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Chapter 2

Statistical Foundations Review

Probability theory provides the formal framework for analyzing randomness
and uncertainty. In this chapter, we will cover the basic definitions of proba-
bility spaces, random variables, distribution functions, common distributions,
random vectors, conditional distributions, and independence. Throughout,
we emphasize intuition and examples, building on solid theoretical founda-
tions.

2.1 Probability Spaces and Events

Probability theory starts with the idea of an experiment with uncertain out-
comes. The set of all possible outcomes is called the sample space, denoted
by Ω. An individual outcome of the experiment is ω ∈ Ω, also called a re-
alization. An event is any collection (subset) of outcomes, i.e. E ⊆ Ω. We
will often be interested in the probability of various events.

Example 2.1. Consider tossing a coin twice. The sample space is Ω =
{HH,HT, TH, TT},where each element is a two-letter sequence indicating
the result of the first and second toss (H for heads, T for tails). For instance,
ω = HH means the outcome was heads on both tosses. An example of
an event is “the first toss is tails,” which corresponds to the subset E =
{TH, TT} ⊆ Ω. Another event could be “exactly one heads in two tosses,”
which is E ′ = {HT, TH}.
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4 CHAPTER 2. STATISTICAL FOUNDATIONS REVIEW

Often we are interested in whether or not an outcome ω belongs to a certain
event E. For this purpose, it is convenient to use indicator functions.

Definition 2.2 (Indicator Function). Let Ω be a sample space and E ⊆ Ω
an event. The indicator function of event E, denoted 1E(ω), is defined as

1{ω ∈ E} = 1E(ω) =

{
1, if ω ∈ E,

0, if ω /∈ E ,

for any outcome ω ∈ Ω. In words, 1E(ω) equals 1 if the event E occurs (i.e.
if the outcome is in E) and 0 otherwise.

Example 2.3. Continuing the coin-toss experiment, let E1 = {TT} be the
event that both tosses are tails, and E2 = {TH, TT} be the event that the
first toss is tails (as above). Then for outcome ω = TT , we have 1E1(TT ) = 1
and 1E2(TT ) = 1 (since TT ∈ E1 and also TT ∈ E2). For ω = TH, we find
1E1(TH) = 0 (since TH /∈ E1) but 1E2(TH) = 1 (since TH ∈ E2). These
indicators correctly reflect which events occur for each outcome.

Indicator functions allow us to answer “yes-or-no” questions about outcomes
algebraically. They are especially handy as event descriptions grow more
complicated, thanks to a few key properties:

Lemma 2.4 (Properties of Indicator Functions). For any events E1, E2 ⊆ Ω
and any outcome ω ∈ Ω, the following properties hold:

1. 1E1(ω)
k = 1E1(ω) for any exponent k ̸= 0.

2. 1Ec
1
(ω) = 1− 1E1(ω), where Ec

1 is the complement event (not E1).

3. 1E1∩E2(ω) = 1E1(ω)1E2(ω).

4. 1E1∪E2(ω) = 1E1(ω) + 1E2(ω)− 1E1∩E2(ω).

2.1.1 Probability Measure

Now we introduce the central object of probability theory: the probability
measure. The probability measure assigns a likelihood (a number between 0
and 1) to each event, respecting certain axioms.
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Definition 2.5 (Probability Measure). A probability measure P on a sample
space Ω assigns a probability P (E) to each event E ⊆ Ω. The function
P : 2Ω → [0, 1] must satisfy the following axioms:

1. P (Ω) = 1. (The probability that something in the sample space occurs
is 1.)

2. P (E) ≥ 0 for all events E ⊆ Ω. (Probabilities are nonnegative.)

3. If E1 and E2 are disjoint events (E1 ∩ E2 = ∅), then P (E1 ∪ E2) =
P (E1)+P (E2). More generally, for any countable collection of pairwise
disjoint events E1, E2, E3, . . .,

P
(⋃

i

Ei

)
=
∑
i

P (Ei).

In particular, for two disjoint events E1 and E2, P (E1∪E2) = P (E1)+
P (E2). This property is called additivity (or sigma-additivity in the
infinite case).

A triple (Ω,F , P ), where F is a collection of events (typically a σ-algebra)
on Ω and P satisfies these properties on F , is called a probability space.

In many simple settings, especially with a finite or countable Ω, one can
specify P by first assigning probabilities to each elementary outcome ω ∈ Ω
such that

∑
ω∈Ω P (ω) = 1, and then for any event E, P (E) is the sum of P (ω)

for ω ∈ E. However, in continuous settings, one cannot usually define P (ω)
for each individual outcome in a meaningful way — instead, probabilities are
attached directly to events (often via integrals of density functions, as we’ll
see).

Example 2.6. If we toss a fair coin twice, a natural probability measure
is the one that assigns equal probability to each of the four outcomes in
Ω = {HH,HT, TH, TT}. For example, we set P ({ω}) = 1/4 for each ω ∈ Ω.
Then by additivity, P ({HH}) = 1/4, P ({TT}) = 1/4, and P ({HT, TH}) =
P ({HT}) + P ({TH}) = 1/4 + 1/4 = 1/2. This aligns with our intuition for
independent fair coin flips.
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2.2 Random Variables and Distribution Func-

tions

In many applications, we are not directly interested in the outcome ω itself,
but rather in some numerical quantity determined by the outcome. Random
variables formalize this notion.

Definition 2.7 (Random Variable). A random variable X is a function X :
Ω → R that assigns a real number X(ω) to each outcome ω ∈ Ω. In other
words, a random variable is a numerical summary of the outcome of an
experiment.

Example 2.8. In the coin-toss experiment, define X(ω) to be the number
of heads that occur in the outcome ω. Then X is a random variable taking
values in {0, 1, 2}. For example, if ω = TH (first toss tails, second toss
heads), then X(ω) = 1. If ω = TT , then X(ω) = 0.

Note: We have defined a random variable in a somewhat informal way as a
function from outcomes to R. In a more rigorous mathematical treatment,
one requires X to be a measurable function with respect to the event σ-
algebra, but that level of detail is beyond our scope here. It suffices for our
purposes to treat X(ω) as a real number associated with outcome ω.

Every random variable X induces a probability distribution on the real line,
describing how the total probability mass of 1 is distributed over the values
that X can take. A key descriptor of this distribution is the cumulative
distribution function:

Definition 2.9 (Cumulative Distribution Function). The cumulative dis-
tribution function (CDF) of a random variable X is the function FX :
R → [0, 1] defined by FX(x) = P (X ≤ x),∀x ∈ R. For each real number x,
FX(x) gives the probability that the random variable X will take a value less
than or equal to x.

Notation: We typically use uppercase letters (like X, Y ) for random vari-
ables, and lowercase letters (like x, y) for specific values or realizations of
those variables. If FX is the CDF of X, we sometimes denote the distribu-
tion by writing X ∼ FX . In the special case that X has a known named
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distribution (e.g. normal with mean µ and variance σ2), we use notation like
X ∼ N(µ, σ2) to denote its distribution.

The CDF FX(x) is a non-decreasing function in x that satisfies limx→−∞ FX(x) =
0 and limx→∞ FX(x) = 1. It encapsulates all the information about the
probability distribution of X. In fact, the CDF uniquely determines the
probability law of X, as formalized by the following theorem:

Theorem 2.10 (CDF Characterizes Distribution). Let X and Y be two
random variables with CDFs FX and FY respectively. If FX(x) = FY (x)
for all x ∈ R, then X and Y have the same distribution. In particular,
P (X ∈ E) = P (Y ∈ E) for every event E ⊆ R (for every subset of real
numbers).

When X and Y have the same CDF (hence the same distribution), we say

they are identically distributed. This is sometimes denoted by X
d
= Y

(read as “X equals Y in distribution”). Identically distributed random vari-
ables need not be equal to each other as numbers; they simply behave the
same probabilistically.

Example 2.11. Let X be the number of heads in two fair coin tosses, and let
Y be the number of tails in two fair coin tosses. Intuitively, X and Y have
the same distribution (since in two tosses, the distribution of “number of
heads” is the same as the distribution of “number of tails”). We can confirm
this by writing out the CDF of X explicitly:

FX(x) = P (X ≤ x) =


0, x < 0,

1/4, 0 ≤ x < 1,

3/4, 1 ≤ x < 2,

1, 2 ≤ x.

because X can only take the values 0, 1, or 2, with probabilities P (X =
0) = 1/4, P (X = 1) = 1/2, P (X = 2) = 1/4. Now Y = number of tails
= 2−X in this experiment, so Y can also be 0, 1, 2 with the same probabilities
1/4, 1/2, 1/4. Indeed one can check FY (x) = P (Y ≤ x) is exactly the same
as FX(x) above. Thus FX(x) = FY (x) for all x, and by the theorem X and

Y are identically distributed (X
d
= Y ). However, clearly X ̸= Y for any

given outcome (if there are x heads there are 2 − x tails, so Y = 2 − X).
Two random variables can have the same distribution without being equal
as random quantities.
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2.2.1 Discrete Random Variables

Random variables come in different types. If a random variable can take at
most a countable number of distinct values (like 0,1,2 or a finite list), we call
it discrete. The distribution of a discrete random variable can be described
by its probability mass function:

Definition 2.12 (Discrete Random Variable and PMF). A random variable
X is discrete if it takes values in a countable set {x1, x2, x3, . . . } (finite or
countably infinite). The probability mass function (pmf) of X is the
function fX : R → [0, 1] defined by fX(x) = P (X = x) for each x ∈ R.
(For values of x not in the support of X, fX(x) = 0.) The support of
X is the set of values that X can actually take with positive probability:
supp(X) = x ∈ R : P (X = x) > 0.

By the laws of probability, for a discrete X we must have fX(x) ≥ 0 for all
x and

∑
x∈supp(X) fX(x) = 1 (all the probability mass sums to 1).

Once we have the pmf, the cumulative distribution function can be obtained
by summing probabilities. In fact, for any x,

FX(x) = P (X ≤ x) =
∑

x′∈supp(X)

fX(x
′)1{x′ ≤ x},

i.e. we sum the probabilities of all support points x′ that are ≤ x.

Example 2.13. Again let X be the number of heads in two fair coin tosses.
The support of X is 0, 1, 2. Its pmf is

fX(x) =


1/4, x = 0,

1/2, x = 1,

1/4, x = 2,

0, otherwise.

We can use this pmf to compute the CDF at, say, x = 1:

FX(1) = P (X ≤ 1) = P (X = 0)+P (X = 1) = fX(0)+fX(1) = 1/4+1/2 = 3/4,

which matches the earlier CDF piecewise definition for FX(x).
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2.2.2 Continuous Random Variables

Another important class of random variables are continuous random vari-
ables, which have an uncountable range and are described by a density func-
tion rather than point probabilities.

Definition 2.14 (Continuous Random Variable and PDF). A random vari-
able X is continuous if its distribution can be described by a nonnegative
probability density function (pdf) fX : R → [0,∞) such that for any
interval [a, b],

P (a < X ≤ b) =

∫ b

a

fX(x) dx,

The pdf must satisfy
∫∞
−∞ fX(x) dx = 1. Given a pdf, the CDF is obtained

by integration:

FX(x) = P (X ≤ x) =

∫ x

∞
fX(t) dt,

and conversely, if FX is differentiable, then fX(x) =
d
dx
FX(x).

In simpler terms, for a continuous random variable X, probabilities are given
by areas under the density curve. An important consequence is that for a
truly continuous distribution, the probability of X taking any exact value is
zero. In fact, if X is continuous, for any specific number c we have

P (X = c) =

∫ c

c

fX(x) dx,= 0

All probability is in intervals or ranges of values, not at points.

Example 2.15. Consider choosing a number uniformly at random between
0 and 1. This can be modeled by a continuous random variable X with pdf

fX(x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise,

Clearly fX(x) ≥ 0 everywhere and
∫∞
−∞ fX(x) dx =

∫ 1

0
1 dx = 1. For any

subinterval [a, b] ⊆ [0, 1],

P (a < X ≤ b) =

∫ b

a

= b− a,
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which matches our intuition of a uniform pick. The CDF in this case is

FX(x) =


0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1.

since P (X ≤ x) = 0 for x < 0, equals x for 0 ≤ x ≤ 1 (because the
proportion of the interval [0, 1] up to x is x itself), and is 1 for x ≥ 1. We
denote X ∼ U(0, 1), read “X is uniformly distributed on [0, 1].” This U(0, 1)
distribution is often called the standard uniform distribution.

Caveat (Discrete vs. Continuous): It is important not to confuse the
roles of pmfs and pdfs. For a discrete random variable, P (X = x) is given
directly by the pmf fX(x). In contrast, for a continuous random variable,
P (X = x) = 0 for every x, even though we might have fX(x) > 0. The
number fX(x) for a continuous distribution does not equal P (X = x); rather,
fX(x) is a density height such that probabilities of intervals are integrals
of fX . Also, note that a pdf can sometimes take values larger than 1 (or
even be unbounded) without issue, as long as the area under the curve is
1. For example, if X ∼ U(0, 0.5) (uniform on [0, 0.5]), then fX(x) = 2 for
0 ≤ x ≤ 0.5, which is greater than 1. Similarly, a pdf like fX(x) =

1
2
√
x
for

0 < x < 1 (and 0 elsewhere) is unbounded as x → 0, yet it is a valid density

(you can check
∫ 1

0
1

2
√
x
dx = 1). By contrast, for discrete distributions the

probabilities fX(x) = P (X = x) can never exceed 1.

The CDF is useful for calculating probabilities of various events. Here are
some common formulas that follow directly from properties of CDFs:

Lemma 2.16 (Using the CDF). Let X be a random variable with CDF
F (x) = P (X ≤ x). Then for any real numbers a < b, the following hold:

1. P (a < X ≤ b) = F (b)− F (a).

2. P (X > x) = 1− P (X ≤ x) = 1− F (x).

3. If X is continuous, then P (a < X < b) = P (a ≤ X ≤ b) = F (b)−F (a),
because for continuous distributions the probability of endpoints P (X =
a) or P (X = b) is zero.
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Another way to characterize a distribution is via its quantile function,
which is essentially the inverse of the CDF.

Definition 2.17 (Quantile Function). Given a random variableX with CDF
FX , the quantile function (also called the inverse CDF) F−1

X is defined for
q ∈ [0, 1] by

F−1
X (q) = inf{x ∈ R : FX(x) ≥ q}.

In words, F−1
X (q) is the smallest number x such that P (X ≤ x) ≥ q. Equiv-

alently, F−1
X (q) is a value such that P (X ≤ F−1

X (q)) = q (for continuous and
strictly increasing FX , this is the unique value with that property).

If FX is continuous and strictly increasing, then F−1
X is the usual inverse

function and indeed P (X ≤ F−1(q)) = q. Common terminology: F−1(0.5) is
the median of X, F−1(0.25) is the first quartile, F−1(0.75) the third quartile,
etc. If you haven’t seen the inf (infimum) operator before, you can think of
it loosely as a minimum value; for continuous distributions the infimum is
attained as a minimum when F is continuous.

Example 2.18. For a standard uniform U(0, 1) random variable U , the
CDF is FU(x) = x for x ∈ [0, 1]. The quantile function is thus F−1

U (q) = q
for q ∈ [0, 1]. In this trivial case, it so happens that X and F−1(U) have the
same distribution F for any distribution F . In fact, an important general
result is that if U ∼ U(0, 1) and we define X = F−1

X (U) using any continuous
CDF FX , then X follows the distribution FX . This is known as the inverse
CDF method and is fundamental in random variable generation: one can
simulate any distribution by first simulating a uniform random variable and
then transforming it by the quantile function.

2.3 Important Univariate Distributions

Now that we have the general language of pmfs, pdfs, and CDFs, we discuss
a few specific probability distributions that are especially common or useful.
Some of these we have already encountered informally (e.g. uniform, bino-
mial). As a financial research student, you will likely see these distributions
appear in modeling or data analysis contexts.
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2.3.1 Common Discrete Distributions

Definition 2.19 (Discrete Uniform Distribution). Let k ≥ 1 be an integer.
A random variable X has a discrete uniform distribution on 1, 2, . . . , k,
denoted X ∼ U1, . . . , k, if

P (X = x) =
1

k
for x = 1, 2, ...k,

and P (X = x) = 0 for any other x. In other words, X is equally likely to be
any of the integers from 1 to k.

This describes the scenario of picking an element at random from a set of k
elements with equal probability. A simple example is a fair k-sided die (for
k = 6, the die outcomes 1 through 6 are each 1/6).

Definition 2.20 (Bernoulli Distribution). Let 0 < p < 1 be a fixed proba-
bility. A random variable X has a Bernoulli(p) distribution if

P (X = 1) = p, P (X = −) = 1− p,

and those are the only two values X can take. We write X ∼ Bernoulli(p).

A Bernoulli(p) random variable is the simplest non-trivial discrete random
variable: it represents a single trial with probability p of “success” (outcome
1) and 1−p of “failure” (outcome 0). For example, the result of one coin flip
can be modeled as Bernoulli(p) with p = 0.5 if we let 1 represent heads and
0 tails. It is sometimes convenient to express the Bernoulli pmf in a formula:
for x ∈ 0, 1, P (X = x) = px(1 − p)1−x. This formula will generalize to the
binomial distribution.

Definition 2.21 (Binomial Distribution). If we perform n independent tri-
als, each with probability p of success, and let X be the total number of
successes, then X is said to have a Binomial(n, p) distribution. The pmf is

fX(x) =

{(
n
x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n,

0, otherwise.

We write X ∼ Binomial(n, p). The binomial distribution generalizes the coin
toss example: it is the distribution of the number of heads in n independent
coin flips (with probability p of heads on each flip).
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Here
(
n
x

)
= n!

x!(n−x)!
is the binomial coefficient, which counts the number of

ways to choose x items out of n. The binomial distribution can be under-
stood as the sum of n independent Bernoulli(p) trials. It represents the total
number of successes in n trials, each with success probability p. For example,
if you flip a biased coin n times (each flip with probability p of heads), then
the number of heads follows Binomial(n, p). The presence of

(
n
x

)
in the pmf

accounts for the fact that those x successes can occur in any
(
n
x

)
distinct

positions among the n trials.

The previous discrete distributions are all related: Bernoulli(p) is a special
case of Binomial(n, p) with n = 1, and the binomial(n, p) is the distribution
of a sum of n independent Bernoulli(p) variables.

Definition 2.22 (Poisson Distribution). Let λ > 0 be a given rate parame-
ter. A random variable X has a Poisson(λ) distribution if

P (X = x) = e−λλ
x

x!
, x = 0, 1, 2, ...

We denote this X ∼ Poisson(λ).

The Poisson distribution is often used to model the number of occurrences
of some random event in a fixed interval of time or space, when those events
happen at a constant average rate λ and independently of each other. For
instance, X could be the number of trades made by a high-frequency trader
in one millisecond, or the number of insurance claims in a day. The mean
of a Poisson(λ) is λ (as is the variance), meaning λ is the expected count
of events. The pmf formula e−λλx/x! indeed sums to 1 over x = 0 to ∞.
One reason the Poisson is important is that it arises as an approximation or
limit of the binomial distribution in the regime of rare events. Specifically,
if n is large and p is small such that np = λ (fixed), then Binomial(n, p) is
approximately Poisson(λ).

2.3.2 Common Continuous Distributions

We have already encountered the continuous uniform distribution in the
U(0, 1) example. Here it is defined in general:
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Definition 2.23 (Continuous Uniform Distribution). IfX is equally likely to
lie anywhere in the interval [a, b], we say X has a Uniform(a, b) distribution
and write X ∼ U(a, b). Its pdf is

fX(x) =

{
1

b−a
, a ≤ x ≤ b,

0, otherwise.

The CDF is FX(x) =
x−a
b−a

for a ≤ x ≤ b. The special case U(0, 1) we have
already encountered.

The uniform distribution is fundamental in simulation (as noted, U(0, 1) is
the basis of generating other distributions). However, the most celebrated
and ubiquitous distribution in probability and statistics is the normal dis-
tribution (also called the Gaussian distribution).

Definition 2.24 (Normal (Gaussian) Distribution). A random variable X
is said to have a Normal distribution with mean µ and variance σ2 if its pdf
is

fX(x) =
1√
2π σ2

exp
(
− (x− µ)2

2σ2

)
, ∀x ∈ R.

We write X ∼ N(µ, σ2).

The normal distribution (also called Gaussian) is arguably the most impor-
tant distribution in probability and statistics. It is bell-shaped and symmet-
ric about µ. If X ∼ N(µ, σ2), then the probability of X falling within
one standard deviation of the mean is about 68%, within two standard
deviations about 95%, and within three about 99.7% (this is the 68-95-
99.7 rule, stemming from the properties of the normal CDF). In particular,
P (µ − σ ≤ X ≤ µ + σ) ≈ 0.68, and P (µ − 2σ ≤ X ≤ µ + 2σ) ≈ 0.95.
Because of the Central Limit Theorem (discussed later), the normal often
provides a good approximation to the distributions of sums or averages of
many independent random factors. Many statistical procedures are built on
the normal distribution as a convenient approximation.

The normal distribution is incredibly important in probability, statistics, and
financial modeling for several reasons:

� Many natural processes and measurement errors tend to be approxi-
mately normal (by virtue of the Central Limit Theorem, which says
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roughly that the sum of many small independent effects is approxi-
mately normal).

� The normal is analytically convenient: linear combinations of normal
variables are normal; many statistical methods assume normality for
tractability.

� In finance, asset returns are often modeled as normal (or at least used
to be in classical models, though in practice returns have heavier tails
than normal).

One quirk of the normal distribution is that the CDF does not have a closed-
form antiderivative. In other words,

Φ(x) = P (X ≤ x) =
1√
2π σ2

∫ x

−∞
exp
(
− (t− µ)2

2σ2

)
dt

cannot be expressed in terms of elementary functions. Instead, values of Φ(x)
(often standardized to the N(0, 1) case) are obtained via numerical tables or
software.

When µ = 0 and σ2 = 1, we call that the standard normal distribution,
denoted Z ∼ N(0, 1). We typically use ϕ(x) = 1√

2π
exp(−x2/2) for its pdf and

Φ(x) = P (Z ≤ x) for its CDF. Again, there is no simple closed form for Φ(x),
but it has been tabulated and built into statistical software. Some quantiles of
the standard normal that are frequently used in practice: Φ−1(0.975) ≈ 1.96,
Φ−1(0.95) ≈ 1.64, Φ−1(0.05) ≈ −1.64, and Φ−1(0.025) ≈ −1.96. (These val-
ues are often memorized because of their role in 5% significance tests—more
on that later.)

The normal family has some very useful properties. For example, it is closed
under linear transformations: If X ∼ N(µ, σ2) and a, b are constants with
b ̸= 0, then Y = a + bX also has a normal distribution: specifically Y ∼
N(a + bµ, b2σ2). In particular, any normal X can be standardized to a
Z ∼ N(0, 1) by

Z =
X − µ

σ
,

and conversely X can be represented as X = µ + σZ where Z ∼ N(0, 1).
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These relationships imply, for instance,

P (a < X ≤ b) = P
(
a < µ+ σZ ≤ b

)
= P

(a− µ

σ
< Z ≤ b− µ

σ

)
= Φ
(b− µ

σ

)
− Φ
(a− µ

σ

)
.

2.4 Random Vectors and Joint Distributions

So far we have focused on a single random variable at a time (univariate
distributions). However, in causal inference and financial applications, we
usually deal with multiple random variables simultaneously and their rela-
tionships. For example, we might have a pair of random variables (X, Y )
representing two different measurements on the same experimental unit (e.g.
X = treatment status, Y = outcome). We need ways to describe the joint
behavior of (X, Y ), including whether and how they are related (correlated
or independent, etc.).

2.4.1 Joint, Marginal, and Conditional Distributions

A random vector is a vector whose components are random variables. For-
mally, a d-dimensional random vector X is a function X : Ω → Rd that
maps each outcome to a d-tuple of real numbers. For example, a bivariate
random vector (X, Y ) is just a pair of random variables. Each component
X and Y has its own distribution (called the marginal distributions), but
together they have a joint distribution that can capture any dependence be-
tween them. For simplicity, we will discuss the bivariate case d = 2. The
generalization to higher dimensions (d > 2) is conceptually straightforward
(just more notation).

Definition 2.25 (Joint CDF). The joint cumulative distribution func-
tion of a pair (X, Y ) is

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

for x, y ∈ R. This gives the probability that X is at most x and simultane-
ously Y is at most y.
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Just as the univariate CDF characterizes the distribution of one variable, the
joint CDF characterizes the joint distribution of (X, Y ). From the joint CDF
one can in principle recover all probabilities of events concerning X and Y .
Similar to the univariate case, if (X, Y ) takes values in a discrete set, we
describe it with a joint pmf, and if it’s continuous in R2, we describe it with
a joint pdf.

Definition 2.26 (Joint PMF (discrete case)). If X and Y are discrete ran-
dom variables, the joint probability mass function is

fX,Y (x, y) = P (X = x, Y = y),

for all values (x, y) in the (countable) support of (X, Y ). For any two values
x, y, fX,Y (x, y) gives the probability that X equals x and Y equals y at the
same time.

Example 2.27. Suppose (X, Y ) can take the following four combinations of
values with the probabilities given in the table:

Y = 0 Y = 1
X = 0 1/5 1/10
X = 1 3/10 2/5

This table defines a joint pmf: for instance, P (X = 0, Y = 1) = 1/10,
P (X = 1, Y = 0) = 3/10, etc. We can verify the probabilities sum to 1 (as
they must): 1

5
+ 1

10
+ 3

10
+ 2

5
= 1. Using this pmf, one can compute probabilities

of more involved events; e.g. P (X < Y ) = P (X = 0, Y = 1) = 1/10 in this
case.

From the joint pmf, we can get the individual distribution of X or Y by
summing over the other variable. These are called marginal distributions.

Definition 2.28 (Marginal PMF). If (X, Y ) has joint pmf fX,Y (x, y), the
marginal pmf of X is obtained by summing out Y :

fX(x) = P (X = x) =
∑
y

P (X = x, Y = y) =
∑
y

fX,Y (x, y),

where the sum is over all y in the support of Y . Likewise, fY (y) =
∑

x fX,Y (x, y)
gives the marginal pmf of Y .
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In other words, to find the probability X = x, consider all joint outcomes
whereX = x (with any Y ) and add up those probabilities. This is an instance
of the Law of Total Probability, which in general states that

P (X = x) =
∑
y

P (X = xandY = y)

summing over any partition (here partitioned by values of Y ). In continuous
form it will be an integral.

Example 2.29. Using the previous table, the marginal distribution of X is:

P (X = 0) = 1/5 + 1/10 = 3/10, P (X = 1) = 3/10 = 2/5 = 7/10.

We can present this calculation in an augmented table by adding the row/column
totals:

Y = 0 Y = 1 P (X = x)
X = 0 1/5 1/10 3/10
X = 1 3/10 2/5 7/10

P (Y = y) 1/2 1/2 1

From the table we also see the marginal distribution of Y : P (Y = 0) = 1/2
and P (Y = 1) = 1/2.

If (X, Y ) is instead jointly continuous (loosely speaking, they have a two-
dimensional density), we define a joint pdf analogously:

Definition 2.30 (Joint PDF (continuous case)). A pair (X, Y ) of continuous
random variables has a joint probability density function fX,Y (x, y) if
fX,Y (x, y) ≥ 0 for all (x, y) and

P ((X, Y ) ∈ A) =

∫∫
(X,Y )∈A

fX,Y (x, y)dxdy,

for A in R2. In particular, over the whole plane
∫∫

R2 fX,Y (x, y) dx dy = 1.

This is just the higher-dimensional analog of a one-dimensional density. If
we integrate the joint density over some area A, we get the probability that
(X, Y ) falls in that area.
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Example 2.31. Suppose (X, Y ) is chosen uniformly at random from the
unit square [0, 1]× [0, 1]. Then

fX,Y (x, y) =

{
1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0, otherwise.

This means X and Y are each U(0, 1) by themselves. In fact fX(x) =∫ 1

0
1 dy = 1 for 0 ≤ x ≤ 1 (and 0 outside that), so X ∼ U(0, 1); simi-

larly Y ∼ U(0, 1). For any region A inside the unit square, P ((X, Y ) ∈ A)
is just the area of A. For instance, P (X ≤ 0.5, Y ≤ 0.5) = 0.5× 0.5 = 0.25
since that corresponds to a 0.5× 0.5 square quarter of the unit square.

For continuous random vectors, the marginal density of X is obtained by
integrating out Y :

Definition 2.32 (Marginal PDF). If (X, Y ) has joint pdf fX,Y (x, y), then

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

is the marginal pdf of X, and similarly fY (y) =
∫∞
−∞ fX,Y (x, y) dx.

Example 2.33. For the uniform distribution on [0, 1]2 above, the marginal
density of X is

fX(x) =

∫ 1

0

dy = 1(1− 0) = 1

for 0 ≤ x ≤ 1 (and 0 outside that range). Thus X ∼ U(0, 1) marginally. The
same is true for Y . Intuitively, if you pick a random point in the unit square,
the x-coordinate by itself is uniform on [0, 1], and so is the y-coordinate by
itself.

So far we have described how to get single-variable distributions (marginals)
from a joint distribution. Another important concept is the conditional
distribution. This describes the distribution of X given some information
about Y (or vice versa). It tells us how X and Y relate: if X and Y are
dependent, the distribution of X will generally change when we know Y = y
has occurred.
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Definition 2.34 (Conditional PMF). If (X, Y ) is a discrete random vector
with joint pmf fX,Y (x, y), the conditional pmf of X given Y = y is

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)
=

fX,Y (x, y)

fY (y)
,

for any x such that P (Y = y) > 0. (If P (Y = y) = 0, the conditional
probability is undefined for that y.) This is denoted fX|Y (x|y). Likewise one
can define fY |X(y|x) = P (Y = y | X = x) =

fX,Y (x,y)

fX(x)
.

This is just the discrete version of Bayes’ rule: P (X|Y ) = P (X,Y )
P (Y )

. It formal-
izes how we update probabilities for X once we know Y = y.

Example 2.35. Using our earlier joint pmf table, let’s compute a conditional
probability. We found P (Y = 0) = 1/2. Then

P (X = 0 | Y = 0) =
P (X = 0, Y = 0)

P (Y = 0)
= (1/5)(1/2) = 0.4.

So if we know Y = 0 happened, there’s a 40% chance that X was 0. On the
other hand,

P (Y = 0 | X = 0) =
P (X = 0, Y = 0)

P (X = 0)
= (1/5)(3/10) = 0.667.

These two conditional probabilities are not the same (0.4 vs 0.667), which
already hints that X and Y are not independent (knowing one changes the
distribution of the other).

For continuous random vectors, conditional density is defined similarly via
ratio:

Definition 2.36 (Conditional PDF). If (X, Y ) has joint pdf fX,Y (x, y), the
conditional density of X given Y = y (assuming fY (y) > 0) is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, for any y with fY (y) > 0.

for any x ∈ R. This satisfies P (X ∈ A | Y = y) =
∫
x∈A fX|Y (x|y) dx for any

region A. Similarly define fY |X(y|x) = fX,Y (x,y)

fX(x)
.
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From these definitions, one can always relate the joint and conditional dis-
tributions by the formula:

fX,Y (x, y) = fX|Y (x|y) fY (y) = fY |X(y|x) fX(x).

which is just a rearrangement of the definition. In words: joint = conditional
× marginal. This is another way to express the law of total probability and
Bayes’ rule in a general form.

2.4.2 Independence

A particularly important relationship between random variables is indepen-
dence. Intuitively, X and Y are independent if knowing the value of one
gives no information about the other. Formally:

Definition 2.37 (Independence). Two random variables X and Y are inde-
pendent if for every pair of events A,B ⊆ R,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

We often denote independence by X ⊥ Y .

This means the joint probability of any event aboutX and any event about Y
factorizes into the product of the separate probabilities. In particular, taking
A = x and B = y (in discrete cases), we get P (X = x, Y = y) = P (X =
x)P (Y = y). Likewise for densities, we’d require fX,Y (x, y) = fX(x)fY (y) for
all x, y. The definition as stated requires checking an infinite collection of sets
A and B (all Borel sets, technically). This can be tedious, but fortunately a
simpler characterization exists in terms of the joint pdf/pmf:

Theorem 2.38 (Factorization Criterion). If X and Y have a joint pmf (dis-
crete case) or joint pdf (continuous case) fX,Y (x, y), then

X ⊥ Y ⇐⇒ fX,Y (x, y) = fX(x) fY (y) for all x, y ,

provided fX(x) and fY (y) are the marginal distributions.

In words, X and Y are independent if and only if their joint density (or mass)
function factors into a product of a function of x alone and a function of y
alone.
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Corollary 2.39. Equivalently, X and Y are independent if and only if the
conditional distribution of X given Y is the same as the marginal distribution
of X. That is,

X ⊥ Y ⇐⇒ fX|Y (x|y) = fX(x) for all x, y (with fY (y) > 0).

Proof. Starting from the factorization criterion: if fX,Y (x, y) = fX(x)fY (y),
then

fX|Y (x | y) = fX,Y (x, y)

fY (y)
=

fX(x)fY (y)

fY (y)
= fX(x),

showing the conditional equals the marginal. Conversely, if fX|Y (x|y) =
fX(x) for all x, y, multiply both sides by fY (y) to recover fX,Y (x, y) =
fX(x)fY (y). This holds in both discrete and continuous settings.

In practice, to check independence one often checks if the joint pmf/pdf
factorizes as above or if one conditional equals the marginal (as a quick test at
some values). If any counterexample is found (like one conditional probability
not matching the marginal), then the variables are not independent.

Example 2.40. Recall the joint pmf table earlier. We found P (X = 0) = 0.3
and P (X = 0 | Y = 0) = 0.4. Since P (X = 0 | Y = 0) ̸= P (X =
0), it follows X and Y are not independent (knowing Y = 0 changed the
probability of X = 0). Indeed, if you compare the table to the product of
marginals, they differ:

fX(0)fY (0) = 0.3× 0.5 = 0.15,

but

fX,Y (0, 0) = 0.2.

So the factorization fails as well (0.2 vs 0.15). On the other hand, suppose
we had a joint pmf like:

Y = 0 Y = 1 P (X = x)
X = 0 1/4 1/4 1/2
X = 1 1/4 1/4 1/2

P (Y = y) 1/2 1/2 1
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In this hypothetical case, P (X = x, Y = y) = 1/4 for each combination with
x ∈ 0, 1, y ∈ 0, 1. We can see that fX,Y (x, y) = (1/2) × (1/2) = fX(x)fY (y)
in each cell. So here X and Y are independent. Each outcome pair is exactly
the product of the marginals (0.5× 0.5 = 0.25).

Independence has an important implication: if X ⊥ Y , any function of X is
independent of any function of Y . This means once we break the link between
X and Y , even non-linear transformations won’t induce dependence.

Corollary 2.41. If X and Y are independent, then for any (deterministic)
function h, the random variable h(Y ) is also independent of X. That is,
X ⊥ Y implies X ⊥ h(Y ). Likewise g(X) is independent of Y for any
function g.

Proof. Let A be any event concerning X and B any event concerning h(Y ).
The event h(Y ) ∈ B can be expressed in terms of Y : it is Y ∈ h−1(B) where
h−1(B) = {y : h(y) ∈ B}. Using independence of X and Y , we have

P (X ∈ A, h(Y ) ∈ B) = P (X ∈ A, Y ∈ h−1(B) = P (X ∈ A)P (Y ∈ h−1(B)),

since Y ∈ h−1(B) is an event about Y . But P (Y ∈ h−1(B)) = P (h(Y ) ∈ B).
Therefore

P (X ∈ A, h(Y ) ∈ B) = P (X ∈ A)P (h(Y ) ∈ B),

showing X and h(Y ) satisfy the definition of independence.

Example 2.42. In a causal inference context, suppose D is a treatment
indicator (1 if treated, 0 if control) and U represents all other unknown factors
affecting the outcome. If we assume D is randomly assigned (independent of
U), then by the above corollary D is also independent of any function of U .
In particular, if Y (0) = g(D = 0, U) and Y (1) = g(D = 1, U) represent the
potential outcomes (outcomes under control and treatment, respectively, as
functions of U), random assignment implies D ⊥ Y (0) and D ⊥ Y (1). This
means the treatment assignment is independent of what the outcome would
have been either way, which is a crucial condition for unbiased causal effect
estimation.



24 CHAPTER 2. STATISTICAL FOUNDATIONS REVIEW

2.4.3 The Bivariate Normal Distribution

As an important example of a joint distribution, we highlight the bivariate
normal distribution. Many results in statistics assume joint normality
of variables, and it has nice properties (e.g., any marginal or conditional
distribution of a normal vector is normal).

Definition 2.43 (Bivariate Normal). A pair (X, Y ) is said to have a bi-
variate normal distribution if there exist parameters µX ∈ R, µY ∈ R,
and

Σ =

(
σ2
X ρ σXσY

ρ σXσY σ2
Y

)
with σX > 0, σY > 0 and σXY satisfying σ2

XY < σ2
Xσ

2
Y , such that the joint

pdf of (X, Y ) is given by

fX,Y (x, y) =
1

2π|Σ|1/2
exp

(
−1

2

(
x− µX

y − µY

)⊤

Σ−1

(
x− µX

y − µY

))
,

for all x, y ∈ R. We then write (X, Y ) ∼ N(µ,Σ), where µ = (µX , µY )
⊤ and

Σ is the covariance matrix.

This definition is a bit heavy on linear algebra; an equivalent characteriza-
tion is that any linear combination aX + bY is normally distributed (for
all constants a, b). The parameters µX , µY are the means of X and Y ,
σ2
X = V ar(X), σ2

Y = V ar(Y ), and σXY = Cov(X, Y ), the covariance be-
tween X and Y . The condition σ2

XY < σ2
Xσ

2
Y ensures Σ is positive-definite

(a valid covariance matrix, equivalently the correlation ρ = σXY /(σXσY )
satisfies −1 < ρ < 1).

A remarkable fact is that any subset of a multivariate normal vector is also
multivariate normal, and conditional distributions are normal as well. In
particular, for a bivariate normal (X, Y ) ∼ N(µ,Σ):

� The marginal distribution of X alone is N(µX , σ
2
X), and Y alone is

N(µY , σ
2
Y ). (So if two variables are jointly normal, each is univariate

normal.)

� The conditional distribution of Y given X = x is normal with

Y | X = x ∼ N

(
µY +

σXY

σ2
X

(x− µX), σ
2
Y − σ2

XY

σ2
X

)
.
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This formula says the mean of Y conditional onX = x is linear in x, and
the variance of the conditional is smaller than the marginal variance of
Y (information about X reduces uncertainty about Y unless σXY = 0).

Another useful property: within a multivariate normal distribution, zero
correlation implies independence. For general distributions, X and Y
having zero covariance (or correlation) does not guarantee independence, but
for normal it does.

Theorem 2.44. If (X, Y ) ∼ N(µ,Σ) is bivariate normal, then

X ⊥ Y ⇐⇒ σXY = 0.

In other words, bivariate normal variables are independent precisely when
their covariance is zero.

The linear structure of the normal also means any linear combination of
jointly normal variables is normal:

Lemma 2.45 (Linear Combinations of Normals). If (X, Y ) ∼ N(µ,Σ) and
a, b are constants, then the random variable Z = aX + bY is distributed as

Z ∼ N(aµX + bµY , a
2σ2

X = 2abσXY = b2σ2
Y ).

In particular, Z is normal with mean equal to aµX + bµY and variance
[a b] Σ [a b]⊤. If moreover X and Y are independent (so σXY = 0), this
variance simplifies to a2σ2

X + b2σ2
Y .

Given these properties, one can derive other related distributions. For ex-
ample, summing squares of independent standard normals yields the χ2 dis-
tribution (chi-square), which appears often as a test statistic distribution in
statistics:

Theorem 2.46 (χ2 Distribution). If Z1, Z2, . . . , Zm are independent N(0, 1)
variables, then

Q = Z2
1 + Z2

2 + · · ·+ Z2
m ∼ χ2(m),

the chi-square distribution with m degrees of freedom. For instance, if (Z1, Z2) ∼
N(0, I2) is bivariate standard normal (mean zero, independent components),
then Z2

1 + Z2
2 ∼ χ2(2).
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The parameter m (degrees of freedom) is usually an integer counting the
number of squared normals in the sum. The chi-square distribution is a
special case of the gamma distribution family and has mean m and variance
2m. For m large, χ2(m) becomes approximately normal (this can be seen
by Central Limit Theorem, or by noting χ2(m) is the sum of m independent
χ2(1) variables and χ2(1) has mean 1 and variance 2). A useful corollary
connects the chi-square with the distribution of a quadratic form of a normal
vector:

Corollary 2.47. If X ∼ N(µ,Σ) is an m-dimensional normal vector (so
µ ∈ Rm, Σ is m×m covariance matrix), then

(X− µ)⊤Σ−1(X− µ) ∼ χ2(m).

This result often appears in statistical theory as the distribution of the
squared Mahalanobis distance for a sample from N(µ,Σ). It just says that
if you standardize a multivariate normal vector by its covariance and mean,
the sum of squares of coordinates has a chi-square distribution with degrees
equal to the dimension.

Remark 2.48. The χ2 distribution has a right-skewed shape for small m, but
as m grows it starts to look more like a normal distribution. In fact, for large
m, χ2(m) is approximately N(m, 2m) by the Central Limit Theorem (since
it’s a sum of m i.i.d. χ2(1) variables). For moderate degrees of freedom,
the distribution’s mode is around m − 2 and it has a long right tail. This
distribution comes up often in hypothesis testing (e.g., the chi-square test or
as part of t and F distributions derivations).

2.5 Summary and What’s Next

In this chapter, we reviewed how probability theory describes uncertainty.
We introduced the formal setup of sample spaces and events, then defined
random variables as functions on outcomes with corresponding distribution
functions (CDFs). We saw that the CDF or the pmf/pdf completely charac-
terizes a random variable’s distribution. We covered several commonly used
distributions — discrete ones like Bernoulli, Binomial, Poisson, and contin-
uous ones like Uniform and normal — which will serve as building blocks or
approximations in more complex models.



2.5. SUMMARY AND WHAT’S NEXT 27

We then extended the discussion to multiple random variables, introduc-
ing joint distributions for random vectors and the concepts of marginal and
conditional distributions. We defined independence and highlighted its sig-
nificance: independent random variables have factorizing joint distributions
and greatly simplify analysis (since knowing one tells you nothing about the
other). We illustrated these ideas with the bivariate normal distribution, a
case where computations are tractable and independence corresponds to zero
covariance.

Up to this point, we have focused on describing the full distribution of random
quantities. However, in practice, we often do not need the entire distribu-
tion of a random variable or vector — we might be interested in a few key
summary measures (like the mean or variance), or relationships like correla-
tion. For instance, in causal inference, we typically care about differences in
expectations (average treatment effects) rather than the entire distribution
of outcomes under each treatment.

In the next part of the review, we will explore those summary concepts: –
Expectation (mean), variance, covariance, and correlation. – Functions of
random variables and how to derive distributions or expectations for them.
– Important limit theorems like the Law of Large Numbers and Central
Limit Theorem, which justify why the normal distribution appears so often.
These tools will allow us to concisely characterize random variables and make
inferences, without needing to specify full distributions every time. They
form the bridge from probability theory to statistical inference and causal
effect estimation in financial research.
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