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Chapter 3

Statistical Foundations Review

3.1 Expectation andMoments of Random Vari-

ables

In the previous chapter, we focused on probability distributions as the fun-
damental characterization of random variables. We saw that knowing a ran-
dom variable’s cumulative distribution function (CDF) or probability den-
sity/mass function (pdf/pmf) gives a complete description of its behavior.
However, in practice we often do not need the entire distribution of a ran-
dom variable. Instead, we are typically interested in certain key features or
summary measures of the distribution, especially in applications like causal
inference or financial analysis. For example, recall the returns-to-education
study where we defined the average treatment effect on the treated (ATT)
as:

τATT = E[Yi(1)− Yi(0) | Di = 1],

the expected difference in potential outcomes for those who attended college
(Di = 1). Here Yi(1) and Yi(0) are potential wages with and without college,
and Di indicates college attendance. In this causal estimand, we care only
about an expected value (a single number summarizing the average causal
effect for college-goers) rather than the full distribution of Yi(1)−Yi(0). This
illustrates a common scenario: we often seek the “center” or other moments
of a distribution as opposed to a full description of all probabilities.
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In this chapter, we introduce the concept of expectation (also called the
mean or first moment) and related measures like variance, covariance, and
correlation, which together summarize important features of probability dis-
tributions. We will also discuss their conditional counterparts (conditional
expectation and variance) which characterize distributions under given infor-
mation. Finally, we introduce the idea ofmean independence, a weaker notion
than full statistical independence that is particularly relevant in econometric
contexts (for instance, when discussing exogeneity of regressors).

3.2 Features of a Probability Distribution

3.2.1 Expectation

Definition 3.1 (Expected Value). The expectation or expected value of a
random variable X (with respect to its own distribution) is defined as a
weighted average of its possible values, using probabilities or densities as
weights. Formally:

E[X] =


∑

x∈supp X x fX(x), if X is discrete,∫∞
−∞ x fX(x) dx, if X is continuous,

provided these sums or integrals converge absolutely. Here fX(x) denotes
the pmf or pdf of X, and supp(X) is the support (set of values with nonzero
probability or density). We will also use the notation EX [X] or E[X] in-
terchangeably for E[X]. The expected value E[X] is a single number (a
constant, not a random variable) that intuitively represents the “center of
gravity” or long-run average of X’s distribution.

If E[|X|] < ∞, we say the expectation of X exists (is well-defined and finite).
In this course, we will always assume that the random variables we deal with
have well-defined, finite expectations.

The expectation E[X] is a weighted average of the possible values of X,
weighted by their probability or density. It is a single number that describes
the center of the distribution of X. For example, if X is the number of heads
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in 2 fair coin tosses, we found E[X] = 0 · (1/4) + 1 · (1/2) + 2 · (1/4) = 1. If
Y ∼ U(0, 1), then

E[Y ] =

∫ 1

0

y (1)dy =
1

2
.

In general for U ∼ U(a, b), E[U ] = a+b
2
, the midpoint of the interval.

Expectations are very convenient to work with algebraically, because they
have nice linear properties. One does not need the full distribution of X to
evaluate many expectations; often it’s easier to use algebraic rules or known
formulas.

Theorem 3.2 (Linearity of Expectation). For any random variable X and
constants a, b ∈ R,

E[a+ bX] = a+ bE[X].

More generally, if X1, . . . , Xn are random variables (not necessarily indepen-
dent), then for any constants b1, . . . , bn,

E
[ n∑

i=1

biXi

]
=

n∑
i=1

bi E[Xi].

Linearity of expectation is extremely useful. It means, for example, we
can calculate the expected sum of 1000 random quantities without com-
puting a convolution of 1000 distributions—we can just sum their individual
expectations. No matter what dependence or correlation might exist be-
tween Xi and Xj, the linearity property E[Xi +Xj] = E[Xi] +E[Xj] always
holds. As a simple but important special case: if X and Y are independent,
E[X + Y ] = E[X] + E[Y ]. (Again, this holds even without independence.)

The Law of the Unconscious Statistician (LOTUS)

Often we are interested not directly inX itself, but in some function ofX. For
example, if X represents a return on investment, we might be interested in
Y = g(X) which could be a nonlinear function like utility g(X) = ln(1+X) or
an indicator of whether the return exceeds a threshold g(X) = 1X > c. The
distribution of Y can be complicated to derive from that of X. Fortunately,
there is a shortcut to finding E[Y ] = E[g(X)] without explicitly finding Y ’s
distribution. This is provided by an important result humorously named the
Law of the Unconscious Statistician (LOTUS)
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Theorem 3.3 (Law of the Unconscious Statistician). Let X be a random
variable with known distribution, and let Y = g(X) be some function of X.
Then, as long as E[|g(X)|] exists and is finite, we can compute the expectation
of Y by integrating (or summing) over the distribution of X:

E[Y ] = E[h(X)] =


∑

x∈supp X g(x) fX(x), if X is discrete,∫∞
−∞ g(x) fX(x) dx, if X is continuous,

provided the sum/integral converges absolutely.

In other words, to find E[g(X)] you do not need to determine the distribution
of Y = g(X) first. You can simply compute the weighted average of g(x)
using the original distribution of X. This greatly simplifies working with
transformations of random variables.

Why the whimsical name “unconscious statistician”? Because many students
(and practitioners) use this law instinctively — plugging g(x) into the ex-
pectation integral of X — without realizing they are invoking a theorem. In
fact, many textbooks simply treat the LOTUS formula as the definition of
E[g(X)]. But formally, the definition of expectation is in terms of Y ’s dis-
tribution, and LOTUS is a derived result that lets us avoid the intermediate
step of finding fY . The nickname is a reminder that while it may feel like
common sense, one should be conscious that this step is justified by a proven
result.

Example 3.4. (Indicator function) A very useful special case of LOTUS is
when g(x) is an indicator of an event. Let A be some event (a subset of the
real line, in the context of X). Consider Y = 1{X ∈ A}, a random variable
that equals 1 if X falls in A and 0 otherwise. Then by LOTUS,

E[1{X ∈ A}] =

∫ ∞

−∞
1{x ∈ A} fX(x) dx =

∫
A
fX(x) dx = P (X ∈ A) .

But the left-hand side is also P (X ∈ A) by the definition of expectation of an
indicator (since an indicator’s expectation is the probability of the event).
This simple equality E[1{X ∈ A}] = P (X ∈ A) holds for any event A.
Although trivial seeming, it is extremely handy: it means that probabilities
can often be manipulated or derived by treating them as expectations of
indicator variables and then using linearity or other expectation rules. We
will use this trick frequently in derivations.
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Example 3.5. Suppose X is a continuous random variable and we define a
new random variable Y = X2. Finding the distribution of Y might involve
some effort (especially if X’s distribution is complicated). However, if we
only want E[Y ] = E[X2], LOTUS tells us we can bypass finding fY . We can
compute

E[X2] =

∫ ∞

−∞
x2fX(x)dx,

straight from X’s density. For instance, if X ∼ Uniform(−1, 1), then by
symmetry we know E[X] = 0 but E[X2] is not zero. We can find it by
integrating:

E[X2] =

∫ 1

−1

x21

2
dx =

1

3
.

We never explicitly derived Y = X2’s distribution (which in fact is Beta(1/2, 1/2)
shape on [0, 1]), and we didn’t need to. As promised, LOTUS saved us work.

3.2.2 Variance and Standard Deviation

While the expectation E[X] captures the central tendency of a random vari-
able, it does not tell the whole story about the distribution. Two very dif-
ferent distributions can have the same mean. A natural next question: how
spread out is the distribution around that mean? This brings us to the
variance.

Definition 3.6 (Variance and Standard Deviation). The variance of a ran-
dom variable X (with finite mean E[X] = µX) is defined as

V ar(X) = E
[
(X − E[X])2

]
.

In words, V ar(X) is the expected squared deviation of X from its own mean.
The standard deviation of X is defined as sd(X) =

√
V ar(X) the (positive)

square root of the variance. Standard deviation has the advantage of being
in the same units as X, making it easier to interpret in context.

The variance V ar(X) is a nonnegative number (in fact, variance is zero if and
only if X is almost surely constant). It quantifies the variability or dispersion
of the distribution of X around its mean. A large variance means X tends
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to take values far from the mean (high spread), whereas a small variance
means X is tightly clustered around its mean. By expanding the definition
(X − µX)

2 = X2 − 2µXX + µ2
X and taking expectation, one can show an

equivalent formula:

V ar(X) = E[X2]− (E[X])2.

This is often a more convenient formula for calculations: the variance is
the difference between the second moment E[X2] and the square of the first
moment. Be careful to never confuse E[X2] (which is E[X2]) with (E[X])2

(the square of E[X]); the latter is typically smaller unless the distribution
has no spread.

Example 3.7. Coin Tosses (Variance). Revisit the experiment of tossing a
fair coin twice with X = number of heads, where we found E[X] = 1. We
can compute the variance:

E[X2]− (E(X))2 = (02(1/4) + 12(1/2) + 22(1/4))− 1 = 0.5

The standard deviation is
√
0.5 ≈ 0.707. This measures the typical deviation

from the mean (which was 1) in the number of heads: roughly speaking, about
$0.707 heads off. (Of course, in reality you can only be 0 or 1 heads away
from the mean of 1, but the standard deviation gives a kind of “root mean
square” deviation.)

It’s worth noting that X in this example follows a Binomial(n = 2, p = 0.5)
distribution, for which general formulas give E[X] = np = 1 and V ar(X) =
np(1− p) = 2 · 0.5 · 0.5 = 0.5, consistent with our calculation.

Example 3.8. If X is Bernoulli(p) (taking value 1 with probability p and 0
with probability 1− p), then E[X] = p and

E[X2]− (E(X))2 = p− p2 = p(1− p)

For instance, a fair coin toss (p = 0.5) has mean 0.5 and variance 0.25.

Linear change of variables: Variance has a simple behavior under linear
transformations, albeit not as simple as expectation (which was exactly lin-
ear). If Y = a + bX, then E[Y ] = a + bE[X] as we know. What about
V ar(Y )? We find

V ar(Y ) = E[(a+ bX − (a+ bE[X]))2] = b2V ar(X).
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So adding a constant a does not change the variance at all (shifting does
nothing to spread), and scaling by b multiplies the variance by b2. In partic-
ular, if you change the units of measurement of X (say from dollars to cents,
where b = 100), the variance is scaled by the square of that conversion factor
(so dollars → cents multiplies variance by 10000!). This reminds us that
variance’s units are the square of the original units, which is why we often
prefer to talk about standard deviation (back in original units). Standard
deviation of a+ bX would be |b| sd(X) since we take the positive square root
of b2.

3.2.3 Covariance

So far, we have introduced two fundamental descriptors of a single random
variable’s distribution: the mean and variance (or standard deviation). How-
ever, in research we often deal with multiple random variables at once and
are interested in how they relate to each other. A key measure of joint vari-
ability between two random variables is the covariance. Covariance extends
the idea of variance (which was for one variable) to two variables:

Definition 3.9 (Covariance). For random variables X and Y with means
E[X] = µX and E[Y ] = µY , the covariance between X and Y is defined as

Cov(X, Y ) = E[](X − µX)(Y − µY )].

Equivalently (by expanding the product),

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Covariance measures the extent to which X and Y “co-vary” or move to-
gether. If X and Y tend to be above their means at the same time (and
below their means at the same time), the covariance will be positive. If
one tends to be above its mean when the other is below its mean (and vice
versa), the covariance will be negative. If knowing that X is above/below its
mean gives no clue about whether Y is above or below its mean, then the
covariance will be around zero.

Important properties of covariance: – Cov(X, Y ) = Cov(Y,X) (symmetric in
its arguments). – Cov(X,X) = V ar(X). – If a, b are constants, then Cov(a+
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bX, Y ) = bCov(X, Y ) (linearity in each argument). Similarly Cov(X, c +
dY ) = dCov(X, Y ). In particular, shifting one variable by a constant does
not change the covariance. – Cov(X, Y ) can be positive, negative, or zero.
In principle it could be large or small in magnitude depending on the units
and scales of X and Y .

Example 3.10. (Discrete joint distribution) Suppose X and Y are two dis-
crete random variables with the joint distribution given by the following
table:

Y = 0 Y = 1 Total P (X = x)
X = 0 0.20 0.10 0.30
X = 1 0.30 0.40 0.70

Total P (Y = y) 0.50 0.50 1

Here P (X = 0, Y = 0) = 0.20, P (X = 0, Y = 1) = 0.10, P (X = 1, Y =
0) = 0.30, P (X = 1, Y = 1) = 0.40. From the table, the marginals are
P (X = 1) = 0.7 (so P (X = 0) = 0.3) and P (Y = 1) = 0.5 (so P (Y =
0) = 0.5). Let’s compute means first: E[X] = 0(0.3) + 1(0.7) = 0.7 and
E[Y ] = 0(0.5) + 1(0.5) = 0.5. Next, E[XY ] =

∑
(x,y) xyP (X = x, Y = y) =

0.40. Now we plug into the covariance formula: E[XY ]− E[X]E[Y ] = 0.05.
So the covariance is +0.05 in these units. This is a small positive number,
indicating a slight tendency for X and Y to be high or low together. Indeed,
if we examine the joint probabilities: X and Y are both 1 with probability
0.4, which is a bit higher than one might expect under independence (which
would have been 0.7 × 0.5 = 0.35). That is the reason covariance came out
positive.

Independence and Covariance: If X and Y are independent random
variables, then E[XY ] = E[X]E[Y ] (because the joint pdf/pmf factorizes),
and thus Cov(X, Y ) = 0. So independence =⇒ zero covariance. However,
the converse is not true in general: Cov(X, Y ) = 0 does not guarantee
independence. Zero covariance means X and Y are uncorrelated, but they
could still have a nonlinear relationship. A classic counterexample is: take X
uniform on [−1, 1] and let Y = X2. Then E[X] = 0 (symmetric distribution)
and E[Y ] = E[X2] > 0. We find E[XY ] = E[X · X2] = E[X3] = 0 (again
by symmetry, since X3 is an odd function). Therefore Cov(X, Y ) = 0 −
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(0)(E[Y ]) = 0. Yet X and Y are clearly not independent: knowing Y (which
is X2) tells us X is either the positive or negative square root of Y rather
than any value in [−1, 1]; in fact Y is completely determined byX (functional
dependence). This example shows how two variables can have no linear
association (zero covariance) but still be strongly related in a nonlinear way.

Variance of a sum: Covariance provides a convenient formula for the vari-
ance of the sum of two random variables:

V ar(X + Y ) = E[(X + Y −E[X]−E[Y ])2] = E[(X −E[X] + Y −E[Y ])2].

Expanding the square yields

V ar(X + Y ) = E[(X − µX)
2] + 2E[(X − µX)(Y − µY )] + E[(Y − µY )

2],

which simplifies to

V ar(X + Y ) = V ar(X) + 2Cov(X, Y ) + V ar(Y ).

In short, the variance of a sum is the sum of variances plus twice the covari-
ance. This formula generalizes: for any two random variables,

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y ).

If X and Y are independent, then Cov(X, Y ) = 0, and the formula reduces
to

V ar(X + Y ) = V ar(X) + V ar(Y ).

This result can then be extended by induction: the variance of a sum of
mutually independent random variables is the sum of their variances. (If the
variables are not independent, you must also account for all the covariance
terms between each pair.)

Example 3.11. If X1, X2, . . . , Xn are independent returns of n different in-
vestments, and you invest equally in all of them, then your total return is
T =

∑n
i=1 Xi. The variance of the total return is V ar(T ) =

∑n
i=1 V ar(Xi),

since independence kills all covariance terms. This illustrates one benefit of
diversification: if individual variances don’t all move in sync, the total vari-
ance is spread out across terms (in fact if they were identical and independent,
total variance would grow linearly with n, whereas investing all money in one
would scale variance by n2 for the same expected return nE[Xi]).
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The Cauchy–Schwarz Inequality and Correlation

The covariance has units equal to the product of the units of X and Y . For
example, if X = height (in cm) and Y = weight (in kg), then Cov(X, Y )
would have units cm·kg, which is not easy to interpret directly. Moreover,
the numerical value of covariance can be hard to compare across different
pairs of variables or datasets because it depends on the arbitrary scaling of
variables. We often prefer a normalized measure of linear association: the
correlation coefficient.

Definition 3.12 (Correlation Coefficient). The (Pearson) correlation be-
tween two random variables X and Y is defined as

ρX,Y =
Cov(X, Y )

sd(X)sd(Y )
,

provided sd(X) and sd(Y ) are both finite and nonzero. In other words, ρX,Y

is covariance scaled by the standard deviations of each variable.

Correlation is a unitless number, since the units cancel out in the ratio. It
always lies between −1 and 1:−1 ≤ ρX,Y ≤ 1. This bound is a consequence
of the famous Cauchy–Schwarz inequality. In particular, ρX,Y = ±1 if
and only if X and Y have an exact linear relationship between them (with
probability 1), i.e. Y = a + bX for some constants a, b (with b > 0 giving
+1 correlation and b < 0 giving −1). If ρX,Y = 0, we say X and Y are
uncorrelated, which as noted is weaker than being independent (though for
jointly Normal random variables, zero correlation does imply independence,
a special case often encountered in statistics).

Proof. (Sketch) To see why |ρX,Y | ≤ 1, consider the Cauchy–Schwarz in-
equality in the form: (E[UV ])2 ≤ E[U2]E[V 2], which holds for any random
variables U and V (this is analogous to the inequality ⟨u, v⟩2 ≤ |u|2|v|2 for
vectors). Take U = X − E[X] and V = Y − E[Y ]. Then E[U ] = E[V ] = 0.
The inequality becomes: (E[(X − µX)(Y − µY )])

2 ≤ E[(X − µX)
2]E[(Y −

µY )
2]. The left side is Cov(X, Y )2 and the right side is V ar(X)V ar(Y ).

So Cov(X, Y )2 ≤ V ar(X)V ar(Y ). Taking square roots (and noting vari-
ances are positive) yields |Cov(X, Y )| ≤ sd(X)sd(Y ). Now dividing both
sides by the product sd(X) sd(Y ) (assuming these are nonzero) gives exactly
|ρX,Y | ≤ 1. The equality case occurs if and only if U and V are linearly
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dependent (one is a scalar multiple of the other), which translates to X and
Y having a perfect linear relationship.

Correlation provides a standardized measure of linear association. A corre-
lation near +1 means X and Y are almost perfectly linearly increasing to-
gether; near −1 means as one increases, the other decreases in a near-perfect
linear way; near 0 means knowing one gives essentially no linear prediction
of the other. However, be cautious: correlation specifically measures linear
relationships. It is possible for two variables to have a strong nonlinear re-
lationship but zero correlation (like the X and Y = X2 example earlier: the
data would form a parabola shape if plotted, which is symmetric and yields
ρ = 0). Always visualize or consider the possibility of nonlinear associations
in data rather than relying solely on correlation.

3.3 Features of Conditional Distributions

So far we have discussed expectation, variance, etc., with respect to the en-
tire distribution of a random variable (sometimes called “unconditional” or
“marginal” expectation/variance). In many situations, we have additional
information or conditioning events. For example, we might be interested in
the average outcome Y given some condition on X. This leads us to con-
ditional expectation and conditional variance, which are key concepts
especially in regression analysis and causal inference.

3.3.1 Conditional Expectation

Definition 3.13 (Conditional Expectation). For random variables X and
Y , the conditional expectation of Y given X = x (assuming it exists) is

E[Y | X = x] =


∑

y y fY |X(y|x), if Y is discrete,∫∞
−∞ y fY |X(y|x) dy, if Y is continuous.

where fY |X(y|x) is the conditional pmf/pdf of Y given X = x.
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The conditional expectation E[Y |X = x] is simply the expected value of
Y when X is known to equal x. As a function of x, it is often called the
conditional expectation function (CEF): m(x) := E[Y |X = x]. If we
treat X as random, then E[Y |X] denotes the random variable m(X) which
equalsm(x) whenever X = x. In other words, E[Y |X] is a function of X. We
sometimes write E[Y |X] = g(X) to emphasize that it is a random variable
measurable in terms of X.

Conditional expectation is extremely important in econometrics: it provides
the best prediction of Y given X in a mean-squared error sense. In fact,
E[Y |X] minimizes E[(Y − h(X))2] over all functions h(X), which is why
linear regression aims to estimate E[Y |X] (the true conditional mean of Y
given X). If X contains all relevant observed information, E[Y |X] is the
optimal predictor of Y using that information.

Example 3.14. Let X be uniformly distributed on [0, 1]. Now suppose that
conditional on X = x, the random variable Y is uniformly distributed on
[x, 1]. In other words, we first draw X ∼ Uniform(0, 1), and then we draw
Y from a uniform distribution that depends on X (the support of Y shifts
with X). We can compute E[Y |X = x] from the definition: E[Y | X = x] =∫ 1

y=x
y · 1

1−x
dy, for 0 ≤ x ≤ 1. (The conditional density of Y given X = x is

1/(1− x) on the interval [x, 1].) Carrying out the integration:

E[Y | X = x] =
1

1− x

∫ 1

x

ydy =
1

1− x

[
y2

2

]y=1

y=x

=
1 + x

2

So the conditional expectation function is m(x) = 1+x
2
. If X = 0.2, then

E[Y |X = 0.2] = 0.6; if X = 0.8, then E[Y |X = 0.8] = 0.9, etc. Notice
E[Y |X] is itself a random variable equal to (1+X)/2. The distribution of this
random variable E[Y |X] is just the distribution of (1 +X)/2. Since X was
Uniform(0,1), (1+X)/2 is Uniform(0.5, 1). But keep in mind the distinction:
E[Y |X] (with capital X) is a random variable that can take different values
depending on the realized X, while E[Y |X = x] (with lowercase x) is a
specific number, the conditional mean for that fixed x.

Conditional expectations share linearity properties similar to regular expec-
tations, with one important caveat: when taking expectation conditional on
X, any function of X can be treated like a “constant” (since given X, that
function’s value is known). Formally: – E[a + bY | X] = a + bE[Y | X] for
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constants a, b. – If h(X) is any function of X alone, then E[h(X)Y | X] =
h(X)E[Y | X]. More generally, for any two functions h1(X) and h2(X) of
X, E[h1(X) + h2(X)g(Y ) | X] = h1(X) + h2(X)E[g(Y ) | X].

In other words, inside a conditional expectation E[·|X], you can pull out
factors that depend only on X (since conditioning on X makes them known).
This is analogous to factoring constants out of an expectation, but here the
“constant” is any X-measurable function.

Perhaps the most important property is the Law of Iterated Expectations
(LIE), also known as the tower property:

E[Y ] = EX [E[Y | X]].

This says that if you first take the conditional expectation of Y given X, and
then take the expectation of that (averaging out X), you recover the overall
expectation of Y . Symbolically, E(E(Y |X)) = E(Y ). The law of iterated
expectations is intuitive: E[Y |X] is the best guess of Y when you know X.
If you then average that guess over all possible values of X, weighted by how
likely those X are, you should get the average of Y overall. A discrete proof
is straightforward:

EX [E[Y | X]] =
∑
x

E[Y | X = x]P (X = x) =
∑
x

∑
y

yP (Y = y | X = x)P (X = x).

But
∑

x P (Y = y | X = x)P (X = x) = P (Y = y) by the law of total
probability. Thus the inner sum becomes

∑
y y P (Y = y) = E[Y ]. The

continuous version is analogous with integrals.

Using LIE: Simpson’s Paradox. The law of iterated expectations is
very useful for breaking complicated expectations into parts. It can also
illuminate phenomena like Simpson’s paradox, where aggregated data can
mislead. Simpson’s paradox occurs when a comparison of two groups re-
verses sign upon conditioning on a third factor. For example, it’s possi-
ble that E[Y | Gender = M ] > E[Y | Gender = F ] (men have higher
average Y than women overall), yet within each category of a third vari-
able (say country of origin or department), women have higher averages:
E[Y | Gender = M,Origin = A] < E[Y | Gender = F,Origin = A] and
likewise for Origin B. How can this happen?

The law of iterated expectations provides the clue:

E[Y | Gender = M ] = EOrigin[E[Y | Gender = M,Origin]]
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This expands to a weighted average of the conditional expectations within
each origin group:

E[Y | G = M ] = E[Y | G = M,O = A] · P (O = A | G = M)

+ E[Y | G = M,O = B] · P (O = B | G = M).

Similarly

E[Y | G = F ] = E[Y | G = F,O = A] · P (O = A | G = F )

+ E[Y | G = F,O = B] · P (O = B | G = F ).

Even if E[Y |M,A] < E[Y |F,A] and E[Y |M,B] < E[Y |F,B] (women out-
perform men in both origin groups), the overall averages can be reversed if
the weightings (the P (O = ·|G = ·) terms) differ. For instance, if most men
are from origin A (where everyone tends to have high Y ) and most women
from origin B (where everyone has lower Y ), the aggregate might show men
ahead. This is exactly what happened in the famous UC Berkeley gradu-
ate admissions case, where women applied to more competitive departments
(low admission rates) than men did, creating a paradox in the aggregated
data. The lesson: always consider relevant covariates (like origin or depart-
ment) before concluding that one group inherently has a higher expectation
than another. The law of iterated expectations helps to formally relate the
conditional and marginal expectations.

3.3.2 Conditional Variance

Just as we defined conditional expectation to characterize the mean of Y
given X, we can define the conditional variance of Y given X to charac-
terize the uncertainty or variability of Y around that conditional mean.

Definition 3.15 (Conditional Variance). The conditional variance of Y
given X is

V ar(Y | X) = E[(Y − E[Y | X])2 | X].

Equivalently, V ar(Y | X) = E[Y 2 | X]− (E[Y | X])2.

Here V ar(Y | X) is a function of X (hence a random variable when X is
random). For each realized value of X = x, V ar(Y | X = x) tells us how
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spread out Y is around the mean E[Y | X = x]. In regression terms, if Y is
an outcome and X are covariates, V ar(Y | X) is the “noise” or idiosyncratic
variance that remains in Y after accounting for X. When V ar(Y | X) is
not constant but depends on X, we have heteroskedasticity (variance of the
residuals depends on X).

Example 3.16. Education and Wages. Consider again Y = hourly wage,
and D = college degree indicator (1 if college graduate, 0 if not). Then
E[Y | D = 1] is the average wage of college grads, and E[Y | D = 0] that
of non-grads. But what about V ar(Y | D = 1) versus V ar(Y | D = 0)?
Which do you think is higher? One might guess that the variance in wages
among college graduates is higher. College-educated workers might have
a broad range of outcomes: some end up in highly paid professional jobs,
others in lower paid jobs, giving a wide spread. Non-college workers may
be more concentrated in a narrower band of lower-skilled jobs (all earning
similarly modest wages), so their wage distribution could be tighter. Indeed,
data often show greater wage dispersion for higher-educated groups. Thus
V ar(Y | D = 1) is likely larger than V ar(Y | D = 0). This is an example
of how conditional variance can yield insights: the effect of education is not
only to raise average wages but also potentially to increase the inequality or
variability of wages among those who attain higher education.

Just as there was a law of total expectation, there is a companion formula
called the Law of Total Variance. It provides a useful decomposition of
the overall variance of Y into explained and unexplained parts:

V ar(Y ) = E[V ar(Y | X)] + V ar(E[Y | X]).

This is a neat identity. The second term V ar(E[Y |X]) is the variance of
the conditional mean E[Y |X] when X varies — effectively, how much of Y ’s
variability is due to differences in the conditional expectation across different
X. The first term E[V ar(Y |X)] is the average of the within-X variances —
basically, the expected leftover variance of Y that remains after accounting
for X. Sometimes this is described as: total variance = “explained variance”
+ “unexplained variance.” If X accounts for a lot of the variation in Y , then
E[V ar(Y |X)] will be small and V ar(E[Y |X]) will be large.

Proof. Starting from the definition, we have:

V ar(Y ) = E[Y 2]− (E[Y ])2.
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By the Law of Iterated Expectations, E[Y ] = E(E[Y |X]). Now add and
subtract E[(E[Y |X])2] inside the expression:

V ar(Y ) = E[E[Y 2|X]]− (E[E[Y |X]])2

= E[E[Y 2|X]]− E[(E[Y |X])2] + E[(E[Y |X])2]− (E[Y ])2.

Observe that E[E[Y 2|X]] = E[Y 2] andE[(E[Y |X])2]−(E[Y ])2 = V ar(E[Y |X]).
Also E[Y 2|X]− (E[Y |X])2 = V ar(Y |X) by definition. So the first two terms
become E[V ar(Y |X) ]. Thus we end up with

V ar(Y ) = E[V ar(Y | X)] + V ar(E[Y | X]).

which is the desired result.

Interpretation: If you think of predicting Y given X, E[Y |X] is the pre-
diction (the part “explained” by X). The variance of that prediction as X
varies is basically how much of Y ’s variance is explained by X. The ex-
pected conditional variance is the remaining variance not explained by X.
In extreme cases: – If Y is almost a deterministic function of X (very lit-
tle noise), then V ar(Y |X) is nearly 0 always, so E[V ar(Y |X)] ≈ 0 and
V ar(Y ) ≈ V ar(E[Y |X]). All variance in Y comes from differences in X.
– If knowing X tells you almost nothing about Y (very weak relationship),
then E[Y |X] is nearly constant (equal to E[Y ]), so V ar(E[Y |X]) ≈ 0 and
V ar(Y ) ≈ E[V ar(Y |X)]. The total variance is just the average variance
within each conditional distribution (nothing is explained by X). This de-
composition is useful in analysis of variance (ANOVA) and in understanding
R2 in regression (which is the fraction of variance explained by X).

3.4 Mean Independence

We conclude this chapter with an important concept that lies between the
extremes of full independence and mere uncorrelatedness: mean indepen-
dence. In many econometric contexts, assumptions are made about zero
conditional mean of errors, etc., which are essentially mean independence
assumptions.
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Definition 3.17 (Mean Independence). We say a random variable Y is mean
independent of X if

E[Y | X = x] = E[Y ] ”for all” x,

i.e. the conditional expectation of Y given X is constant (equal to the uncon-
ditional expectation). Equivalently, E[Y | X] = E[Y ] as a random variable
(almost surely).

Mean independence means that knowing X has no effect on the expected
value of Y . In other words, X carries no information about the mean of
Y (though it could affect higher moments or the distribution of Y in other
ways). This is a much weaker condition than full independence, which would
require Y ’s entire distribution to be the same regardless of X. Here we only
demand the first moment is the same.

Trivially, if X and Y are independent, then E[Y |X] = E[Y ] (because the
conditional distribution of Y given any X = x is just the marginal distri-
bution of Y ). So independence =⇒ mean independence. However, the
converse is not true: there are dependent random variables which are mean
independent. All that’s required for mean independence is a cancellation in
the first moment.

Example 3.18. (Mean independence without full independence): Take X
uniformly distributed on [−1, 1] and let Y = X2. Then clearly Y depends
on X (indeed Y is completely determined by X). They are not independent.
But E[X] = 0, and for any given Y = y, the two possible X values are +

√
y

or −√
y, symmetric about 0. Thus E[X | Y = y] = 0 as well. In other

words E[X|Y ] = 0 = E[X]. Here X is mean independent of Y . (Note: Y
is not mean independent of X in this example, since E[Y |X] = X2 which is
not constant.) This construction shows mean independence does not imply
independence: X and Y are quite dependent, yet the mean of X given Y is
always the same as the overall mean of X. The key was the symmetry that
made the mean wash out.

One can fabricate many such examples. A general recipe: first pick Y freely,
then define a conditional distribution for X given each Y = y that has mean
equal to E[X]. For instance, let Y be any non-degenerate random variable
(so X and Y will be dependent through this construction). Given Y = y,
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let X be equally likely to take two values symmetric around E[X]. This
guarantees E[X|Y = y] = E[X]. Unless those two symmetric values coincide
(which would make X degenerate), X and Y are not independent.

Mean Independence vs Uncorrelatedness: Mean independence of Y
with respect to X implies E[Y | X] = E[Y ] for all X. If we take an expec-
tation (over X) on both sides, we get E[Y ] = E[E[Y | X]] = E[Y ], which is
tautologically true. But if we multiply both sides by any function h(X) and
then take expectation, we also get:

E[h(X)E(Y | X)] = E[h(X)E(Y )] = E(Y )E[h(X)],

and since E[h(X)E(Y | X)] = E[E(h(X)Y | X)] = E[h(X)Y ], we have

E[h(X)Y ] = E(Y )E[h(X)].

This holds for all h(X). In particular, taking h(X) = X itself gives

E[XY ] = E[X]E[Y ],

so Cov(X, Y ) = 0. Thus mean independence =⇒ zero covariance (uncorre-
latedness). Again, the converse is not true: uncorrelatedness is weaker. For
example, X and Y = X2 earlier are uncorrelated (covariance 0) but X is
not mean independent of Y (since E[X|Y ] = 0, true, but Y not mean inde-
pendent of X). So the hierarchy is: Independence =⇒ Mean independence
=⇒ Uncorrelatedness, with each converse failing in general.

Why do we care about mean independence? In many econometric models,
especially linear ones, we require the error term to be mean independent of
the regressors. For instance, a key assumption for OLS regression to identify
causal effects is E[u | X] = 0, meaning the error has mean zero given the
regressors X. This is strictly weaker than assuming u is independent of X
(which is often too strong; we allow u to be heteroskedastic or even depend
on X’s distribution in higher moments, as long as the mean given X is zero).
Mean independence is enough to ensure X has no predictive power for Y ’s
mean, which is exactly what’s needed for unbiased estimation of a linear
effect. It’s a minimal “no omitted variable bias” condition in that sense.

To summarize: – If Y is mean independent of X, then knowing X does not
change your best guess of Y ’s average value. X might still affect the variance
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or other aspects of Y ’s distribution, but not the mean. – Independence of X
and Y would mean X tells you nothing about Y at all (not just the mean,
but the entire distribution). – Uncorrelated (covariance zero) means no linear
relationship in a global sense, but doesn’t necessarily hold conditionally or
in nonlinear ways.

3.5 Conclusion

In this chapter, we reviewed various summary characteristics of distributions:

� The expectation (mean) of a random variable, and how to compute it
directly or via the Law of the Unconscious Statistician for transformed
variables.

� The variance (and standard deviation) as a measure of spread, and
related concepts like scaling properties and examples for common dis-
tributions.

� The covariance between two variables as a measure of their joint vari-
ability, and the derived concept of correlation which standardizes
covariance to a [−1, 1] scale. We saw that correlation is bounded by
±1 (Cauchy–Schwarz) and captures linear association.

� We emphasized that Cov(X, Y ) = 0 or ρXY = 0 does not imply in-
dependence except in special cases, even though independence always
implies zero covariance.

� We explored conditional expectation E[Y |X] as a random variable
(function of X) giving the mean of Y for each value of X. This is
central to regression analysis. We practiced using the law of iterated
expectations E(Y ) = E(E(Y |X)) and saw how failing to condition
can lead to Simpson’s paradox.

� We defined conditional variance V ar(Y |X) and presented the law
of total variance V ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X]), which
splits variance into explained and unexplained parts.
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� Finally, we introduced mean independence as a weaker notion than
full independence. We discussed its implications and its role in econo-
metric assumptions (e.g. exogeneity of regressors requiring E[u|X] =
0).

With the tools from Part A (distributions) and Part B (expectations and
moments) of our probability review, we are now well-equipped to handle
the statistical concepts needed for causal inference. We can precisely define
causal estimands as expectations (e.g. average treatment effects), and we can
invoke assumptions like “selection on observables” or “instrument exogene-
ity” in terms of conditional independence or mean independence to identify
those estimands. In the coming lectures, we will start examining estima-
tion: how to use sample data to estimate these theoretical quantities. Our
understanding of expectation will be crucial since an estimator is essentially
a function of random sample data (hence itself a random variable) whose
expectation we often set to a target parameter. Properties like variance and
covariance will help us quantify estimation uncertainty and test hypotheses.
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