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Chapter 4

Properties of Estimators

Introduction and Motivation

In earlier chapters, we reviewed probability theory as a language for charac-
terizing uncertainty. We introduced random variables and their distributions,
and discussed concepts to describe features of random variables (e.g. expec-
tation, variance). We also considered restrictions on joint distributions of
random variables. Armed with this probabilistic toolbox, we can now turn
to the central task of statistical inference: using data to learn about un-
known quantities of interest.

For example, in a returns-to-education study, a parameter of interest might
be the difference in average earnings between those who attended college and
those who did not. In notation, one such causal estimand is

τ = E[Yi(1)− Yi(0) | Di = 1 ] = E[Yi | Di = 1 ]− E[Yi | Di = 0 ],

where Yi(1) and Yi(0) denote person i’s potential earnings with and without
college education, and Di is an indicator for attending college. The quantity
E[Y | D = 1] − E[Y | D = 0] is a feature of the joint distribution of (Y,D)
in the population. In reality, however, we do not know this distribution
exactly; we only observe a finite sample of data. Statistics forms a bridge
between probability models and data, allowing us to use observed data to infer
the values of theoretical quantities like τ .

In this chapter, we introduce the formal concepts of estimators and their

3
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properties. We first define what an estimator is and explore various examples
of how one can construct estimators for a given parameter. We then examine
finite-sample properties of estimators, such as bias, variance, and mean
squared error (MSE), which describe the behavior of an estimator for a fixed
sample size. Next, we discuss large-sample (asymptotic) properties, in-
cluding consistency (whether an estimator approaches the true value as the
sample size grows) and the asymptotic distribution (how the estimator be-
haves for large n, often characterized by the Central Limit Theorem). We also
introduce tools like the Continuous Mapping Theorem and Slutsky’s Theo-
rem, which help derive properties of complex estimators. Finally, we show
how large-sample results lead to practical measures of uncertainty (standard
errors and confidence intervals), and we clarify the correct interpretation of
such intervals and estimates.

4.1 Estimators and Random Samples

4.1.1 Random Sampling and IID Data

Statistical inference typically assumes that our data come from a random
sample of the population of interest. Formally, we say random variables
X1, X2, . . . , Xn are independent if knowing the value of some Xi provides no
information about Xj for i ̸= j, and they are identically distributed if all Xi

share the same probability distribution F . When both conditions hold, we
write

X1, X2, . . . , Xn
iid∼ F,

meaning the sample X1, . . . , Xn consists of n independent draws from the dis-
tribution F . This is the mathematical idealization of drawing n observations
at random from a population described by F . We will primarily (though not
exclusively) consider the iid sampling framework in this text.

Example 4.1 (IID vs. Merely Independent or Identical). Suppose X1 ∼
N(µ1, σ

2
1) andX2 ∼ N(µ2, σ

2
2) are two independent normal random variables.

If µ1 = µ2 and σ2
1 = σ2

2, then X1 and X2 are not only independent but also

identically distributed (in fact, X1, X2
iid∼ N(µ1, σ

2
1)). If, however, µ1 ̸= µ2

(or σ2
1 ̸= σ2

2), then while X1 and X2 are independent, they are not identically
distributed. Conversely, if X1 and X2 share the same distribution but are
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not independent, then they are identically distributed but not independent.
The term iid requires both properties to hold.

Notation: Sometimes we abuse notation by writing X1, . . . , Xn
iid∼ X to

mean that each Xi has the same distribution as some random variable X.
This is just a shorthand indicating iid sampling from the distribution of X.
We will also often omit explicit mention of the underlying distribution or
probability measure when the context is clear (e.g. writing E[X] instead of
EF [X] to denote expectation under distribution F ).

4.1.2 Parameters, Estimands, and Estimators

In many situations, we are interested not in the entirety of the distribution
F , but in some specific numerical feature of it. Such features are called
parameters (or estimands). For instance, the population mean µ = E[X] is
a parameter of the distribution of a random variable X. Other examples of
parameters include a population variance σ2 = Var(X), a population median,
a regression coefficient in a linear model, or the causal effect τ mentioned
earlier. In general, think of a parameter θ as a fixed (but unknown) number
that we want to learn about, which is defined as some functional of the
population distribution.

An estimator is a rule or formula that produces a guess for the value of a
parameter, using sample data. Formally, an estimator θ̂n = θ̂n(X1, . . . , Xn)
is a function of the observed sample (X1, . . . , Xn). Because it is a function of
random variables, an estimator θ̂n is itself a random variable. The outcome of
applying the estimator to a particular observed dataset is called an estimate
(a realized value of the estimator).

It is important to distinguish conceptually between the true parameter θ and
an estimator θ̂n. The parameter θ is a fixed, non-random number describing
the population (often unknown to us), whereas the estimator θ̂n is random
due to its dependence on the random sample. We use the estimator’s observed
value (the estimate) as our best guess for the true θ. In notation, it is common
to denote parameters by Greek letters (e.g. θ, µ, β) and use a “hat” to denote
the estimator (e.g. θ̂n) based on a sample of size n.

Example 4.2 (Estimators for the Population CDF). A fundamental example
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of an estimator is the empirical cumulative distribution function (empirical
CDF). Let F (x) = P (X ≤ x) be the true cumulative distribution function of
a random variable X. Given an iid sample X1, . . . , Xn ∼ F , we can estimate
F (x) by the proportion of sample points ≤ x. Define

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x},

where 1{·} is the indicator function. F̂n(x) is the sample CDF: for each
x, it counts the fraction of observations that do not exceed x. F̂n(x) is an
estimator of F (x) because intuitively, the fraction of the sample less than or
equal to x should be close to the probability of a random observation being
≤ x.

The empirical CDF F̂n provides a non-parametric estimate of the entire dis-
tribution F . Moreover, it illustrates the sample analogue principle: to
estimate a feature of the distribution, use the analogous feature of the empir-
ical distribution. For example, if our parameter of interest is F (x) itself, we
plug in the empirical distribution to get F̂n(x). If the parameter of interest
is something like P (X ∈ A) for some event A, the sample analogue would
be the proportion of the sample falling in A. In the next example, we apply
this principle to estimate mean and variance.

Example 4.3 (Sample Mean and Sample Variance). Consider again an iid
sample X1, . . . , Xn ∼ F with unknown population mean µ = E[X] and
variance σ2 = V ar(X). The sample mean

µ̂n =
1

n

n∑
i=1

Xi

is the estimator obtained by taking the expectation with respect to the em-
pirical CDF F̂n. In other words, µ̂n = En[X], where En denotes expectation
under the empirical distribution (assigning probability 1/n to each observed
value). This is exactly the sample analogue of the population mean.

Similarly, the sample variance

σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)
2
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is the sample analogue of the population variance (it is the variance of the
empirical distribution F̂n). σ̂2

n is a natural estimator for σ2 = E[(X − µ)2].
Note that we divide by n here (the definition following directly from the
empirical distribution). In practice, an adjusted version with n − 1 in the
denominator is often used; we will discuss the reason for that adjustment
later.

Both µ̂n and σ̂2
n are functions of the sample and hence are random variables.

Before seeing any data, µ̂n might take different values for different samples.
After observing data, we obtain concrete numbers (the estimates) for µ̂n and
σ̂2
n.

The sample analogue principle is a powerful guideline, but it is not the only
way to construct estimators. Another common approach is to define an
estimator as the value that optimizes some criterion (often related to a loss
or likelihood function). Such extremum estimators include least-squares and
maximum likelihood estimators.

For instance, suppose we want to estimate the mean µ = E[X]. We could de-
fine an estimator as the number that minimizes the sum of squared deviations
of the data:

µ̂n = argmin
m∈R

n∑
i=1

(Xi −m)2.

This is a least-squares estimator for µ. To find the minimizer, we set the
derivative to zero:

∂

∂m

n∑
i=1

(Xi −m)2 = −2
n∑

i=1

(Xi −m) = 0,

which yields
∑n

i=1Xi − nm = 0 and hence m = 1
n

∑n
i=1Xi. Therefore the

solution is µ̂n = 1
n

∑n
i=1Xi, which is exactly the sample mean. In this case,

the extremum approach agrees with the sample analogue principle.

Extremum estimation is a broad class: many estimators in econometrics
and machine learning (e.g. OLS, MLE, GMM) are defined as the minimizer
or maximizer of some sample criterion. They often coincide with intuitive
sample analogues of population defining conditions (such as “moments” or
likelihood equations).
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4.1.3 Multiple Estimators for the Same Parameter

For any given parameter, there can be many different reasonable estimators.
Not all estimators are equally good, and one goal of statistics is to develop
criteria to compare and choose among estimators.

Example 4.4 (Four Estimators for a Mean). Suppose X1, . . . , Xn
iid∼ F with

mean µ = E[X]. Consider the following four estimators for µ:

1. µ̂
(1)
n = 0. (Ignore the data completely and always estimate µ as 0.)

2. µ̂
(2)
n = X1. (Use the first observation as the estimate.)

3. µ̂
(3)
n = 1

n

∑n
i=1Xi. (The sample mean, as before.)

4. µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi for some fixed λ > 0. (A “shrunk” version of the

sample mean that slightly down-weights the data.)

Each of these is a legitimate estimator in the sense that it is a function of
the sample. Intuitively, µ̂

(1)
n will be useful only in degenerate cases (perhaps

if we a priori know µ is near 0). µ̂
(2)
n uses minimal information from the

sample, so we might expect it to be inefficient. µ̂
(3)
n is the natural estimator.

µ̂
(4)
n introduces a small bias on purpose by adding λ to the divisor; this kind

of adjustment might reduce variance.

Which estimator is best? We need formal criteria to compare them. In the
next section, we introduce several finite-sample properties (bias, variance,
mean squared error) that help to evaluate and rank estimators. Ultimately,
one often prefers an estimator that balances small bias and small variance.

4.1.4 The Sampling Distribution of an Estimator

Because an estimator θ̂n = θ̂n(X1, . . . , Xn) is a random variable, it has a
probability distribution of its own. This is known as the sampling distribution
of the estimator. The sampling distribution describes how the estimator
would vary if we repeated the data-generating process many times (each
time producing a new sample and hence a new estimate).



4.2. FINITE-SAMPLE PROPERTIES OF ESTIMATORS 9

For example, if µ̂n = 1
n

∑n
i=1Xi is the sample mean of iid draws from F ,

then the sampling distribution of µ̂n is the distribution of 1
n

∑n
i=1Xi. We

will often summarize or approximate this distribution to make inferences (as
we will see with the Central Limit Theorem).

Sampling distributions often depend on n. For instance, the variance of µ̂n for
iid data is V ar(µ̂n) = σ2/n, which shrinks with n. In general, finite-sample
properties of an estimator refer to exact properties of its distribution for
each fixed n. Large-sample (asymptotic) properties refer to limiting or
approximate properties as n → ∞. Both are important: finite-sample anal-
ysis tells us about performance in a given sample, while asymptotic analysis
tells us the long-run behavior as data become plentiful.

The next sections discuss key finite-sample properties (bias, variance, MSE)
and then asymptotic properties (consistency and distributional approxima-
tion).

4.2 Finite-Sample Properties of Estimators

4.2.1 Bias

We first consider the notion of bias, which measures the systematic error in
an estimator.

Definition 4.5 (Bias). The bias of an estimator θ̂n for a parameter θ is
defined as the difference between its expectation and the true value:

Bias(θ̂n) = E[θ̂n]− θ.

If Bias(θ̂n) = 0, we say θ̂n is unbiased. If E[θ̂n] < θ, the estimator is
downward biased (it underestimates on average). If E[θ̂n] > θ, it is up-
ward biased.

Unbiasedness is a desirable property: an unbiased estimator, on average, hits
the true parameter. However, as we will see later, unbiasedness is not the
only consideration for a good estimator (an unbiased estimator might have
a large variance, making it unreliable in any given sample).
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Example 4.6 (Bias of the Four Mean Estimators). Consider the four esti-
mators from Example 4.4 for the mean µ = E[X] of an iid sample. We can
compute their bias as follows:

Bias(µ̂(1)
n ) = E[0]− µ = 0− µ = −µ,

Bias(µ̂(2)
n ) = E[X1]− µ = µ− µ = 0,

Bias(µ̂(3)
n ) = E

[
1

n

n∑
i=1

Xi

]
− µ =

1

n

n∑
i=1

E[Xi]− µ =
1

n
(nµ)− µ = 0,

Bias(µ̂(4)
n ) = E

[
1

n+ λ

n∑
i=1

Xi

]
− µ =

1

n+ λ

n∑
i=1

E[Xi]− µ

=
nµ

n+ λ
− µ = − λ

n+ λ
µ.

Thus µ̂
(1)
n is biased (unless µ = 0); it underestimates µ on average (for µ > 0)

by an amount |µ|. µ̂(2)
n and µ̂

(3)
n are unbiased estimators of µ. The estimator

µ̂
(4)
n is biased: it underestimates µ by − λ

n+λ
µ (note this bias is negative if

µ > 0 and positive if µ < 0). The bias of µ̂
(4)
n depends on the unknown µ

itself, which is often the case for biased estimators introduced via a constant
like λ. However, observe that the bias of µ̂

(4)
n shrinks as n grows (for fixed

λ). In fact, Bias(µ̂
(4)
n ) → 0 as n → ∞, which foreshadows that µ̂

(4)
n can still

be useful in large samples.

This example shows that it is easy to create an unbiased estimator (e.g. µ̂
(2)
n

or µ̂
(3)
n ). Unbiasedness alone does not tell us which unbiased estimator is

better.

Example 4.7 (Bias of the Sample Variance). Consider the sample vari-
ance σ̂2

n = 1
n

∑n
i=1(Xi − µ̂n)

2 from Example 4.3, which is an estimator for
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V ar(X) = σ2. We can expand σ̂2
n as follows:

σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)
2

=
1

n

n∑
i=1

(X2
i − 2Xiµ̂n + µ̂2

n)

=
1

n

n∑
i=1

X2
i −

2µ̂n

n

n∑
i=1

Xi +
1

n

n∑
i=1

µ̂2
n

=
1

n

n∑
i=1

X2
i − µ̂2

n.

(The cross term simplified because 1
n

∑n
i=1 Xi = µ̂n.) Now, taking expecta-

tion:

E[σ̂2
n] = E

[
1

n

n∑
i=1

X2
i

]
− E[µ̂2

n] =
1

n

n∑
i=1

E[X2
i ]− V ar(µ̂n)− [E(µ̂n)]

2.

Since E[X2
i ] = V ar(X)+[E(X)]2 = σ2+µ2, and E[µ̂n] = µ, V ar(µ̂n) = σ2/n,

we get

E[σ̂2
n] = σ2 + µ2 − σ2

n
− µ2 = σ2

(
1− 1

n

)
.

Thus

Bias(σ̂2
n) = E[σ̂2

n]− σ2 = − 1

n
σ2.

The sample variance with denominator n is biased downward : its expectation
is slightly less than the true variance σ2. The bias is −σ2/n, which for finite
n is nonzero (unless σ2 = 0), but the bias tends to 0 as n → ∞.

Can we construct an unbiased estimator for V ar(X)? Yes: noting the above
result, if we multiply σ̂2

n by n
n−1

, the expectation will become σ2. Specifically,
define

σ̃2
n =

n

n− 1
σ̂2
n =

1

n− 1

n∑
i=1

(Xi − µ̂n)
2.

This σ̃2
n is the usual unbiased sample variance formula (with n − 1 in the

denominator). Indeed E[σ̃2
n] =

n
n−1

E[σ̂2
n] =

n
n−1

σ2(1 − 1
n
) = σ2. In practice,

many statistical software packages use n − 1 in the denominator for sample
variance by default for exactly this reason.
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4.2.2 Variance of an Estimator

Bias measures the accuracy of an estimator in terms of its average (expected)
value. The other side of the coin is the estimator’s variance, which measures
the precision or reliability of the estimator across different samples.

Definition 4.8 (Variance of an Estimator). The variance of an estimator
θ̂n is

V ar(θ̂n) = E
[
(θ̂n − E[θ̂n])

2
]
.

The positive square root of V ar(θ̂n) is called the standard deviation of
the estimator. When referring to estimates, this is often called the standard
error (SE).

The variance of an estimator describes how much the estimator fluctuates
around its expected value. If θ̂n has high variance, different samples would
give very different estimates. If it has low variance, the estimates would
be tightly clustered around E[θ̂n]. Note that if an estimator is unbiased,
E[θ̂n] = θ, so V ar(θ̂n) = E[(θ̂n − θ)2] in that case (the variance equals the
mean squared error, as we will formalize soon).

Example 4.9 (Variance of the Four Mean Estimators). For the four estima-
tors of µ in Example 4.4, we have:

V ar(µ̂(1)
n ) = V ar(0) = 0,

V ar(µ̂(2)
n ) = V ar(X1) = σ2,

V ar(µ̂(3)
n ) = V ar

( 1
n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V ar(Xi) =
1

n2
(nσ2) =

σ2

n
,

V ar(µ̂(4)
n ) = V ar

( 1

n+ λ

n∑
i=1

Xi

)
=

1

(n+ λ)2
(nσ2) =

nσ2

(n+ λ)2
.

We used the fact that V ar(
∑n

i=1 Xi) = nσ2 for independent draws. (Strictly

speaking, the last formula for V ar(µ̂
(4)
n ) is correct when Xi’s are independent

and λ is treated as fixed. If λ were random or depending on data, the formula
would be more complex, but here λ is a fixed constant.)

A few observations: µ̂
(1)
n (the always-0 estimator) has zero variance (it does

not vary at all—it is completely certain in its guess, albeit wrong unless
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µ = 0). µ̂
(2)
n (just one observation) has variance σ2, the same as an individual

X. µ̂
(3)
n (sample mean) has variance σ2/n, which is much smaller for large

n—this reflects the benefit of averaging many observations, smoothing out
the noise. µ̂

(4)
n has variance n

(n+λ)2
σ2. For large n, this is approximately

σ2/n (since n/(n + λ)2 ≈ 1/n for large n). For small n, µ̂
(4)
n actually has

slightly smaller variance than µ̂
(3)
n because n

(n+λ)2
< 1

n
for any λ > 0. For

example, if n = 10 and λ = 1, V ar(µ̂
(3)
n ) = σ2/10 whereas V ar(µ̂

(4)
n ) =

10σ2/112 ≈ 0.826 (σ2/10), about 17% smaller variance than µ̂
(3)
n . Of course,

we saw earlier that µ̂
(4)
n is biased, so we have a bias–variance trade-off at play.

Notably, V ar(µ̂
(2)
n ), V ar(µ̂

(3)
n ), and V ar(µ̂

(4)
n ) all involve the unknown σ2 (the

population variance). In practice, we might plug in an estimate of σ2 (like
σ̂2
n) to estimate the variances of these estimators. But conceptually, when

comparing the theoretical performance of estimators, we treat σ2 as given
and see how the variances scale with n.

To visualize why considering both bias and variance is important, imagine
the “sampling distribution” of an estimator as a target (with the true value as
the bullseye). An estimator with low bias but high variance will on average
hit near the bullseye, but any single shot might be far off (points widely
scattered around the target). An estimator with low variance but high bias
will hit close together, but consistently off-center from the bullseye. Ideally,
we want both low bias and low variance.

Figure 4.1 provides an illustration of the sampling distributions for three
of the estimators for µ discussed above (except the degenerate µ̂

(1)
n ). In the

figure, we assume µ = 1 and σ2 = 1 for the population, and n = 10. The blue
curve is the distribution of µ̂

(2)
n (just X1), which is N(1, 1) in this case (mean

1, variance 1) – fairly spread out. The red curve is the distribution of µ̂
(3)
n

(sample mean), which is N(1, 0.1) (mean 1, variance 0.1), a much narrower

distribution. The green curve is for µ̂
(4)
n with λ = 1. If we account for bias

exactly, µ̂
(4)
n would be centered at 10

11
≈ 0.909 with variance 0.0826. In the

figure, for simplicity of illustration, we have drawn it roughly as N(1, 0.09) –
essentially the same center as the others, but slightly smaller variance than
the red curve. In reality, its distribution is shifted slightly left due to bias.
The figure highlights how µ̂

(3)
n and µ̂

(4)
n concentrate more tightly around the

true mean compared to µ̂
(2)
n .
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Figure 4.1: Sampling distributions of three estimators for µ, with n = 10,
µ = 1, σ2 = 1. The blue distribution (widest) is for µ̂

(2)
n = X1; the red

(narrower) is for µ̂
(3)
n = X̄; the green (narrowest) is for µ̂

(4)
n with λ = 1.

The biased estimator µ̂
(4)
n is drawn here centered at 1 for visual comparison,

though in reality its mean is slightly below 1. This figure illustrates that using
more data (or shrinking the estimate) concentrates the estimator closer to
the true value, reducing variance.

We see that µ̂
(3)
n (sample mean) yields a much tighter distribution around

the true µ than µ̂
(2)
n does, without any bias. µ̂

(4)
n has a tiny bias but an even

tighter distribution in this example. To decide which estimator is preferable,
we might consider a combined measure of error that accounts for both bias
and variance. One such measure is the mean squared error, discussed next.

4.2.3 Mean Squared Error (MSE)

A commonly used overall measure of an estimator’s quality is the mean
squared error.

Definition 4.10 (Mean Squared Error). The mean squared error of an
estimator θ̂n for θ is defined as

MSE(θ̂n) = E
[
(θ̂n − θ)2

]
.

MSE is the expected squared deviation of the estimator from the true pa-
rameter value. It captures in one number both the variance and the bias of
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the estimator.

Expanding the square, we can express the MSE in terms of bias and variance:

Proposition 4.11 (Bias–Variance Decomposition). For any estimator θ̂n,

MSE(θ̂n) = Bias(θ̂n)
2 + V ar(θ̂n).

Proof. By definition (θ̂n−θ)2 = (θ̂n−E[θ̂n]+E[θ̂n]−θ)2. Expanding this, we
get (θ̂n−E[θ̂n])

2+2(θ̂n−E[θ̂n])(E[θ̂n]−θ)+(E[θ̂n]−θ)2. Taking expectation:
E[(θ̂n−E[θ̂n])

2] + 2(E[θ̂n]− θ)E[θ̂n−E[θ̂n]] + (E[θ̂n]− θ)2. The middle term

is zero (because E[θ̂n − E[θ̂n]] = 0). So we have V ar(θ̂n) +
(
E[θ̂n] − θ

)2
=

V ar(θ̂n) +Bias(θ̂n)
2.

Thus MSE combines the variance and the square of the bias. For an unbiased
estimator, MSE = V ar(θ̂n), since bias is zero. If an estimator has bias, MSE
includes that penalty as well.

Example 4.12 (MSE Comparison). Let’s revisit the hypothetical estimators
from a previous example to see the importance of the bias–variance trade-off.
Consider two estimators of some parameter θ = 0: - θ̂1 takes value −100 or
100, each with probability 0.5. - θ̂2 always takes the value 1 (with probability
1).

θ̂1 is unbiased: E[θ̂1] = 0 · 0.5 + 0 · 0.5 = 0 = θ. θ̂2 is biased: E[θ̂2] = 1 ̸= 0
(bias = 1). Now consider their MSE:

MSE(θ̂1) = E[(θ̂1 − 0)2] = 0.5 · (−100)2 + 0.5 · (100)2

= 0.5(10000) + 0.5(10000) = 10000,

MSE(θ̂2) = E[(θ̂2 − 0)2] = (1− 0)2 = 1.

According to MSE, θ̂2 is far superior (MSE 1 vs 10000), even though θ̂2
is biased and θ̂1 is unbiased. The intuition is clear: θ̂1 occasionally makes
enormous errors (off by 100), which is devastating for MSE, whereas θ̂2 is
always off by 1 (small but systematic error). In most practical situations,
we would prefer an estimator like θ̂2 (with small, possibly nonzero bias and
small variance) over θ̂1 (with zero bias but wildly high variance).

This toy example highlights that unbiasedness alone isn’t a guarantee of a
good estimator; one must account for variance as well.
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The bias–variance trade-off is a fundamental concept. Often, by allowing a
slight bias in an estimator, one can substantially reduce its variance, yielding
a lower MSE. Conversely, forcing an estimator to be unbiased can sometimes
result in higher variance. Figure 4.2 conceptually illustrates how the total er-
ror (MSE) can sometimes be minimized at an intermediate model complexity
or estimator sophistication, where neither bias nor variance is extreme. (In
machine learning, for instance, a very simple model has high bias/low vari-
ance, while a very flexible model has low bias/high variance; an intermediate
model can minimize prediction error.)

0 2 4 6 8 10

0

10

20

Model/Estimator Complexity

E
rr
or

Bias2

Variance
Total MSE

Figure 4.2: Illustration of Bias–Variance Trade-off. As the complexity of a
model or estimator increases, bias typically decreases but variance increases.
The total mean squared error is the sum of bias2 and variance, and it is
minimized at an intermediate level of complexity (neither too simple nor too
flexible).

In the context of our earlier estimators for µ, µ̂
(2)
n (one observation) and µ̂

(3)
n

(sample mean) were both unbiased, but µ̂
(3)
n had much smaller variance, so

it would be preferred (lower MSE). When we compared µ̂
(4)
n (slightly biased)

to µ̂
(3)
n , we saw that for n = 10, λ = 1 in a particular scenario, µ̂

(4)
n had a

slightly lower MSE than µ̂
(3)
n (roughly 0.09 vs 0.10 in that example). That

suggests µ̂
(4)
n might be preferred if we only care about MSE. However, this

advantage depends on the true parameter values (here µ and σ2) and on λ.
In general, when designing an estimator, one might tune a parameter (like
λ) to minimize MSE.
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Exercise 4.13. For the estimator µ̂
(4)
n in Example 4.4, derive an expression

for its MSE in terms of µ, σ2, n, and λ. Find the value of λ (in terms of µ,
σ2, n) that minimizes this MSE. Discuss how the optimal λ depends on µ
and σ2. (Hint: You will find that the optimal λ is 0 if µ = 0, but becomes
larger as |µ| grows relative to σ.)

4.3 Large-Sample Properties of Estimators

In finite samples, we saw that bias and variance can depend on unknown
population parameters, which can make it hard to definitively choose the
“best” estimator without knowing θ. For example, in the last section:

� Bias(µ̂
(4)
n ) = − λ

n+λ
µ depends on µ,

� V ar(µ̂
(2)
n ) and V ar(µ̂

(3)
n ) depend on σ2,

� V ar(µ̂
(4)
n ) depends on both µ and σ2.

Without knowing µ or σ2, we cannot directly compute or compare the exact
MSEs of these estimators. This is a common dilemma: the performance of
an estimator often depends on the very quantity it is trying to estimate (or
other unknown aspects of the distribution).

Rather than asking “Which estimator is best for this fixed sample size n?”
(which might require knowledge we don’t have), we often ask a slightly dif-
ferent question: Which estimator will perform best (or adequately well) in
the long run as we gather more and more data? In other words, we shift
focus to asymptotic properties: what happens as n → ∞? An estimator
that performs arbitrarily well with enough data can be deemed a sensible
choice, even if we cannot be sure it is optimal for small n.

In the large-sample analysis, two concepts are fundamental:

1. Consistency: Does θ̂n converge to the true θ as n → ∞? (In proba-
bility, or almost surely, etc.)

2. Asymptotic distribution: If we rescale θ̂n appropriately, does it have
a well-defined distributional limit as n → ∞ (often a normal distribu-
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tion)? This provides approximations to the sampling distribution for
large n.

To discuss these, we first need to introduce the formal notions of convergence
for random variables.

4.3.1 Convergence in Probability and Consistency

We start with the idea of a sequence of random variables converging in prob-
ability to some value. This concept parallels the usual definition of conver-
gence for deterministic sequences, but now the “closeness” must happen with
probability approaching 1.

Definition 4.14 (Convergence in Probability). LetX1, X2, . . . be a sequence
of random variables, and let X be another random variable (often a constant
degenerate random variable). We say Xn converges in probability to X,
written

Xn
p−→ X,

if for every ϵ > 0,

P (|Xn −X| > ϵ) → 0 as n → ∞.

In words, Xn
p−→ X means that the probability that Xn differs from X by

more than an arbitrary small threshold ϵ goes to zero as n becomes large.
Equivalently, for large n, Xn is very likely to be within an ϵ-neighborhood
of X. Convergence in probability is sometimes called weak convergence in
probability and is one of several modes of convergence (another common one
is almost sure convergence, which is stronger, but we’ll not delve into that
here).

Now, applying this concept to estimators, we define consistency:

Definition 4.15 (Consistency). An estimator θ̂n for parameter θ is consis-
tent if θ̂n converges in probability to θ:

θ̂n
p−→ θ (n → ∞).
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Thus, θ̂n is consistent if for any ϵ > 0, no matter how small, eventually with
enough data the estimator will be within ϵ of the true θ with high probability.
Intuitively, a consistent estimator “homes in” on the right answer as n grows.

Consistency is often viewed as a minimal requirement for an estimator: an
inconsistent estimator will not give the right answer even with infinite data,
so it is usually not acceptable. If an estimator is not consistent, we typically
discard it in favor of one that is (assuming one exists).

Example 4.16 (Consistency of Simple Estimators). Consider again the four
estimators of µ from Example 4.4:

� µ̂
(1)
n = 0 is not consistent for µ (unless µ really equals 0). For any

ϵ < |µ|, we have P (|µ̂(1)
n − µ| > ϵ) = P (|µ| > ϵ), which is either 0 (if

µ = 0 or if ϵ > |µ|) or 1 (if 0 < ϵ < |µ|). If µ ̸= 0, this probability does

not go to 0 as n → ∞; it is constantly 1. So µ̂
(1)
n ̸ p−→ µ for µ ̸= 0.

� µ̂
(2)
n = X1 is also not consistent for µ. Since X1 is an iid draw from

distribution with mean µ, P (|X1 − µ| > ϵ) is some number less than
1 (assuming the distribution has some spread). For example, if X1 ∼
N(µ, σ2), then P (|X1 − µ| > ϵ) = 2[1 − Φ(ϵ/σ)], which is > 0 for
any fixed ϵ. As n increases, X1 does not change (it’s always the first
observation), so P (|X1−µ| > ϵ) does not tend to 0; it remains whatever
it is. Thus X1 is not converging to µ in probability. Intuitively, one
data point does not “magically” become equal to the true mean just
because we could have collected more data (but didn’t use them).

� µ̂
(3)
n = 1

n

∑n
i=1Xi is consistent for µ, under very general conditions (for

example, finite mean suffices). This is guaranteed by the Weak Law of
Large Numbers, stated below.

� µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi. We expect this to also be consistent, since it is

very close to µ̂
(3)
n for large n (the extra λ becomes negligible). We will

show consistency of µ̂
(4)
n after introducing a couple more tools.

The upshot: using no data or only a fixed number of data points generally
gives inconsistent estimators. Using all the data and averaging in a reason-
able way can yield consistency.
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The most famous result establishing consistency of the sample mean (and
analogues) is the Law of Large Numbers. We present the weak version (con-
vergence in probability).

Theorem 4.17 (Weak Law of Large Numbers (WLLN)). Let X1, X2, . . . , Xn

be iid random variables with finite mean E[Xi] = µ (and finite variance,
though finite mean is enough for the weak law). Then:

1

n

n∑
i=1

Xi
p−→ µ.

That is, the sample average converges in probability to the true mean.

Proof (using Chebyshev’s Inequality). First, E
[
1
n

∑n
i=1Xi

]
= µ by linearity,

and V ar
(
1
n

∑n
i=1Xi

)
= 1

n2nV ar(X1) = σ2

n
if V ar(X1) = σ2 < ∞. Now for

any ϵ > 0, by Chebyshev’s inequality (which states P (|Y − E[Y ]| > ϵ) ≤
V ar(Y )/ϵ2 for any random variable Y with finite variance):

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ϵ

)
≤

V ar
(
1
n

∑n
i=1Xi

)
ϵ2

=
σ2/n

ϵ2
=

σ2

nϵ2
.

As n → ∞, the right-hand side σ2

nϵ2
→ 0. Thus P (|X̄n − µ| > ϵ) → 0, which

by definition means X̄n
p−→ µ.

The Weak Law of Large Numbers formalizes the intuitive idea that averages
become stable as sample size grows. In practice, it justifies using sample
means to estimate expected values.

By the WLLN, µ̂
(3)
n = X̄ → µ in probability, so µ̂

(3)
n is consistent for µ. This

is one reason the sample mean is so ubiquitous: it is a simple estimator that
(under mild conditions) is unbiased and consistent for the population mean.

Now, what about µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi? We can express it as

µ̂(4)
n =

n

n+ λ
· 1
n

n∑
i=1

Xi =
n

n+ λ
X̄n.

We know X̄n
p−→ µ (by WLLN). Also, the factor n

n+λ
is a sequence of constants

(not random) that converges to 1 as n → ∞. Thus n
n+λ

→ 1. The product of
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these two sequences should converge to 1 ·µ = µ. This intuition is formalized
by the Continuous Mapping Theorem (introduced below), but we can argue
directly: for any ϵ > 0,

|µ̂(4)
n −µ| =

∣∣∣∣ n

n+ λ
X̄n − µ

∣∣∣∣ ≤ ∣∣∣∣ n

n+ λ
X̄n − X̄n

∣∣∣∣+|X̄n−µ| =
∣∣∣∣ λ

n+ λ

∣∣∣∣·|X̄n|+|X̄n−µ|.

As n → ∞, λ
n+λ

→ 0 and typically |X̄n| will not grow without bound (in
fact, it converges in probability to a finite number µ). More rigorously,
one can show | λ

n+λ
X̄n| converges to 0 in probability (since it’s bounded by

λ
n+λ

(|µ| + |X̄n − µ|) and that goes to 0 in probability). Meanwhile |X̄n − µ|
goes to 0 in probability by WLLN. Hence the sum goes to 0 in probability.
Therefore, µ̂

(4)
n

p−→ µ as well. (A more straightforward method is to invoke
the Continuous Mapping Theorem as we will soon.)

To proceed systematically for more complex scenarios, we introduce a couple
of general results: one for joint convergence of multiple random quantities,
and one for continuous transformations of convergent sequences.

4.3.2 Joint Convergence and Continuous Mapping

Often we deal with multiple estimators or multiple components simultane-
ously. For instance, (X̄, V̂ ar(X)) might be a pair of estimators for (E[X], V ar(X)).
We might want to say this pair converges in probability to (µ, σ2). The follow-
ing result helps: it states that convergence in probability of each component
implies convergence of the vector of components.

Theorem 4.18. If X1,n
p−→ θ1, X2,n

p−→ θ2, . . . , Xk,n
p−→ θk as n → ∞, then

the random vector
(
X1,n, X2,n, . . . , Xk,n

)
converges in probability to (θ1, θ2, . . . , θk).

Symbolically:

Xj,n
p−→ θj for each j = 1, . . . , k =⇒ (X1,n, . . . , Xk,n)

p−→ (θ1, . . . , θk).

We will not prove this formally (it follows from definitions and a union bound
inequality). Intuitively, if each component gets arbitrarily close to the corre-
sponding true value with high probability, then the whole collection will get
close to the true vector with high probability.
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Next, the Continuous Mapping Theorem (CMT) allows us to take a con-
vergent sequence of random variables and apply a continuous function to it,
preserving convergence.

Theorem 4.19 (Continuous Mapping Theorem). Let g : Rk → Rm be a
continuous function, and suppose Xn is a random vector in Rk such that
Xn

p−→ a (a constant vector in Rk). Then

g(Xn)
p−→ g(a).

In particular, if Xn
p−→ a ∈ R and g : R → R is continuous at a, then

g(Xn)
p−→ g(a).

The idea is straightforward: continuous functions preserve limits. The re-
quirement that g is continuous (at the point in question) is important; if
g has a discontinuity, convergence might not carry through (e.g., Xn might
converge to a point where g jumps).

Example 4.20 (Applying CMT). Suppose An
p−→ a and Bn

p−→ b for some
constants a, b with b ̸= 0. Consider the function g(x, y) = x

y
. This g is

continuous at (a, b) (assuming b ̸= 0 so there’s no division-by-zero issue,
which is why we require b ̸= 0). By the CMT,

An

Bn

= g(An, Bn)
p−→ g(a, b) =

a

b
.

Other simple corollaries: If An
p−→ a and Bn

p−→ b, then An + Bn → a + b,
AnBn → ab,

√
An →

√
a (assuming a ≥ 0 so

√
· is continuous at a), and so

on.

Using joint convergence (Theorem 4.18) and CMT, we can now easily estab-

lish the consistency of µ̂
(4)
n and σ̂2

n, as promised:

Example 4.21 (Consistency of µ̂
(4)
n ). We had µ̂

(4)
n = n

n+λ
· 1

n

∑n
i=1Xi =

g(An, Bn) where An = n
n+λ

andBn = 1
n

∑n
i=1 Xi, and g(a, b) = a·b. Here An is

a sequence of (non-random) numbers converging to 1, and by WLLN Bn
p−→ µ.

Thus by Theorem 4.18, (An, Bn)
p−→ (1, µ). The function g(a, b) = ab is

continuous, so by CMT:

µ̂(4)
n = AnBn

p−→ 1 · µ = µ.

Therefore, µ̂
(4)
n is consistent for µ.
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Example 4.22 (Consistency of σ̂2
n). We can write the sample variance (with

denominator n) in the form

σ̂2
n =

1

n

n∑
i=1

X2
i −

( 1
n

n∑
i=1

Xi

)2
.

Define An = 1
n

∑n
i=1X

2
i and Bn = 1

n

∑n
i=1Xi = X̄n. Then σ̂2

n = g(An, Bn)

where g(a, b) = a − b2. By the Law of Large Numbers, An
p−→ E[X2] and

Bn
p−→ E[X] = µ. Thus (An, Bn)

p−→ (E[X2], µ). The function g(a, b) = a−b2

is continuous everywhere. Therefore, by CMT:

σ̂2
n = An − (Bn)

2 p−→ E[X2]− µ2 = V ar(X) = σ2.

So the (uncorrected) sample variance is a consistent estimator of the true
variance. And since multiplying by the constant n

n−1
→ 1 (which is continu-

ous in the limit) would not affect convergence, the unbiased sample variance
σ̃2
n = n

n−1
σ̂2
n is also consistent for σ2.

4.3.3 Asymptotic Distribution and the Central Limit
Theorem

Consistency tells us that the estimator eventually hits the bullseye (in prob-
ability). But it does not tell us how fast it converges, nor does it give a way
to quantify the uncertainty remaining when n is large but finite. For that, we
study the asymptotic distribution of θ̂n after appropriate scaling or center-
ing. The most celebrated result in this realm is the Central Limit Theorem
(CLT), which describes the distribution of the sum or average of iid random
variables for large n.

Theorem 4.23 (Central Limit Theorem (Lindeberg–Lévy form)). Let X1, . . . , Xn

be iid with mean µ = E[Xi] and variance 0 < σ2 = V ar(Xi) < ∞. Then

√
n
( 1
n

n∑
i=1

Xi − µ
)

d−→ N(0, σ2),

i.e. the normalized deviation of the sample mean from the true mean con-
verges in distribution to a normal distribution with mean 0 and variance σ2.
Equivalently,

X̄n − µ

σ/
√
n

d−→ N(0, 1).
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Here
d−→ denotes convergence in distribution (also called convergence in law).

We define it as follows:

Definition 4.24 (Convergence in Distribution). A sequence of random vari-
ables Xn is said to converge in distribution to a random variable X (writ-

ten Xn
d−→ X) if

lim
n→∞

P (Xn ≤ t) = P (X ≤ t)

for every real number t at which P (X ≤ t) is continuous in t. (In other words,
the CDFs FXn(t) converge pointwise to the CDF FX(t) at all continuity points
of FX .)

Convergence in distribution basically means the distribution ofXn gets closer
and closer to that of X. In the CLT, the distribution of the standardized
average tends to the standard normal distribution.

The CLT is remarkable because it holds regardless of the distribution of
Xi (as long as the variance is finite): the bell curve emerges as a universal
approximation. This justifies why so many statistical procedures assume
normality for large samples.

Example 4.25 (Asymptotic Distribution of X̄). Applying the CLT result

to µ̂
(3)
n = X̄n, we have:

√
n(X̄n − µ)

d−→ N(0, σ2).

Equivalently, for large n,

X̄n ≈ N
(
µ,

σ2

n

)
.

In other words, the sampling distribution of the sample mean is approxi-
mately normal with mean µ and variance σ2/n. This is an approximation
that improves as n grows.

Typically, we don’t know σ2, but we can estimate it (for example, using σ̂2
n).

If we plug the estimate in, we get

X̄n ≈ N
(
µ,

σ̂2
n

n

)
.

For large n, σ̂2
n is close to σ2 (by consistency), so this is a reasonable ap-

proximation. The quantity σ̂n√
n
is called the standard error of X̄n. We will

formalize this shortly.
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The CLT can be extended to vector-valued averages as well (the multivariate
CLT ). For instance, if we have two sample means (say sample mean of Y
and sample mean of X in a bivariate sample), their joint distribution is
asymptotically bivariate normal.

Theorem 4.26 (Multivariate Central Limit Theorem (Bivariate case)). Let
(Yi, Xi), i = 1, . . . , n be iid bivariate random vectors with E[Yi] = µY ,
E[Xi] = µX , V ar(Yi) = σ2

Y , V ar(Xi) = σ2
X , and Cov(Yi, Xi) = σY X . Then

as n → ∞:
√
n
(
(Ȳn − µY ), (X̄n − µX)

)
d−→ N

(
(0, 0), Σ

)
,

where Σ is the 2× 2 covariance matrix

Σ =

(
σ2
Y σY X

σY X σ2
X

)
.

That is, the vector (Ȳn, X̄n) is asymptotically bivariate normal with mean
(µY , µX) and covariance matrix Σ/n.

A similar statement holds for any fixed-dimensional vector of sample aver-
ages. This result allows us to analyze linear combinations of estimates as well
as ratios, etc., in large samples by leveraging properties of the multivariate
normal.

Often we apply a linear combination to the result of a multivariate CLT. For
example, if we are interested in Ȳn− X̄n, that is a linear combination (1,−1)
of (Ȳn, X̄n). From the above theorem, one can show

√
n
(
(Ȳn−µY )−(X̄n−µX)

)
=

√
n
(
(Ȳn−X̄n)−(µY−µX)

) d−→ N(0, σ2
Y+σ2

X−2σY X),

since the variance of Y − X is V ar(Y − X) = σ2
Y + σ2

X − 2σY X . We can
derive this formally using a “bivariate Slutsky theorem” which parallels the
univariate one we will discuss momentarily.

Example 4.27 (Difference in Means). Suppose we have iid data (Yi, Di)
where Di ∈ {0, 1} is an indicator (e.g. Di might denote treatment status
and Yi an outcome). Let p = P (D = 1) (assume 0 < p < 1). Consider the
estimators:

Ȳ1 =
1

n

n∑
i=1

YiDi, Ȳ0 =
1

n

n∑
i=1

Yi(1−Di).
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These are the average of Y among those with D = 1 (times the proportion of
ones) and the average of Y among those with D = 0 (times the proportion of
zeros) respectively. More precisely, Ȳ1 =

N1

n
·Y |D = 1 and Ȳ0 =

N0

n
·Y |D = 0,

where N1 =
∑

Di, N0 = n−N1. But as n large, N1/n ≈ p and N0/n ≈ 1−p
(in fact N1/n → p in probability by LLN as well, since N1/n is just the
sample mean of Di which has expectation p). So Ȳ1 and Ȳ0 are essentially
p · Y |D = 1 and (1− p) · Y |D = 0.

What is the asymptotic joint distribution of (Ȳ1, Ȳ0)? This is a bit tricky
because Ȳ1 and Ȳ0 are not independent (they share the overall sample and if
one group has more Y , the other might have less, etc.). However, using the
multivariate CLT on the bivariate vector (Y D, Y (1−D)), we get:

√
n

(
Ȳ1 − E[Y D]

Ȳ0 − E[Y (1−D)]

)
d−→ N

(
(0, 0), Σ

)
,

where

E[Y D] = p · E[Y |D = 1], E[Y (1−D)] = (1− p) · E[Y |D = 0],

and Σ can be written in terms of the variances and covariance of Y D and
Y (1−D).

Now, if the goal is to estimate E[Y |D = 1] − E[Y |D = 0] (the difference
in means between the two groups), a natural estimator is Ȳ1

D̄
− Ȳ0

1−D̄
, where

D̄ = N1/n is the sample proportion of D = 1. But a simpler (asymptotically
equivalent) estimator is 1

p
Ȳ1 − 1

1−p
Ȳ0 (plugging in the true p). Either way,

one can find (using a delta method or Slutsky argument) that:

√
n
[(
Y |D = 1− Y |D = 0

)
−
(
E[Y |D = 1]− E[Y |D = 0]

)]
d−→ N

(
0,

V ar(Y D)

p2
+

V ar(Y (1−D))

(1− p)2
− 2Cov(Y D, Y (1−D))

p(1− p)

)
.

This looks complicated, but it simplifies because Y D and Y (1 − D) never
take nonzero values simultaneously for a given observation (if D = 1, then
Y (1−D) = 0; if D = 0, then Y D = 0). Under some algebra, one can show

the asymptotic variance is V ar(Y |D=1)
p

+ V ar(Y |D=0)
1−p

. The key takeaway: the
difference in group means is asymptotically normal. We will often use such
results to do inference on treatment effects.
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The calculations for multi-component estimators can become intricate, but
conceptually we handle them by combining CLT with continuous transfor-
mations (via CMT) or linear combinations (via Slutsky’s theorem, next).

4.3.4 Slutsky’s Theorem

Slutsky’s theorem is a handy result that complements the CLT. It allows us to
replace unknown parameters in the asymptotic distribution with consistent
estimators, without affecting the limit. It also handles adding or multiplying
asymptotically negligible quantities.

Theorem 4.28 (Slutsky’s Theorem). Suppose An
d−→ A and Bn

p−→ b, where
A is a random variable and b is a constant. Then:

1. An +Bn
d−→ A+ b,

2. AnBn
d−→ A · b,

3. If b ̸= 0, then An

Bn

d−→ A
b
.

In words, if Bn converges in probability to a constant b, then asymptotically
we can treat Bn like b when looking at the distribution of An. The intuition
is that Bn is so tightly concentrated around b for large n that the randomness
in Bn doesn’t contribute in the limit.

One common use of Slutsky’s theorem is to plug in a consistent estimator
for an unknown variance or standard deviation in the CLT. For example, we
might not know σ, but we know σ̂n

p−→ σ. The CLT gave X̄n−µ
σ/

√
n
→d N(0, 1).

We can replace σ with σ̂n in the denominator, since σ̂n/σ → 1. Formally:

X̄n − µ

σ̂n/
√
n

=
σ̂n

σ
· X̄n − µ

σ/
√
n

d−→ 1 ·N(0, 1) = N(0, 1),

because σ̂n

σ

p−→ 1 and X̄n−µ
σ/

√
n

d−→ N(0, 1). We used Slutsky’s theorem with

An = X̄n−µ
σ/

√
n
(which converges in distribution to N(0, 1)) and Bn = σ̂n

σ
(which

converges in probability to 1). Thus:

X̄n − µ

σ̂n/
√
n

d−→ N(0, 1).
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This result is fundamental because it justifies using σ̂n (sample standard de-
viation) in place of σ when constructing confidence intervals or test statistics
for the mean.

Example 4.29 (Asymptotic Normal t-Statistic). Continuing the above rea-
soning: define the statistic

Tn =
X̄n − µ

σ̂n/
√
n
,

which looks like a Student’s t-statistic for testing H0 : µ = µ0 (in practice,
µ might be replaced by µ0 if testing a hypothesis). Even though Tn does
not exactly follow a t-distribution unless Xi are normal, Slutsky’s theorem

shows that Tn
d−→ N(0, 1) as n → ∞ for any distribution of the Xi (with

finite variance). Thus for large n, we can use the normal approximation for
Tn. This is why large-sample procedures often do not require strict normality
assumptions—the CLT kicks in.

Example 4.30 (Asymptotic Normality of µ̂
(4)
n ). Let’s apply these ideas to

the slightly biased estimator µ̂
(4)
n = n

n+λ
X̄n. We want the asymptotic distri-

bution of
√
n(µ̂

(4)
n − µ). We can write:

√
n(µ̂(4)

n −µ) =
√
n
( n

n+ λ
X̄n−µ

)
=

n

n+ λ︸ ︷︷ ︸
→1

√
n(X̄n−µ)+

√
n
( n

n+ λ
−1
)
µ.

The second term on the right is

√
n
( n

n+ λ
− 1
)
µ =

√
n
(n− (n+ λ)

n+ λ

)
µ =

√
n
( −λ

n+ λ

)
µ

= − λ

1 + λ/n

√
n
1

n
µ = − λ

1 + λ/n
· µ√

n
.

As n → ∞, − λ
1+λ/n

→ −λ, but importantly it is multiplied by µ√
n
which goes

to 0. In fact,
√
n( n

n+λ
−1)µ → 0 as n → ∞. We can formalize this:

√
n( n

n+λ
−

1)µ converges in probability to 0 (actually it goes to 0 deterministically). So
it is asymptotically negligible.

The first term is n
n+λ

√
n(X̄n − µ). We have n

n+λ
→ 1 and by CLT

√
n(X̄n −

µ)
d−→ N(0, σ2). By Slutsky’s theorem,

n

n+ λ

√
n(X̄n − µ)

d−→ 1 ·N(0, σ2) = N(0, σ2).
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Now combining both terms:

√
n(µ̂(4)

n − µ) =
n

n+ λ

√
n(X̄n − µ) +

√
n
( n

n+ λ
− 1
)
µ︸ ︷︷ ︸

→0

.

The second term goes to 0 in probability, the first term converges in distri-
bution to N(0, σ2). Slutsky’s theorem (in a slightly extended form to sum of
two sequences, where one goes to a constant) implies that the sum converges
in distribution to N(0, σ2) as well (since adding a vanishing term doesn’t
change the limit). Thus we conclude:

√
n(µ̂(4)

n − µ)
d−→ N(0, σ2).

As expected, µ̂
(4)
n is asymptotically equivalent to µ̂

(3)
n —the small bias does not

affect the first-order asymptotic distribution (it only appears as a O(1/
√
n)

term which vanishes in the limit).

The above example shows an important principle: if an estimator’s bias is
o(n−1/2) (smaller order than 1/

√
n), then it will typically have the same

asymptotic distribution as an unbiased or consistent estimator, meaning the
bias is asymptotically negligible.

Now that we have asymptotic normality for many estimators (like sample
means, differences in means, regression coefficients under suitable conditions,
etc.), we can construct approximate confidence intervals and perform tests.

4.3.5 Standard Errors and Confidence Intervals

When we say an estimator θ̂n is asymptotically normal, we mean

√
n(θ̂n − θ)

d−→ N(0,Σ),

for some variance Σ (which might depend on unknown parameters). Equiv-
alently,

θ̂n ≈ N
(
θ,

Σ

n

)
for large n. In practice, we estimate Σ by some Σ̂n (a consistent estimator),

and define the standard error of θ̂n as se(θ̂n) =

√
Σ̂n/n. More formally:
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Definition 4.31 (Standard Error). If
√
n(θ̂n − θ)

d−→ N(0,Σ) and Σ̂n is a
consistent estimator of Σ, then

se(θ̂n) =

√
Σ̂n/n

is called the (estimated) standard error of θ̂n. It is the estimated standard
deviation of the sampling distribution of θ̂n. Often we report θ̂n±1.96 se(θ̂n)
as an approximate 95% confidence interval for θ.

For the sample mean example, Σ = σ2 and Σ̂n = σ̂2
n, so se(X̄n) = σ̂n/

√
n.

For a difference in means, Σ would be the sum of variances as derived earlier,
and Σ̂ would plug in sample estimates of those variances.

Given asymptotic normality, constructing confidence intervals is straightfor-
ward:

If θ̂n−θ

se(θ̂n)

d−→ N(0, 1), then approximately

P
(
− z1−α/2 ≤

θ̂n − θ

se(θ̂n)
≤ z1−α/2

)
≈ 1− α,

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.
Rearranging,

P
(
θ̂n − z1−α/2 se(θ̂n) ≤ θ ≤ θ̂n + z1−α/2 se(θ̂n)

)
≈ 1− α.

This leads to the (1− α) confidence interval:

Cn =
[
θ̂n ± z1−α/2 se(θ̂n)

]
.

Similarly, a one-sided upper (1−α) confidence bound is
(
−∞, θ̂n+z1−α se(θ̂n)

]
,

etc.

More formally:

Theorem 4.32 (Asymptotic Confidence Interval). Under the assumptions

that θ̂n−θ

se(θ̂n)

d−→ N(0, 1), the interval

Cn =
[
θ̂n − z1−α/2 se(θ̂n), θ̂n + z1−α/2 se(θ̂n)

]
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is an asymptotically (1− α) confidence interval for θ. That is,

lim
n→∞

P (θ ∈ Cn) = 1− α.

One-sided variants can be constructed similarly.

In words, for large n, the random interval Cn will contain the true parameter
θ about (1− α)× 100% of the time in repeated samples.

It is crucial to interpret this correctly: before we collect data, Cn is random
and θ is fixed, so P (θ ∈ Cn) = 1− α (approximately). After we collect data
and compute cn (a specific numeric interval), either θ is in that interval or
not (so the probability is 0 or 1 for that event, but we just don’t know). We
do not say “there is a 95% probability that θ lies in the interval [a, b]” once
[a, b] is computed; rather, we say “this procedure yields intervals that cover
θ 95% of the time in the long run”. In practice, people often loosely say ”95

Interpretation: Estimators vs Estimates

Before concluding, let us emphasize the distinction between the random es-
timator and its realized value:

- An estimator θ̂n is a random variable, a function of the sample. We
can talk about its distribution, variance, bias, etc., and make probability
statements (like P (|θ̂n − θ| < ϵ)).

- An estimate is the realized number you get after plugging in your actual
observed data into the estimator. Once you have an estimate (a concrete
number), it is no longer random from the perspective of the analysis (the
randomness has ”collapsed” to that single outcome). You cannot mean-
ingfully assign a probability to a fixed estimate being right or wrong; the
probability was in the process that led to it.

This is especially important for confidence intervals. The confidence level (say
95%) refers to the procedure, not to the specific interval you obtained. Over
many hypothetical repetitions of the experiment and interval calculations,
95% of those intervals would contain θ. For the one interval you got, either
it contains θ or it doesn’t; there is no probability attached to that anymore
(unless you bring in a Bayesian perspective and treat θ as random, which is
a different framework).
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Example 4.33 (Misinterpretation of Confidence Intervals). Suppose a stu-
dent takes the GRE test and scores 153 on the Quantitative section. The
ETS reports that the standard error of measurement for an individual GRE
Quant score is about 2.2 points. A 95% confidence interval for the test taker’s
“true” ability (the score they would get on average if they took many equiva-
lent test forms) might be calculated as 153±1.96(2.2), which is approximately
[149, 157].

ETS might report this as: “We can be 95% confident that the test taker’s true
Quantitative score is between 149 and 157.” This phrasing, while common, is
slightly misleading. The correct interpretation is: “If many test takers with
the same true ability took the test, 95% of them would score between 149
and 157.” Or: “For 95% of test takers, the interval [score ± 4] will contain
their true score.”

For a specific individual’s true score, it’s either in [149, 157] or not. We can’t
assign a probability to that after the fact (in the frequentist framework)
because the true score is not random. The 95% refers to the success rate of
the method, not a probability for this particular interval.

It’s a subtle point that often confuses people (even official guides sometimes
state it in the colloquial way that sounds like a probability about the pa-
rameter). The takeaway: Confidence intervals have a confidence level that
describes the process, not the realized interval.

Summary

In this chapter, we introduced the concept of estimators and their key prop-
erties:

- We learned that an estimator is a function of sample data used to infer
a population parameter. We saw examples of estimators derived via the
sample analogue principle (e.g., sample mean for population mean, sample
proportion for probability, etc.) and via optimization (least squares).

- We discussed finite-sample properties: - Bias: the difference between an
estimator’s expectation and the true parameter. Unbiased estimators have
zero bias. - Variance: the dispersion of the estimator’s sampling distribu-
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tion. Together with bias, it determines reliability. - Mean Squared Error
(MSE): = Bias2 + Var. It provides a single measure combining accuracy
and precision. We saw the bias-variance trade-off: sometimes a small bias
can greatly reduce variance and improve MSE.

- We introduced the notion of a sampling distribution of an estimator and
illustrated how different estimators for the same parameter can have different
distributions.

- We then moved to large-sample properties: - Consistency: an estimator
that converges in probability to the true parameter as n → ∞. This is a
minimal requirement for an estimator to be useful. (No matter how large the
sample, an inconsistent estimator won’t get arbitrarily close to the truth.) -
The Law of Large Numbers guarantees consistency of sample means (and
analogous estimators). - We defined convergence in probability and used tools
like Continuous Mapping Theorem to find limits of transformations of
consistent estimators. - Asymptotic (large-sample) distribution: We
defined convergence in distribution and presented the Central Limit The-
orem, which shows sample means (and many other estimators) are approxi-
mately normally distributed for large n. This allowed us to approximate the
sampling distribution without knowing the exact finite-sample distribution.
- We introduced the Delta Method (via an example) as a way to get the
asymptotic distribution of a smooth function of an estimator (using a Taylor
expansion). - Slutsky’s Theorem was presented to justify plugging in con-
sistent estimates into asymptotic results (e.g., replacing unknown variance
by sample variance in the CLT). - We extended CLT to multiple dimensions
and saw how linear combinations of jointly normal estimates are normal (this
is used, for example, in differences of means or regression).

- Armed with asymptotic normality, we defined standard errors as esti-
mates of the standard deviation of an estimator, and we constructed confi-
dence intervals using the normal approximation. We stressed the correct
interpretation of confidence intervals.

The big picture is that under quite general conditions, even if we cannot
derive the exact sampling distribution of an estimator, we can often rely on
large-sample approximations (normal theory) to conduct inference. In the
next chapter, we will leverage these ideas to formulate and test hypotheses
about parameters (for example, testing if a parameter equals some value, or
if two parameters are different, etc.), which is the realm of hypothesis testing.
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