)/(S/

√
n) follows a Student t distribution with n− 1 degrees of

freedom under H0. In that case, the exact finite-sample test would reject if
|X̄ − θ0| > tn−1, 1−α/2 S/

√
n, where tn−1, 1−α/2 is the 1− α/2 quantile of tn−1.

In large n, tn−1, 0.975 ≈ 1.96 and the distinction blurs. In econometrics and
many large-sample settings, one often simply uses the normal approximation
as we have done, especially when n is moderate or large.

5.5 One-Sided Hypothesis Tests

We now consider testing a hypothesis where the alternative is one-sided.
There are two forms, depending on the direction of the inequality:

� Right-tailed test: H0 : θ ≤ θ0 versus H1 : θ > θ0. Here the alterna-
tive claims θ is greater than some threshold θ0, and the null says θ is
at most θ0.

� Left-tailed test: H0 : θ ≥ θ0 versus H1 : θ < θ0. Here the alternative
claims θ is less than θ0.

Many practical questions lead to one-sided alternatives. For instance, in our
earlier example of returns to education, we might specifically hypothesize H0:
“the return is non-positive (≤ 0)” against H1: “the return is positive (> 0)”.
This is a right-tailed test because the alternative is that θ is greater than 0.

The testing framework is similar, but now “extreme” evidence against H0

occurs only in one direction. We want to reject H0 only if θ̂n is sufficiently
larger than θ0 (in a right-tailed test) or sufficiently smaller (in a left-tailed
test). We can adapt our test statistic accordingly so that, again, large values
of Tn favor the alternative:

- For H0 : θ ≤ θ0 versus H1 : θ > θ0, a natural choice is

Tn =
θ̂n − θ0

s.e.(θ̂n)
.
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If the estimator θ̂n is much bigger than θ0, then Tn will be large (positive),
signaling evidence for H1. If θ̂n is below or near θ0, Tn will not exceed the
threshold.

- For H0 : θ ≥ θ0 versus H1 : θ < θ0, we can simply take the negative of the
above:

Tn = − θ̂n − θ0

s.e.(θ̂n)
=

θ0 − θ̂n

s.e.(θ̂n)
.

This way, if θ̂n is far below θ0, the test statistic Tn becomes large (positive),
indicating evidence for the alternative. (Equivalently, one could keep Tn =
(θ̂n − θ0)/s.e. but then define the rejection region for a left-tailed test as
Tn < −c, which is less convenient for a unified treatment. By flipping the
sign in Tn, we maintain the convention of rejecting for Tn exceeding a positive
critical value c.)

Now Tn is (asymptotically) N(0, 1) under the null hypothesis (since under
H0, θ = θ0 and thus θ̂n − θ0 is centered at 0). We want to choose c such that

PH0(Tn > c) = α.

If Tn ≈ N(0, 1) under H0, then P (Tn > c) = 1 − Φ(c). Setting this equal
to α gives 1 − Φ(c) = α, or Φ(c) = 1 − α. Therefore c should be the 1 − α
quantile of the standard normal:

c = z 1−α = Φ−1(1− α).

For example, with α = 0.05, z0.95 ≈ 1.645. The next theorem mirrors Theo-
rem 5.4 for the one-sided case:

Theorem 5.5 (Asymptotic size of one-sided test). Suppose θ̂n−θ

s.e.(θ̂n)

d−→ N(0, 1)

as n → ∞. For testing H0 : θ ≤ θ0 vs. H1 : θ > θ0, consider the test statistic

Tn = θ̂n−θ0
s.e.(θ̂n)

. Then under H0,

P (Tn > z1−α | H0) → α.

In other words, rejecting H0 when Tn > z1−α yields an (asymptotic) level-α

test. An analogous result holds for the left-tailed test using Tn = θ0−θ̂n
s.e.(θ̂n)

.

Proof. Under H0 : θ ≤ θ0, the “least favorable” case (that maximizes the
Type I error) is θ = θ0. So assume θ = θ0. Then as n grows large, Tn =
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θ̂n−θ0
s.e.(θ̂n)

d−→ N(0, 1). We have

P (Tn > c | H0) = 1− P (Tn ≤ c | H0) → 1− Φ(c),

as n → ∞. If we choose c = z 1−α, then 1 − Φ(c) = 1 − (1 − α) = α. Thus
limn→∞ P (Tn > z1−α | H0) = α, as required.

(The argument for the left-tailed test is similar: by defining Tn = (θ0 −
θ̂n)/s.e., under H0 : θ = θ0 we again have Tn

d−→ N(0, 1), and P (Tn >
z1−α|H0) → α. Rejecting for large Tn corresponds to θ̂n being sufficiently
below θ0, as desired.)

Thus, for a one-sided test at significance α, we reject H0 if

Tn > z1−α.

In a right-tailed test, this means

θ̂n − θ0

s.e.(θ̂n)
> z1−α,

and in a left-tailed test it means

θ0 − θ̂n

s.e.(θ̂n)
> z1−α.

Equivalently, we can report a p-value. In a one-sided test, the p-value is the
one-tail probability beyond the observed Tn under a N(0, 1) distribution. For

example, if our test statistic is Tn = θ̂n−θ0
s.e.(θ̂n)

(right-tailed test) and we observe

T obs
n = t, then

p-value = PH0(Z ≥ t) = 1− Φ(t).

If this p-value is below α, we reject H0. For a left-tailed test (with Tn = θ0−θ̂n
s.e.

as defined above), the p-value would likewise be 1 − Φ(tobs), since we have
defined Tn so that large values (in the right tail) indicate significance in either
case.

Example 5.6. (College wage example revisited) In the hypothesis H0 :
µY |1 ≥ 600 vs H1 : µY |1 < 600 (do college grads earn less than 600 on
average?), the alternative is left-tailed. We would construct

Tn = −
µ̂Y |1 − 600

s.e.(µ̂Y |1)
=

600− µ̂Y |1

s.e.(µ̂Y |1)
.
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If, say, µ̂Y |1 from our sample is significantly below 600, Tn will be large. We
reject H0 for Tn > z1−α. At α = 0.05, this means Tn > 1.645. Equivalently,
we could compute the p-value: if the observed Tn is, for instance, 2.0, then
the p-value = 1 − Φ(2.0) ≈ 0.0228. This is below 0.05, so we reject H0 and
conclude the average is significantly less than $600. On the other hand, if µ̂Y |1
was above 600, then Tn would likely be small (and possibly even negative, in
which case certainly Tn is not > 1.645), and we would not reject H0.

5.6 Hypothesis Tests and Confidence Inter-

vals

There is a close duality between hypothesis testing and confidence intervals.
In fact, constructing a confidence interval for a parameter can be viewed as
performing hypothesis tests for all possible parameter values and collecting
those values for which the test would not reject. This idea is formalized as
follows:

Consider testing
H0 : θ = θ̃0 versus H1 : θ ̸= θ̃0,

at significance level α, for each possible value θ̃0 ∈ Θ. For each θ̃0, we imagine
plugging it into H0 and performing the corresponding two-sided test. Now
define

Cn = {θ̃0 ∈ Θ : the test fails to reject H0 : θ = θ̃0 at level α}.

In other words, Cn is the set of all parameter values that are consistent with
the data at the α significance level (i.e. that would not be rejected by a
level-α test).

It turns out that Cn is exactly a (1 − α) confidence interval for θ. This
is the reasoning behind the common teaching that “we reject H0 : θ = θ0 at
level α if and only if θ0 lies outside the (1− α) confidence interval for θ.”

Illustration. Suppose our test statistic for H0 : θ = θ̃0 is

Tn =

∣∣∣∣∣ θ̂n − θ̃0

s.e.(θ̂n)

∣∣∣∣∣ ,
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and we reject H0 when Tn > z1−α/2 (this is the two-sided test we discussed

earlier). For a given candidate value θ̃0, the condition for not rejecting H0 is

Tn ≤ z1−α/2.

This condition can be rewritten as:∣∣∣∣∣ θ̂n − θ̃0

s.e.(θ̂n)

∣∣∣∣∣ ≤ z1−α/2 ⇐⇒ − z1−α/2 ≤ θ̂n − θ̃0

s.e.(θ̂n)
≤ z1−α/2

⇐⇒ − z1−α/2 s.e.(θ̂n) ≤ θ̂n − θ̃0 ≤ z1−α/2 s.e.(θ̂n)

⇐⇒ − z1−α/2 s.e.(θ̂n) + θ̂n ≤ θ̃0 ≤ z1−α/2 s.e.(θ̂n) + θ̂n.

The last line describes exactly the interval[
θ̂n − z1−α/2 s.e.(θ̂n), θ̂n + z1−α/2 s.e.(θ̂n)

]
.

Thus

Cn =
{
θ̃0 : θ̃0 ∈ [θ̂n ± z1−α/2 s.e.(θ̂n)]

}
= [ θ̂n ± z1−α/2 s.e.(θ̂n) ],

which is exactly the two-sided (1−α) confidence interval for θ that we derived
in the previous chapter.

This confirms the duality: the confidence interval consists exactly of those
values that would not be rejected by a two-sided hypothesis test at the cor-
responding level. In practice, this means we can draw conclusions from con-
fidence intervals in lieu of performing explicit hypothesis tests. For example,
if a 95% CI for θ is [2.1, 5.3], then H0 : θ = 0 is clearly rejected at the 5%
level (since 0 is not in the interval). On the other hand, if the question of
interest is whether θ is positive, we can see the entire 95% CI is positive,
which implies H0 : θ ≤ 0 would be rejected at 5

Remark 5.7. This duality holds generally under mild conditions: any confi-
dence set can be seen as the inversion of a family of tests. While we demon-
strated it for a symmetric two-sided interval, one-sided hypothesis tests sim-
ilarly correspond to one-sided confidence bounds. For instance, the set of
θ̃0 not rejected by a right-tailed test H0 : θ ≤ θ̃0 vs H1 : θ > θ̃0 is of the
form (−∞, θ̂n− z1−α s.e.(θ̂n)], which is a one-sided (1−α) confidence bound
(lower bound) for θ. Thus, constructing confidence intervals is often a more
informative way to summarize hypothesis tests for all possible values.
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Summary

In this chapter, we reviewed the framework of hypothesis testing, which
complements estimation in statistical inference:

� We learned how to formulate null and alternative hypotheses to trans-
late substantive questions into statements about parameters.

� We defined test statistics and decision rules, and understood the types
of errors (Type I and II) that can occur.

� We usually fix a significance level α (Type I error rate) and determine
a critical value to control α. We introduced the concept of the p-value
as an evidence measure against H0.

� We derived tests for two-sided hypotheses (testing equality) and one-
sided hypotheses (testing inequalities) using large-sample Z-statistics.
We showed how to compute critical values (e.g. z0.975 ≈ 1.96 for a
two-sided 5% test, z0.95 ≈ 1.645 for a one-sided 5% test) and how to
calculate p-values for each case.

� Finally, we discussed the duality between confidence intervals and hy-
pothesis tests: a (1 − α) confidence interval is the set of parameter
values that would not be rejected at level α.

Equipped with these statistical tools, we are prepared to tackle causal in-
ference questions. We can formulate causal parameters of interest (the “es-
timands”), identify them under certain assumptions (using our probability
theory knowledge), estimate them from data, and then use confidence in-
tervals and hypothesis tests to draw conclusions about causal effects with
quantifiable uncertainty.
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