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This lecture note is based on Thomas Wiemann’s.
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Recap

In Part C of the statistics review, we discussed estimation:

I Developed estimators via the sample analogue principle;
I Characterized estimators with finite and large sample properties.

Our analysis highlighted that an estimator θ̂n is a random variable and
may thus differ from the true (fixed) parameter θ.

In Part D, we consider the question of whether the true parameter is
equal to a particular value or within a particular set.
I For example, when interested in the expected returns to

education:

τATT = E [Yi(1)− Yi(0) | D = 1] ,

we may be particularly curious about whether τATT > 0.

The formal analysis of such questions is known as hypothesis testing.
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Hypothesis Testing

Our analysis begins with defining a hypothesis to be tested.

Let θ denote the parameter of interest and Θ its possible values.

Consider a partition of Θ into two disjoint subsets Θ0 and Θ1 and
that we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Some terminology:
I H0 is referred to as the null hypothesis;
I H1 is referred to as the alternative hypothesis;
I When Θ0 = {θ0} is a single element, H0 is a simple hypothesis;
I When Θ0 is a non-singleton set, H0 is a composite hypothesis.
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Hypothesis Testing (Contd.)

Example Let Y denote hourly wages and D denote being a college
graduate. Do college graduates earn upwards of $600 a week?

To formulate a corresponding hypothesis, let µY |1 ≡ E [Y | D = 1].
Then

H0 : µY |1 ≥ 600 versus H1 : µY |1 < 600.

Here H0 is a composite hypothesis.

If we had instead asked, ”Do college graduates earn $600 a week?”,

the corresponding hypothesis would be

H0 : µY |1 = 600 versus H1 : µY |1 6= 600.

Here H0 is a simple hypothesis.
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Hypothesis Testing (Contd.)

Hypotheses pose economic questions in terms of statistical
parameters.
I Now we need a procedure to answer these questions.

For this purpose, define a test statistic Tn, which denotes a known
function of the sample X1, . . . ,Xn.

I Tn(X1, . . . ,Xn) is a function of random variables and hence
random.

Hypothesis testing finds an appropriate region R ⊂ supp Tn such that

Tn ∈ R =⇒ reject H0, Tn /∈ R =⇒ don’t reject H0.

R is known as the rejection region. We exclusively consider R of the
form

R(c) = {t ∈ R | t > c},

for a critical value c ∈ R. Note: ”large” Tn is evidence against H0.
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Type I and Type II Errors
Because Tn is random, we are bound to make errors at some point.

Table: Outcomes of Hypothesis Testing

Don’t Reject H0 Reject H0

H0 true correct type I error
H0 false type II error correct

We will need to trade off type I and type II errors in our analysis.
I The less likely we make type I errors, the more likely are type II

errors (and vice versa).

I We often focus on controlling the probability of a type I error.
Why? Wasserman (2003) has a nice analogy: ”Hypothesis testing is
like a legal trial. We assume someone is innocent unless the evidence
strongly suggests that they are guilty. Similarly, we don’t reject H0

unless there is strong evidence against H0.”
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Type I and Type II Errors (Contd.)

A test is characterized by its type I and type II error probabilities.

Definition (Size and Power)
The size of a test is the (maximum) probability of committing a Type
I error, α ∈ (0, 1) such that

α = P(Tn ∈ R(cα) | H0 is true) = P(Tn > cα | H0 is true)
= P(reject H0 | H0 is true) = P(type I error).

The power of a test is the probability of rejecting the null hypothesis
when the null hypothesis is false, 1− β, where

β = P(Tn /∈ R(cα) | H0 is false) = P(Tn ≤ cα | H0 is false)
= P(don’t reject H0 | H0 is false) = P(type II error)

In practice, we choose a critical value cα such that our test has the desired size.
This controls the probability of a type I error.
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Type I and Type II Errors (Contd.)
In practice, economists often consider a size of α = 0.05 appropriate.
I This is rather arbitrary: Is 1/20 rare enough?

I Practitioners may disagree on the size they would like to consider.
The next definition allows for side-stepping the issue of pre-specified
sizes.
Definition (p-Value)
The p-value of a test is defined as

inf{α ∈ (0, 1) | Tn ∈ R(cα)},

that is, the smallest size of the test such that H0 would be rejected.

Small p-values are interpreted as evidence against H0:

I The smaller the p-value, the stronger the evidence against H0.

Importantly: Large p-values are not evidence in favor of H0!

I Large p-values may also occur because our test has low power.
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Two-Sided Hypothesis Testing
Let’s make things more concrete: Consider a sample X1, . . . ,Xn

iid∼ X .

Suppose we are interested in a parameter θ ∈ R (e.g., θ = E [X ]), and
that we developed an estimator θ̂n such that

θ̂n − θ

se(θ̂n)

d→ N(0, 1).

Is θ equal to a particular value, say, θ0?

For this purpose, we consider testing

H0 : θ = θ0 versus H1 : θ 6= θ0.

We are now in need of an appropriate test statistic Tn and a
corresponding critical value cα such that the size of our test is
α ∈ (0, 1).
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Two-Sided Hypothesis Testing (Contd.)
Given the standard normal limit of the previous slide, a natural choice
of test statistic is

Tn =

∣∣∣∣∣ θ̂n − θ0

se(θ̂n)

∣∣∣∣∣ .
I Recall that we reject H0 if Tn is ”large”.

I Here, Tn increases in deviations of θ̂n from θ0: Seems sensible!

The following theorem shows that Tn is indeed a useful test statistic:

Theorem
Let θ̂n be an estimator for θ such that the previous slide’s limit holds.
Then for Tn defined above, it holds that

P(Tn > z1−α/2 | H0 is true) → α,

where z1−α/2 = Φ−1(1− α/2) is the 1− α/2 quantile of a standard
normal.
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Two-Sided Hypothesis Testing (Contd.)

Proof.

P(Tn > c | H0) = P
(∣∣∣∣∣ θ̂n − θ0

se(θ̂n)

∣∣∣∣∣ > c | H0

)

= P
(
θ̂n − θ0

se(θ̂n)
> c | H0

)
+ P

(
θ̂n − θ0

se(θ̂n)
< −c | H0

)

= 1− P
(
θ̂n − θ0

se(θ̂n)
≤ c | H0

)
+ P

(
θ̂n − θ0

se(θ̂n)
< −c | H0

)

→ 1− Φ(c) + Φ(−c) ∵
θ̂n − θ0

se(θ̂n)

d−→ N(0, 1)

= 1− Φ(c) + (1− Φ(c)) = 2(1− Φ(c))

When c = z1−α/2, then
2(1− Φ(c)) = 2(1− Φ(z1−α/2)) = 2(1− (1− α/2)) = α
Note: It’s worth memorizing that when α = 0.05, we have z1−α/2 ≈ 1.96.
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Two-Sided Hypothesis Testing (Contd.)

Example Consider the test statistic Tn defined in the previous slide.
By the theorem, we reject H0 : θ = θ0 at significance level α when

Tn > z1−α/2.

Hence, the p-value is given by

⇒ Φ(Tn) > Φ(z1−α/2) = 1− α

2
⇒ α > 2(1− Φ(Tn))

⇒ 2(1− Φ(Tn)) = p-value
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One-Sided Hypothesis Testing
Instead of the simple hypothesis considered before, suppose we test

H0 : θ ≤ θ0 versus H1 : θ > θ0,

or
H0 : θ ≥ θ0 versus H1 : θ < θ0.

Recall that we want large Tn to be evidence against H0.

I For H0 : θ ≤ θ0, choose

Tn =
θ̂n − θ0

se(θ̂n)
.

I For H0 : θ ≥ θ0, choose

Tn = − θ̂n − θ0

se(θ̂n)
.
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One-Sided Hypothesis Testing (Contd.)
The next result shows that these are indeed useful test statistics:
Theorem
Let θ̂n be an estimator for θ such that the previous slide’s limit holds.
Then for Tn defined above, it holds that

P(Tn > z1−α | H0 is true) → α,

where z1−α = Φ−1(1−α) is the 1−α quantile of a standard normal.

An analogous result holds for Tn defined for the opposite hypothesis.

Proof.

P
(
θ̂n − θ0

se(θ̂n)
> c | H0

)
= 1− P

(
θ̂n − θ0

se(θ̂n)
≤ c | H0

)
→ 1− Φ(c)

Taking c = z1−α implies 1− Φ(z1−α) = 1− (1− α) = α

Note: It’s worth memorizing that when α = 0.05, we have z1−α ≈ 1.64.
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One-Sided Hypothesis Testing (Contd.)

Example Consider the test statistic Tn = θ̂n−θ0
se(θ̂n)

. By the previous
theorem, we reject H0 : θ = θ0 at significance level α when

Tn > z1−α.

Hence, the p-value is given by

⇒ Φ(Tn) > Φ(z1−α) = 1− α

⇒ α > 1− Φ(Tn)

⇒ 1− Φ(Tn) = p-value
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Hypothesis Testing and Confidence Intervals
Consider the following thought experiment: Suppose you test

H0 : θ = θ̃0 versus H1 : θ 6= θ̃0,

for all possible values θ̃0 ∈ Θ using a test of size α.

I Whenever H0 is not rejected, you write down the value of θ̃0.
I This gives the set (say, Cn) of θ̃0 for which H0 would not be

rejected.

I Cn summarizes the collection of hypotheses we would not reject.
It turns out that this newly constructed set Cn is the confidence
interval discussed in Part C of the review!

I This is known as the duality between hypothesis testing and
confidence intervals.

This implies that we can use a 1− α confidence interval to test
hypotheses at a significance level α.

I Step 1: Construct the 1− α confidence interval Cn;

I Step 2: Check whether θ0 ∈ Cn. If not, reject H0 : θ = θ0.
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Hypothesis Testing and Confidence Intervals (Contd.)

To see this dual relationship, recall that we would include θ̃0 in the set
Cn if our test of size α does not reject H0 : θ = θ̃0. That is, whenever

Tn ≤ cα.

Take Tn =
∣∣∣ θ̂n−θ0

se(θ̂n)

∣∣∣ so that cα = z1−α/2. Then∣∣∣∣∣ θ̂n − θ0

se(θ̂n)

∣∣∣∣∣ ≤ z1−α/2 ⇒ −z1−α/2 ≤
θ̂n − θ0

se(θ̂n)
≤ z1−α/2

⇒ θ̂n − z1−α/2 · se(θ̂n) ≤ θ0 ≤ θ̂n + z1−α/2 · se(θ̂n)

Hence, the set of θ̃0 for which we don’ t reject H0 at significance level
α is

Cn =
[
θ̂n − z1−α/2 · se(θ̂n), θ̂n + z1−α/2 · se(θ̂n)

]
.

which is identical to our definition of the symmetric confidence
interval.
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Summary

This concludes our statistics review:

I Discussed the construction of estimators;
I Introduced tools to study the properties of estimators;
I Developed procedures for testing hypotheses about parameters.

Now we’ re fully equipped to delve into the analysis of causal
questions!
I Can leverage our probability expertise for defining and identifying

target parameter.
I Can leverage our statistics expertise for estimating the estimand.
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