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Chapter 5

Hypothesis Testing

5.1 Introduction and Recap

In the previous chapter, we discussed the problem of estimation: constructing
estimators for unknown parameters and characterizing their properties in
finite samples and asymptotically. We emphasized that an estimator én is a
random variable that may differ from the true (fixed but unknown) parameter
0. In this chapter, we turn to the formal analysis of questions concerning
whether a parameter equals or differs from some particular value (or falls in
a certain range). This leads us to the framework of hypothesis testing.

For example, consider the causal parameter
Tarr = EYi(1) = Y(0) [ D; = 1],

the average treatment effect on the treated (such as the expected return to a
college education for those who attended college). We might be specifically
interested in whether 7477 > 0, i.e. whether the expected return to education
is positive. Hypothesis testing provides a systematic way to answer such
questions with statistical rigor.



4 CHAPTER 5. HYPOTHESIS TESTING

5.2 Formulating Statistical Hypotheses

A statistical hypothesis is a claim or assertion about a population param-
eter (or the distribution of a random variable). To conduct a test, we begin
by formalizing the question of interest as two competing hypotheses:

Hy:0 €06, Versus H,:0¢€ 0

where 6 is the parameter of interest, © is the set of all possible values for 6,
and ©g and ©; are disjoint subsets of © that partition it (so Oy U ©; = O
and @0 N @1 = (Z))

e Hj is called the null hypothesis. It represents the baseline claim or
status quo that we seek evidence against.

e [ is called the alternative hypothesis. It represents the competing
claim we will accept if the null is rejected.

e If ©g = {6y} is a single point (i.e. we are testing that § equals a specific
value), then Hj is a simple hypothesis.

e If ©y contains multiple values (a range or composite condition), then
Hj is a composite hypothesis.

Example 5.1. (Simple vs. Composite Hypotheses) Let Y be hourly wages
and D indicate being a college graduate. Suppose we want to test whether
college graduates earn at least $600 per week on average. Define piy; = E[Y |
D = 1] as the mean weekly wage of college graduates. We can formulate:

Hy @ pypn = 600 versus Hy : pyp < 600.

Here the null allows any value jy|; greater or equal to 600, so Hj is composite.
The alternative asserts the mean is less than 600.

If instead we ask, “Do college graduates earn $600 per week on average?”
the hypotheses would be:

Hy @ pyp = 600 versus Hy @ pyp # 600,

testing equality against any difference. In this case Hy is simple (©p =

{600}).
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In both cases, we have translated an economic or substantive question into
a hypothesis about a statistical parameter. The next step is to design a
procedure for deciding between H, and H; using sample data.

5.3 Test Statistics and Decision Rules

To test a hypothesis, we need a rule that maps the observed sample to a
decision: either “do not reject Hy” (i.e. continue to regard Hy as plausible)
or “reject Hy” (and conclude H; instead). We construct a test statistic
T, = T.(Xy,...,X,), which is a known function of the sample. Being a
function of random data, T, is itself a random variable with some probability
distribution. The test statistic is chosen so that extreme values of T}, provide
evidence against Hy.

Once we have a test statistic, we select a rejection region R, a subset of
possible values of T,,. The decision rule is:

Reject Hy, if T,, e R,
Do not reject Hy, if T,, ¢ R.

Typically, the rejection region is chosen such that 7;, falling in ‘R corresponds
to T, being “large” in magnitude, meaning far from the typical values ex-
pected under H,. In this chapter, for simplicity, we will mostly consider
rejection regions of the form

R(c) ={t:t>c},

for some threshold (critical value) c¢. In other words, we define T,, so that
larger values indicate more evidence against Hy, and we reject for sufficiently
large T,,. (For two-sided tests, “large” will effectively mean large in absolute
value; we will address this later.)

The choice of the critical value ¢ is crucial. It will be determined based on
controlling the probability of making an error, as we discuss next.
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5.3.1 Type I and Type II Errors

Because our decision is based on random data, there is a chance we draw the
wrong conclusion. There are two types of errors in hypothesis testing:

e A Type I error occurs when we reject Hy even though Hj is actually
true (a “false positive”).
e A Type II error occurs when we fail to reject Hy even though Hy is

false (a “false negative”).

Any hypothesis test can result in one of four possible outcomes, as summa-
rized in Table (.11

Do not reject Hy Reject Hy
Hy true | Correct decision Type I error
H, false Type II error Correct decision

Table 5.1: Outcomes of a hypothesis test and associated error types.

There is an inherent trade-off between Type I and Type II errors: if we
make the rejection region R very “conservative” (small) to rarely reject Hy
(thus minimizing Type I errors), we increase the chance of missing real effects
(more Type II errors). Conversely, if we make R very permissive (reject Hy
for even slight evidence), we reduce Type II errors but incur more Type I
erTors.

In practice, hypothesis testing procedures are usually designed to control
the probability of a Type I error at some pre-specified low level (denoted «).
This « is called the significance level of the test. It represents the tolerable
probability of wrongly rejecting a true null hypothesis.

A classical analogy (attributed to Wasserman, 2003) is that hypothesis test-
ing is like a criminal trial: the accused is presumed innocent (H true) until
proven guilty. The court requires “strong evidence” to convict (reject Hy)
because convicting an innocent person (Type I error) is deemed worse than
letting a guilty person go free (Type II error). Thus, we bias the procedure
toward not rejecting Hy unless the data provide compelling evidence against
it.
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“Hypothesis testing is like a legal trial. We assume someone is inno-
cent unless the evidence strongly suggests that they are guilty. Simi-
larly, we don’t reject Hy unless there is strong evidence against Hy.”

— Wasserman (2003)

5.3.2 Size, Power, and p-Values

We now define measures to quantify the error probabilities of a test:

Definition 5.2 (Size (Significance Level) and Power). The size of a test is
the probability of committing a Type I error, evaluated at the worst case
under Hy. In other words, it is the maximal rejection probability when the
null hypothesis is true:

a = sup By(T, € R | Hy true) = P, (T, € R | Hy true),
USCH)
if Hy is simple with § = 6. Often « is chosen in advance (common values
are 0.10, 0.05, or 0.01, with o« = 0.05 being a popular convention).

The power of a test at a particular alternative § € ©; is the probability of
correctly rejecting the null when that alternative is true:

Power(0) = Py(T, € R | Hy false).

The power function of the test is the function 6 — Py(reject Hy) for 6 in the
parameter space. A test’s power (at a given alternative) is 1 — 3, where
( is the probability of Type II error (i.e. 8 = P(fail to reject Hy | 6 € ©1)).

When we say a test has level (size) «, we mean its Type I error probability
is controlled to be « (often exactly « in the worst case), and we often seek
tests that maximize power among those with a given size a.

In practice, we choose the critical value ¢ (and thus the rejection region
R) to achieve a desired size «. For example, we might choose ¢ such that
P(T,, > c¢| Hy) = a. This ensures P(Type I error) = a. We then hope that
for plausible alternatives, P(7T,, > ¢ | H;) is as large as possible (high power),
but there is usually a trade-off.

Traditionally, researchers often use a = 0.05 as a benchmark for “statistical
significance.” This choice is somewhat arbitrary (why not 0.01 or 0.107),
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and in some contexts a different significance level may be more appropriate.
Instead of focusing solely on a fixed «;, it is often useful to consider the p-value
of a test outcome:

Definition 5.3 (p-Value). Given the observed value ¢, of the test statis-
tic T,,, the p-value is the smallest significance level a at which the null
hypothesis would be rejected. Formally, it is

p-value = inf{a € (0,1) : tobs € R(ca)}s

where ¢, is the critical value that yields a test of size a. Equivalently, the
p-value is the probability (under Hy) of obtaining a test statistic as extreme
as or more extreme than the observed tgs.

A small p-value indicates that the observed data are very unlikely under Hy,
hence provides strong evidence against Hy. We reject Hy if the p-value is
less than our chosen «. For example, if we observe a p-value of 0.003, this
is much smaller than o = 0.05, so we would reject Hy (and typically report
the result as “significant at the 5% level” or even the 1% level, since 0.003
< 0.01).

It is crucial to understand that a large p-value does not constitute evidence
that Hj is true; it merely indicates a lack of evidence against Hy. A high
p-value could occur either because Hj is true or because Hy is false but our
test had low power or the particular sample did not exhibit a strong effect.

Having defined the general framework of hypothesis testing, we next discuss
specific common tests: two-sided tests for an equality hypothesis, and one-
sided tests for an inequality hypothesis.

5.4 Two-Sided Hypothesis Tests

Suppose we have a sample X, X,,..., X, w Fx (i.e. i.i.d. observations

from some distribution), and we are interested in a real-valued parameter
0 = 0(Fx) (for example, 6 could be E[X], the population mean). We have
an estimator 6§, for . In many cases, we know (or can derive) the approx-
imate sampling distribution of 6,. A very common situation is that 6, is
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asymptotically normal:

6, —0
4 N(0,1) as n — 00,

s.e.(6,,)

where s.e.(6,,) denotes the standard error of 6, (the standard deviation of its
sampling distribution, or an estimate of that). This was the case for many
estimators discussed in the previous chapter (by the Central Limit Theorem
or other large-sample results).

Now we consider testing whether 6 equals some specific value 6,. The hy-
potheses are:

H()I@ZQ(), HI:H%QO,

a two-sided hypothesis (the alternative allows 6 to be either less or greater
than ). Intuitively, if the estimator 6,, is much different from 6y, that would
be evidence against H,.

A naturalA choice of test statistic in this scenario is the standardized difference
between 6,, and the null value 6,:

0, — 0

s.e.(6,,)

n

We take the absolute value because departures on either side (too high or
too low relative to 6y) are both evidence against Hy. By taking 7}, to be non-
negative (absolute value), we can use a single rejection region of the form
T, > c. In words, if én is sufficiently far from 6, in either direction, we reject
H,.

How do we choose the critical value ¢? Under Hy (which specifies 6 = 6y), for
large n the statistic T;, shquld approximately follow a half-normal or (more

conveniently) we can say % ~ N(0,1). Thus T, = |Z]| for Z ~ N(0,1)

under Hj in the large-sample limit. We want
Py, (T, > ¢) = «,
to achieve size a. If Z ~ N(0,1),

P(Z] > ) =2[1 = @(0)],
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since P(|Z| > ¢) is the probability of falling in either tail beyond c. Setting
this equal to o, we get
2[1=9(c)] = a,

which implies 1 — ®(c) = a/2, so ®(c) = 1 — §. Thus c should be the 1 — §
quantile of the standard normal distribution. We denote this critical value
by

Yo =0 (1 3),
the (1 — §)-quantile of N(0,1). For example, if o = 0.05, then 1 — a/2 =
0.975, 8o zg.975 =~ 1.96. This is the familiar 1.96 appearing in 95% confidence
intervals and two-sided 5% tests.

The following theorem formalizes the justification of this test in large samples:

Theorem 5.4 (Asymptotic size of two-sided Z-test). Let 6, be an estimator
for 0 such that

0, —0
2 N(0,1).
s.e.(0,)
Consider the test statistic T, = Sé’;% . Then under Hy : 0 = 0y, we have

P(Tn > Z1—a)2 ‘ H, true) — «,

as n — oo. In other words, the test that rejects Hy of T, > z1_q/2 has
(asymptotic) size .

Proof. Under Hy, 6 = 6,. By assumption,

il _AQO 4 N(0,1) asn — oco.
s.e.(0,)

Let Z, = SéZT_;O) and note T,, = |Z,|. We want the probability of rejection:

P(T, > ¢ | Hy) = P(!Zn| >c|H0>
= P(Z,>c| Hy) + P(Z, < —c| Hy)
— 1= P(Zy < c| Hy) + P(Zy < —c| H)
— 1-P(Z, <c¢| Ho) + P(Z, < —c| Hy).
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As n — oo, Z, converges in distribution to N(0,1), so by the Continuous
Mapping Theorem the above probability converges to

1—P(Z<¢)+P(Z < —0),

where Z ~ N(0,1). But P(Z < —¢) = ®(—¢c) = 1 — ®(c) (since P is the
CDF of N(0,1)). Therefore the limit is

1—®(c)+(1—2(c)) = 2[1 —P(c)].
Setting ¢ = 21_q/2, by definition 1 —®(c) = /2. Thus 2[1-®(c¢)] = 2(a/2) =
«. This proves that

lim P(Tn > Z1—a)2 ’ H()) = «,

n—oo

as required. O
This result shows that for large n, our test rejects Hy with probability about
a when Hj is true (thus controlling the Type I error rate at «).

In practice, then, we reject Hy : 6 = 6, at significance level « if

0,, — 0o

s.e.(0,,)

n > Zl-a/2-

Equivalently, we can phrase the decision in terms of the p-value. The p-value
in this two-sided test is

p-value = 2 [1 — <I>(|zobs|)] :
én_?()
s.e.(6n)
®(|z|)) gives the two-tail area under the standard normal beyond the observed

|z|. We reject Hy at level « if and only if p-value < a.

where zghs = is the observed standardized value. This formula 2(1 —

Let’s derive that explicitly: the observed test statistic is T = |zgps|. The
p-value is the probability (under Hy) of seeing a result as extreme as what
we saw. “As extreme as” means |Z| > |zons| if Z ~ N(0,1). So

p-value = PHO(\Z| > \Zobs|) = 2[1 — O(|zons/)]-

Setting this equal to a and solving for |zns| yields |zohs| = 21-as2. Thus
rejection |Zops| > 21-qa/2 is equivalent to p-value < «, as it should be.
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Remark. In finite samples, if the distribution of the estimator is known,
one could use the exact critical value from that distribution. For example,
if X; are i.i.d. normal and §,, = X , and we estimate the variance from data,
then (X —6y)/(S/+/n) follows a Student ¢ distribution with n — 1 degrees of
freedom under H,. In that case, the exact finite-sample test would reject if
| X — 6| > tn_1,1-aj2 S/\/N, where t,_1 1_q/2 is the 1 — /2 quantile of ¢,,_;.
In large n, t,—1 0975 =~ 1.96 and the distinction blurs. In econometrics and
many large-sample settings, one often simply uses the normal approximation
as we have done, especially when n is moderate or large.

5.5 One-Sided Hypothesis Tests

We now consider testing a hypothesis where the alternative is one-sided.
There are two forms, depending on the direction of the inequality:

e Right-tailed test: Hj: 0 < 6y versus H; : § > 6. Here the alterna-
tive claims 6 is greater than some threshold 6y, and the null says 6 is
at most 6.

e Left-tailed test: H, : 0 > 0, versus H; : 8 < 0,. Here the alternative
claims 6 is less than 6.

Many practical questions lead to one-sided alternatives. For instance, in our
earlier example of returns to education, we might specifically hypothesize Hy:
“the return is non-positive (< 0)” against H;: “the return is positive (> 0)”.
This is a right-tailed test because the alternative is that € is greater than 0.

The testing framework is similar, but now “extreme” evidence against H
occurs only in one direction. We want to reject Hy only if 6, is sufficiently
larger than 6y (in a right-tailed test) or sufficiently smaller (in a left-tailed
test). We can adapt our test statistic accordingly so that, again, large values
of T,, favor the alternative:

- For Hy : 0 < 0y versus H; : 8 > 6y, a natural choice is

T, = On =00
s.e.(6,,)
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If the estimator 6,, is much bigger than 6y, then T, will be large (positive),
signaling evidence for Hy. If 6,, is below or near 6y, T, will not exceed the
threshold.

- For Hy : 0 > 6y versus H; : 6 < 0y, we can simply take the negative of the
above:

0, —0y  6,—0,

~

s.e.(6,,) s.e.(én)'

This way, if 6, is far below 6o, the test statistic 7, becomes large (positive),
indicating evidence for the alternative. (Equivalently, one could keep T,, =
(0, — 0y)/s.c. but then define the rejection region for a left-tailed test as
T, < —c, which is less convenient for a unified treatment. By flipping the
sign in T},, we maintain the convention of rejecting for 7;, exceeding a positive
critical value ¢.)

Now T, is (asymptotically) N(0,1) under the null hypothesis (since under
Hy, 0 = 6y and thus 6,, — 0 is centered at 0). We want to choose ¢ such that

Py, (T, > ¢) = a.

If T, = N(0,1) under Hy, then P(7,, > ¢) = 1 — ®(c¢). Setting this equal
to a gives 1 — ®(¢) = a, or ®(¢) = 1 — a. Therefore ¢ should be the 1 — «
quantile of the standard normal:

c=21_4=0"1-a).

For example, with a = 0.05, 295 ~ 1.645. The next theorem mirrors Theo-
rem [5.4] for the one-sided case:

Theorem 5.5 (Asymptotic size of one-sided test). Suppose Sée”(’ée) 4N (0,1)

asn — oo. For testing Hy : 0 < 6y vs. Hy : 0 > 0y, consider the test statistic

T, = Sé;’%;o). Then under Hy,

P(T, > z1-a | H) — «.

In other words, rejecting Hy when T, > z1_, yields an (asymptotic) level-a
test. An analogous result holds for the left-tailed test using T, = %.

Proof. Under Hy : 0 < 0, the “least favorable” case (that maximizes the
Type I error) is § = 6. So assume 6 = . Then as n grows large, T, =
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én;;o N N(0,1). We have

s.e.(6n)
P(T, >c|Hy) = 1—P(T,,<c| Hy)) — 1—®(c),
as n — oo. If we choose ¢ = z1_,, then 1 — ®(¢) =1 — (1 — a) = a. Thus
lim,, oo P(T), > z1-0 | Hy) = «, as required.
(The argument for the left-tailed test is similar: by defining T,, = (6y —

0,)/s.c., under Hy : 0 = 6, we again have T, 4 N(0,1), and P(T;, >
21-o|Ho) — «. Rejecting for large T,, corresponds to 6, being sufficiently
below 6y, as desired.) O

Thus, for a one-sided test at significance «, we reject Hy if
Tn > Z1—q-

In a right-tailed test, this means

N
~ > Zl—a
s.e.(0,)

and in a left-tailed test it means

A~

90 - en
s.e.(0,,)

> Z1—a-

Equivalently, we can report a p-value. In a one-sided test, the p-value is the
one-tail probability beyond the observed T,, under a N (0, 1) distribution. For

example, if our test statistic is 7}, = % (right-tailed test) and we observe
T = t, then
p-value = Py, (Z >t) =1 — ®(t).

If this p-value is below a, we reject Hy. For a left-tailed test (with 7,, = %
as defined above), the p-value would likewise be 1 — ®(t,ps), since we have
defined T, so that large values (in the right tail) indicate significance in either
case.

Example 5.6. (College wage example revisited) In the hypothesis Hy :
pypn = 600 vs Hy @ pypp < 600 (do college grads earn less than 600 on
average?), the alternative is left-tailed. We would construct

iy =600 600 — fiypy

T, = — = — .
s.e.(fiy)1) s.e.(fiy|1)
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If, say, fiy|1 from our sample is significantly below 600, T, will be large. We
reject Hy for T, > z1_o. At a = 0.05, this means 7T,, > 1.645. Equivalently,
we could compute the p-value: if the observed T, is, for instance, 2.0, then
the p-value = 1 — ®(2.0) ~ 0.0228. This is below 0.05, so we reject Hy and
conclude the average is significantly less than $600. On the other hand, if fiyy
was above 600, then 7, would likely be small (and possibly even negative, in
which case certainly T, is not > 1.645), and we would not reject Hy.

5.6 Hypothesis Tests and Confidence Inter-
vals

There is a close duality between hypothesis testing and confidence intervals.
In fact, constructing a confidence interval for a parameter can be viewed as
performing hypothesis tests for all possible parameter values and collecting
those values for which the test would not reject. This idea is formalized as
follows:

Consider testing . )
Hy:0=10y versus Hp:0 0,

at significance level «, for each possible value 6, € ©. For each 6, we imagine
plugging it into Hy and performing the corresponding two-sided test. Now
define

C, = {9~0 € O : the test fails to reject Hy : 6 = 6, at level a}.

In other words, C), is the set of all parameter values that are consistent with
the data at the « significance level (i.e. that would not be rejected by a
level-av test).

It turns out that C,, is exactly a (1 — «) confidence interval for #. This
is the reasoning behind the common teaching that “we reject Hy : 0 = 6, at
level « if and only if 6 lies outside the (1 — «) confidence interval for 6.”

Tllustration. Suppose our test statistic for Hy : 0 = 6, is

0, — 0o
s.e.(6,)

n )
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and we reject Hy when T, > z1_q/2 (this is the two-sided test we discussed
earlier). For a given candidate value 6y, the condition for not rejecting Hy is

T, < Z1—a/2-

This condition can be rewritten as:

il _AQO < 2o = —Z1-a2 S il _AGO < Z1-a)2

s.e.(6,) s.e.(60,,)
= —Zi_a)2 s.e.(én) < én — 0, < Z1_a/28.€ (én)
= —Zi_ap s.e.(én) +6, < 6, < Z1_a)25.€ (én) + 0,

The last line describes exactly the interval

[én — Z1—q)2 s.e.(én), 0, + —a)2 s.e.(én)] .
Thus
C, = {éo 0 € [0, + zl,a/zs.e.(énﬂ} = [ £ 210z 5.e.(6,)],

which is exactly the two-sided (1—«) confidence interval for  that we derived
in the previous chapter.

This confirms the duality: the confidence interval consists exactly of those
values that would not be rejected by a two-sided hypothesis test at the cor-
responding level. In practice, this means we can draw conclusions from con-
fidence intervals in lieu of performing explicit hypothesis tests. For example,
if a 95% CI for 6 is [2.1, 5.3], then Hy : 6 = 0 is clearly rejected at the 5%
level (since 0 is not in the interval). On the other hand, if the question of
interest is whether 6 is positive, we can see the entire 95% CI is positive,
which implies Hy : 6 < 0 would be rejected at 5

Remark 5.7. This duality holds generally under mild conditions: any confi-
dence set can be seen as the inversion of a family of tests. While we demon-
strated it for a symmetric two-sided interval, one-sided hypothesis tests sim-
ilarly correspond to one-sided confidence bounds. For instance, the set of
9~0 not rejected by a right-tailed test Hy : 6 < 0~0 vs Hy : 6 > 6’~0 is of the
form (—oo, 6, — z1_q s.e.(6,,)], which is a one-sided (1 — ) confidence bound
(lower bound) for . Thus, constructing confidence intervals is often a more
informative way to summarize hypothesis tests for all possible values.
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Summary

In this chapter, we reviewed the framework of hypothesis testing, which
complements estimation in statistical inference:

e We learned how to formulate null and alternative hypotheses to trans-
late substantive questions into statements about parameters.

e We defined test statistics and decision rules, and understood the types
of errors (Type I and II) that can occur.

e We usually fix a significance level o (Type I error rate) and determine
a critical value to control a. We introduced the concept of the p-value
as an evidence measure against H.

e We derived tests for two-sided hypotheses (testing equality) and one-
sided hypotheses (testing inequalities) using large-sample Z-statistics.
We showed how to compute critical values (e.g. zpo75 ~ 1.96 for a
two-sided 5% test, zp95 ~ 1.645 for a one-sided 5% test) and how to
calculate p-values for each case.

e Finally, we discussed the duality between confidence intervals and hy-
pothesis tests: a (1 — «) confidence interval is the set of parameter
values that would not be rejected at level a.

Equipped with these statistical tools, we are prepared to tackle causal in-
ference questions. We can formulate causal parameters of interest (the “es-
timands”), identify them under certain assumptions (using our probability
theory knowledge), estimate them from data, and then use confidence in-
tervals and hypothesis tests to draw conclusions about causal effects with
quantifiable uncertainty:.
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