

Problem Set: Estimators

Problem 1 (Bias, Variance, and MSE for Four Mean Estimators). *Let $X_1, \dots, X_n \stackrel{iid}{\sim} F$ with $E[X] = \mu$ and $Var(X) = \sigma^2 < \infty$. Consider*

$$\hat{\mu}_n^{(1)} = 0, \quad \hat{\mu}_n^{(2)} = X_1, \quad \hat{\mu}_n^{(3)} = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\mu}_n^{(4)} = \frac{1}{n+\lambda} \sum_{i=1}^n X_i \quad (\lambda > 0).$$

- (a) Compute Bias, Var , and MSE of each estimator.
- (b) For fixed n, λ , derive a condition on (μ, σ^2) under which $MSE(\hat{\mu}_n^{(4)}) < MSE(\hat{\mu}_n^{(3)})$.
- (c) Which of the four estimators are unbiased?

Problem 2 (Bias of the Plug-in Variance and an Unbiased Fix). *Define the plug-in variance estimator*

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2, \quad \hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- (a) Show that $E[\hat{\sigma}_n^2] = (1 - \frac{1}{n}) \sigma^2$; hence $\hat{\sigma}_n^2$ is downward biased with Bias $= -\sigma^2/n$.
- (b) Deduce an unbiased estimator for σ^2 and name it.

Problem 3 (Consistency via WLLN and CMT). *With the four mean estimators from Problem 1 and $\hat{\sigma}_n^2$ from Problem 2:*

- (a) Determine which of $\hat{\mu}_n^{(1)}, \hat{\mu}_n^{(2)}, \hat{\mu}_n^{(3)}, \hat{\mu}_n^{(4)}$ are consistent for μ .
- (b) Show $\hat{\sigma}_n^2 \xrightarrow{p} \sigma^2$.
- (c) Suppose $\lambda = \lambda_n$ may depend on n . Give a sufficient condition on (λ_n) for $\hat{\mu}_n^{(4)}$ to be consistent.

Problem 4 (CLT, Delta Method, Slutsky, and Confidence Intervals). *Assume $X_1, \dots, X_n \stackrel{iid}{\sim} F$ with $E[X] = \mu$ and $0 < \sigma^2 = Var(X) < \infty$.*

- (a) State the CLT for $\hat{\mu}_n$ and give the asymptotic distribution of $\sqrt{n}(\hat{\mu}_n - \mu)$.
- (b) Use Slutsky's theorem to show

$$\sqrt{n} \frac{\hat{\mu}_n - \mu}{\hat{\sigma}_n} \xrightarrow{d} N(0, 1),$$

where $\hat{\sigma}_n$ is any consistent estimator of σ (e.g. s_n).

- (c) Let $g(m) = m^2$. Use the Delta Method to obtain the asymptotic distribution of $\hat{\theta}_n \equiv g(\hat{\mu}_n) = \hat{\mu}_n^2$ about $\theta = g(\mu) = \mu^2$.
- (d) Using (b), write a large-sample two-sided $(1 - \alpha)$ confidence interval for μ . Using (c), give a first-order $(1 - \alpha)$ CI for μ^2 (plug-in all unknowns).