BUSS975 Causal Inference in Financial Research

Review D: Hypothesis Testing

Professor Ji-Woong Chung
Korea University

This lecture note is based on Thomas Wiemann’s.
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Recap

In Part C of the statistics review, we discussed estimation:
» Developed estimators via the sample analogue principle;

» Characterized estimators with finite and large sample properties.

Our analysis highlighted that an estimator 0, is a random variable and
may thus differ from the true (fixed) parameter 6.

In Part D, we consider the question of whether the true parameter is
equal to a particular value or within a particular set.

> For example, when interested in the expected returns to
education:
TarT = E[Yi(1) = Yi(0) [ D = 1],

we may be particularly curious about whether 7471 > 0.

The formal analysis of such questions is known as hypothesis testing.
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Hypothesis Testing

Our analysis begins with defining a hypothesis to be tested.
Let 0 denote the parameter of interest and © its possible values.

Consider a partition of © into two disjoint subsets ©y and ©; and
that we wish to test

Hy:0€ 0y versus H;:0¢€ 0.

Some terminology:
» Hp is referred to as the null hypothesis;
» H, is referred to as the alternative hypothesis;
» When Oy = {6y} is a single element, Hy is a simple hypothesis;
» When O is a non-singleton set, Hy is a composite hypothesis.
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Hypothesis Testing (Contd.)

Example Let Y denote hourly wages and D denote being a college
graduate. Do college graduates earn upwards of $600 a week?

To formulate a corresponding hypothesis, let p1y|; = ElY|D=1].
Then
Ho : py;1 > 600 versus  Hy @ pryy < 600.

Here Hy is a composite hypothesis.

If we had instead asked, "Do college graduates earn $600 a week?",
the corresponding hypothesis would be

Ho : pypp =600  versus  Hy : pyq # 600.

Here Hy is a simple hypothesis.
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Hypothesis Testing (Contd.)

Hypotheses pose economic questions in terms of statistical
parameters.

» Now we need a procedure to answer these questions.
For this purpose, define a test statistic T,, which denotes a known

function of the sample X1, ..., X,.
» T,(Xi,...,Xn) is a function of random variables and hence
random.

Hypothesis testing finds an appropriate region R C supp T, such that
Th € R = reject Hy, T,¢ R == don’t reject Hp.

‘R is known as the rejection region. We exclusively consider R of the

form
R(c)={teR|t>c},

for a critical value ¢ € R. Note: "large” T, is evidence against Hj.
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Type | and Type Il Errors

Because T, is random, we are bound to make errors at some point.

Table: Outcomes of Hypothesis Testing

Don’t Reject Hy | Reject Hy
Hy true correct type | error
Hy false type Il error correct

We will need to trade off type | and type Il errors in our analysis.

» The less likely we make type | errors, the more likely are type Il

errors (and vice versa).

» \We often focus on controlling the probability of a type | error.
Why? Wasserman (2003) has a nice analogy: "Hypothesis testing is
like a legal trial. We assume someone is innocent unless the evidence
strongly suggests that they are guilty. Similarly, we don’t reject Hy
unless there is strong evidence against Hy.”
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Type | and Type Il Errors (Contd.)
A test is characterized by its type | and type Il error probabilities.
Definition (Size and Power)
The size of a test is the (maximum) probability of committing a Type
| error, a € (0, 1) such that
a=P(T, € R(cy) | Ho is true) = P(T, > ¢, | Hp is true)
= P(reject Hy | Hy is true) = P(type | error).
The power of a test is the probability of rejecting the null hypothesis
when the null hypothesis is false, 1 — 3, where
B=P(T, ¢ R(ca) | Ho is false) = P(T, < ¢ | Hp is false)
= P(don’t reject Hy | Hy is false) = P(type Il error)

In practice, we choose a critical value ¢, such that our test has the desired size.
This controls the probability of a type | error.
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Type | and Type Il Errors (Contd.)
In practice, economists often consider a size of @ = 0.05 appropriate.
» This is rather arbitrary: Is 1/20 rare enough?
P Practitioners may disagree on the size they would like to consider.
The next definition allows for side-stepping the issue of pre-specified
sizes.

Definition (p-Value)

The p-value of a test is defined as
inf{a € (0,1) | T, € R(ca)},
that is, the smallest size of the test such that Hy would be rejected.

Small p-values are interpreted as evidence against Hy:
» The smaller the p-value, the stronger the evidence against Hp.
Importantly: Large p-values are not evidence in favor of Hg!

> Large p-values may also occur because our test has low power.
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Two-Sided Hypothesis Testing

, . . jid
Let’s make things more concrete: Consider a sample Xi, ..., X, ~ X.

Suppose we are interested in a parameter § € R (e.g., § = E[X]), and
that we developed an estimator 6, such that

>
s

n

d
() — N(0,1).

Is # equal to a particular value, say, 6y7?
For this purpose, we consider testing
H() 10 = 90 VEersus H1 10 7& 90.

We are now in need of an appropriate test statistic T, and a
corresponding critical value ¢, such that the size of our test is
aec(0,1).

13/24



Two-Sided Hypothesis Testing (Contd.)

Given the standard normal limit of the previous slide, a natural choice
of test statistic is X

0, — 6y
se(6,) |

» Recall that we reject Hy if T, is "large”.
» Here, T, increases in deviations of 6, from 6y: Seems sensible!
The following theorem shows that T, is indeed a useful test statistic:

Theorem

Let 0, be an estimator for 0 such that the previous slide’s limit holds.
Then for T, defined above, it holds that

P(Th > z1_a/2 | Ho is true) — a,

where z;_ /o = ®~ (1 — «/2) is the 1 — «/2 quantile of a standard
normal.

14/24



Two-Sided Hypothesis Testing (Contd.)
Proof.

0 — 0o
se(0,)

P(T,,>c|H0):P<

When ¢ = z,_,/2, then
21— B(c)) = 2(1 — D(z1_ap2)) = 21— (1-a/2)) = a
Note: It's worth memorizing that when a = 0.05, we have z,_ /5 ~ 1.96.
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Two-Sided Hypothesis Testing (Contd.)

Example Consider the test statistic T, defined in the previous slide.
By the theorem, we reject Hy : 6 = 6y at significance level o when

Tn > Zl—a/2'

Hence, the p-value is given by

= (I)(Tn> > CI)<Zlfoz/2) =1- 2

2
=a>2(1-9(T,))
= 2(1—®(T,)) = p-value
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One-Sided Hypothesis Testing

Instead of the simple hypothesis considered before, suppose we test
Hy:0 <60y versus Hp:0 >0,

or
Hy:0 >0y versus H;:0 < 0,.

Recall that we want large T, to be evidence against Hp.
» For Hp : 0 < 6y, choose

T, ==t
se(fp)
» For Hy : 0 > 6y, choose
==t
se(fn)
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One-Sided Hypothesis Testing (Contd.)

The next result shows that these are indeed useful test statistics:

Theorem

Let 6, be an estimator for 0 such that the previous slide’s limit holds.

Then for T, defined above, it holds that
P(T, > zi—o | Hy is true) — «,
where z;_,, = ®~1(1 — ) is the 1 — a quantile of a standard normal.

An analogous result holds for T, defined for the opposite hypothesis.

Proof.

P 9"i9°>cyH0 =1-P e”ieogcwo —1-®(c)
se(fn) se(fp

Taking ¢ = z;_,, implies 1 = ®(z;_,) =1—- (1 —a) =«

Note: It's worth memorizing that when o = 0.05, we have z;_, ~ 1.64.
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One-Sided Hypothesis Testing (Contd.)

Example Consider the test statistic T, = %. By the previous

theorem, we reject Hy : 6 = 6y at significance level « when
Th > z1—q.
Hence, the p-value is given by

=O(T,) >P(z1_0)=1—«
=a>1-9(T,)
= 1—®(T,) = p-value
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Hypothesis Testing and Confidence Intervals
Consider the following thought experiment: Suppose you test

Ho:0 =80, versus Hi:0 0,

for all possible values C) using a test of size a.
» Whenever Hy is not rejected, you write down the value of 6.

» This gives the set (say, C,) of 0y for which Hy would not be
rejected.

» (,, summarizes the collection of hypotheses we would not reject.

It turns out that this newly constructed set C, is the confidence
interval discussed in Part C of the review!

» This is known as the duality between hypothesis testing and
confidence intervals.

This implies that we can use a 1 — a confidence interval to test
hypotheses at a significance level .

» Step 1: Construct the 1 — o confidence interval C;
» Step 2: Check whether 6y € C,. If not, reject Hy : 8 = 6.
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Hypothesis Testing and Confidence Intervals (Contd.)

To see this dual relationship, recall that we would include 6o in the set
C, if our test of size a does not reject Hy : 8 = 6. That is, whenever

Ty < cqy.
Take T, = 9n(9§§ so that ¢, = z;_q/2. Then
én — 90 én 90
~ <zl qi2=> —Z|_qp < — < z)_
se(@n) 1—a/2 1—a/2 o(d ) 1—a/2
= 0n— 21 —af2 " Se( ) 0= én + Zi—ay/2 se(én)

Hence, the set of 6 for which we don’t reject Hy at significance level
ais R o R
C,= [6’,7 — Z1_ay2 - 58(0n),0n + 21 /2 - s€(0n) | -

which is identical to our definition of the symmetric confidence
interval.
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Summary

This concludes our statistics review:
» Discussed the construction of estimators;
» Introduced tools to study the properties of estimators;

» Developed procedures for testing hypotheses about parameters.

Now we’re fully equipped to delve into the analysis of causal
questions!

» Can leverage our probability expertise for defining and identifying
target parameter.

» Can leverage our statistics expertise for estimating the estimand.
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