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Recap
The review of probability theory introduced a formal language for
characterizing uncertainty.

I Introduced random variables and their probability distributions;
I Developed concepts to describe features of random variables;
I Discussed restrictions on the joint distribution of random

variables.
With our toolbox, let’s return to the returns to education example.

E [Yi(1)− Yi(0) | Di = 1] = E [Yi | Di = 1]− E [Yi | Di = 0],

where E [Yi | Di = 1] and E [Yi | Di = 0] are features of the joint
distribution of the observables (Y ,D).

Note that E [Yi | Di = 1] and E [Yi | Di = 0] are theoretical concepts.
I Statistics forms a bridge between random variables and data.
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Random Sampling

Consider independent random variable X1, . . . ,Xn with Xi ∼ Fi , ∀i.
I When Fi = F , ∀i = 1, . . . , n, we say that X1, . . . ,Xn are

independent and identically distributed (iid).

I To denote an iid sample of size n from F , we write

X1, . . . ,Xn
iid∼ F .

Example Consider X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2).

I If X1 ⊥⊥ X2, then independent.
I If (µ1, σ

2
1) = (µ2, σ

2
2), then identically distributed.

I If X1 ⊥⊥ X2 and (µ1, σ
2
1) = (µ2, σ

2
2), then iid.

Notation: Instead of the iid notation, we also sometimes write X1, . . . ,Xn
iid∼ X . So

X may denote a random variable or its distribution.
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Estimators
Statistics is concerned with learning about the distribution F using a
sample X1, . . . ,Xn ∼ F .

I We will (for the most part) consider iid samples.
Instead of fully characterizing F , the focus is often on features of F .

I Features of interest are called estimands or parameters.
I For example, we may be interested in µ ≡ E [X ] where X ∼ F .

Here, µ is the parameter of interest.
An estimate is a “guess” for the value of the parameter of interest.
I An estimator is a function of the sample whose value serves as a

“guess” for a parameter of interest.
I For example, if µ is the parameter and X1, . . . ,Xn is the sample,

then an estimator for µ is a function µ̂n(X1, . . . ,Xn).

I Importantly: µ is a number but µ̂n is a random variable.
Notation: Subscripts on expectation operators or distribution functions are omitted
from now on whenever the context is clear.
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Estimators (Contd.)

Example: Consider a sample X1, . . . ,Xn
iid∼ F . An estimator for

F (x) = P(X ≤ x) is given by

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x},

that is, the share of the sample below x is a “guess” for P(X ≤ x).

The estimator F̂n is called the empirical CDF.

The empirical CDF leads to a class of estimators that are known
under the sample analogue principle.
I Suppose we are interested in a feature of F . The sample

analogue principle suggests using the analogous feature of F̂n as
an estimate.
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Estimators (Contd.)

Example Consider a sample X1, . . . ,Xn
iid∼ F . Let µ = E [X ] denote

the parameter of interest. The sample analogue principle suggests the
estimator

µ̂n ≡ En[X ] =
1

n

n∑
i=1

Xi ,

where En denotes the expectation with respect to the empirical CDF
F̂n.

Similarly, if the parameter of interest is σ2 = Var(X), the sample
analogue principle suggests the estimator

σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)
2.
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Estimators (Contd.)
The sample analogue principle is not the only approach to
constructing estimators. Another frequently encountered class of
estimators are extremum estimators, defined as the minimizers of loss
functions.

Example Consider a sample X1, . . . ,Xn
iid∼ F and let µ = E [X ] denote

the parameter of interest. Define an estimator

µ̂n = argmin
µ

n∑
i=1

(Xi − µ)2.

Taking first-order conditions, we have

0 =
∂

∂µ

n∑
i=1

(Xi − µ)2 = −2

n∑
i=1

(Xi − µ).

Solving for µ, we get

µ̂n =
1

n

n∑
i=1

Xi ,

which is the same as the sample mean derived earlier. 9 / 62



Estimators (Contd.)

For a given parameter, there are infinitely many possible estimators.

Example Consider a sample X1, . . . ,Xn
iid∼ F and let µ = E [X ] denote

the parameter of interest. Each of the following are estimators for µ:

I µ̂
(1)
n = 0;

I µ̂
(2)
n = X1;

I µ̂
(3)
n = 1

n
∑n

i=1 Xi ;

I µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi for some fixed λ > 0.

Which one do you like best?

Statistics provides tools that allow for comparisons of estimators.
I Allows for selecting the “best” (or – at least – a “good enough” )

estimator.
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Sampling Distribution

Recall that an estimator is a function of random variables and hence
itself a random variable.
I The sampling distribution of an estimator is a name for its

distribution.

Comparisons of estimators are analogous to comparisons of (features
of) their sampling distribution.

I The sampling distribution often depends on the sample size n.

Consider an estimator θ̂n for some parameter θ of a distribution F .

I Finite sample properties describe features of the distribution of
θ̂n. These properties hold for any sample size n ∈ N.

I Large sample properties describe features of the asymptotic
distribution of θ̂n. These properties hold approximately for large
enough sample sizes n.
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Bias

We begin by describing the expected deviations of the estimator from
the true parameter.

Definition (Bias)
The bias of an estimator θ̂n for θ is defined as

Bias(θ̂n) = E [θ̂n]− θ.

The estimator is said to be
I unbiased if Bias(θ̂n) = 0;

I downwards biased if Bias(θ̂n) < 0;

I upwards biased if Bias(θ̂n) > 0.
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Bias (Contd.)

µ̂
(1)
n = 0; µ̂

(2)
n = X1; µ̂

(3)
n = 1

n
∑n

i=1 Xi ; µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi

Example Consider the estimators µ̂
(1)
n , µ̂

(2)
n , µ̂

(3)
n , and µ̂

(4)
n from the

previous example. We have:

Bias(µ̂(1)
n ) = E [0]− µ = −µ,

Bias(µ̂(2)
n ) = E [X1]− µ = 0,

Bias(µ̂(3)
n ) = E

[
1

n

n∑
i=1

Xi

]
− µ =

1

nE
[ n∑

i=1

Xi

]
− µ = 0,

Bias(µ̂(4)
n ) = E

[
1

n + λ

n∑
i=1

Xi

]
− µ = − λ

n + λ
µ.

Note that the bias of µ̂(4)
n depends on the unknown parameter µ.
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Bias (Contd.)

Example: Consider the estimator σ̂2
n defined earlier. We have

σ̂2
n =

1

n

n∑
i=1

(Xi − µ̂n)
2 = ... =

(
1

n − 1

n2

) n∑
i=1

X2
i − 1

n2

∑
i=1

∑
j 6=i

XiXj ,

and
Bias(σ̂2

n) = −1

nVar(X).

Can you construct an unbiased estimate for Var(X)?
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Estimation Variance
The previous example showed that very different estimators can have
the same bias.
I Require other features of the sampling distribution to make

comparison useful.
Another key property of an estimator is its variance:

Var(θ̂n) = E
[
(θ̂n − E [θ̂n])

2
]
.

I The square root of this is call the “standard error”
I Describes deviations from the expected value of the estimator.
I The expected value of a biased estimator is not the true

parameter.

Figure 1 illustrates why considering both bias and variance is useful
for distinguishing estimators.
I Draws from the sampling distribution of the estimators of the

earlier example.
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Estimation Variance (Contd.)

µ̂
(1)
n = 0; µ̂

(2)
n = X1; µ̂

(3)
n = 1

n
∑n

i=1 Xi ; µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi

−1 0 1 2 3

0

0.5

1

Value

D
en

sit
y

µ̂
(2)
n

µ̂
(3)
n

µ̂
(4)
n

Figure 1: Draws from Sampling Distributions of Estimators
Notes: Histograms of µ̂(2)

n , µ̂
(3)
n , and µ̂

(4)
n where n = 10 and (µ, σ2) = (1, 1). For

µ̂
(4)
n , λ = 1.
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Estimation Variance (Contd.)

µ̂
(1)
n = 0; µ̂

(2)
n = X1; µ̂

(3)
n = 1

n
∑n

i=1 Xi ; µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi

Example Consider the estimators µ̂
(1)
n , µ̂

(2)
n , µ̂

(3)
n , and µ̂

(4)
n . We have:

Var(µ̂(1)
n ) = 0,

Var(µ̂(2)
n ) = σ2,

Var(µ̂(3)
n ) =

σ2

n ,

Var(µ̂(4)
n ) =

σ2

(n + λ)2
.

Note that the variances of µ̂(2)
n , µ̂

(3)
n , and µ̂

(4)
n depend on the

unknown parameters (µ, σ2).
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Mean Squared Error

A popular criterion for evaluating estimators is the mean-squared error
(MSE):

MSE(θ̂n) = E
[
(θ̂n − θ)2

]
.

I Describes the squared deviations of θ̂n from the true parameter.
I It measure “how bad” an estimator is.
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Mean Squared Error (Contd.)

Example: Consider two estimators θ̂1 and θ̂2 of the same unknown
parameter θ = 0.

The distribution of θ̂1: P(θ̂1 = −100) = P(θ̂1 = 100) = 0.5

The distribution of θ̂2: P(θ̂2 = 1) = 1

The bias:

E [θ̂1]− θ = (0.5)(−100) + (0.5)(100)− 0 = 0

E [θ̂2]− θ = (1)(1)− 0 = 1.

The MSE:

MSE(θ̂1) = (0.5)(−100− 0)2 + (0.5)(100− 0)2 = 10, 000

MSE(θ̂2) = (1)(1− 0)2 = 1
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Mean Squared Error (Contd.)

The next result shows that the MSE is a one-number summary of the
bias and variance of an estimator.

Corollary
Let θ̂n be an estimator for θ. We have

MSE(θ̂n) = Bias(θ̂n)
2 + Var(θ̂n).

Proof. E [(θ̂n − θ)2] = Var(θ̂n − θ) + [E(θ̂n − θ)]2 = Var(θ̂n) + Bias(θ̂)2
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The Bias-Variance Trade-Off

Example Consider the two estimators θ̂1 and θ̂2.

Var(θ̂1) = E [(θ̂1 − E(θ̂))2] = E [(θ̂1 − 0)2]

= (0.5)(−100)2 + (0.5)(100)2 = 10, 000

Bias(θ̂1) = E [θ̂1]− θ = 0

→ MSE(θ̂1) = 10, 000 + 0 = 10, 000

Var(θ̂2) = E [(θ̂2 − E(θ̂))2] = E [(θ̂1 − 1)2]

= (1)(1− 1)2 = 0

Bias(θ̂2) = E [θ̂2]− θ = 1

→ MSE(θ̂2) = 0 + 1 = 1
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The Bias-Variance Trade-Off

0 2 4 6 8 10

0
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100

Model Complexity
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ro

r

Bias2
Variance

Total Error

Figure: Bias-Variance Trade-off
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Large Sample Properties

In the previous examples, the bias and variance depended on unknown
parameters (µ, σ2).

I Bias(µ̂(4)
n ) depends on µ;

I Var(µ̂(2)
n ) and Var(µ̂(3)

n ) depend on σ2;

I Var(µ̂(4)
n ) depends on (µ, σ2).

Without knowledge of the parameters that we want to estimate, we
can’ t rank our estimators in terms of the MSE!

Instead of the (often) impossible question
I “Which estimator is best (or: ‘good enough’ )?”

we instead attempt to answer the question
I “Which estimator will eventually be best? (or: ‘good enough’ )”

Here, “eventually” considers gathering more and more observations.
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Large Sample Properties (Contd.)

It turns out that we can make statements about the eventual
characteristics of estimators in many settings without knowledge of
the parameters of interest.

We rely heavily on two notions of convergence of random variables
I Convergence in Probability;

I Convergence in Distribution.

Using these concepts, we study
I the consistency of an estimator, which checks whether it will

eventually be arbitrarily “close” to the true parameter value;
I the asymptotic distribution of an estimator, which approximates

its sampling distribution when n is large.
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Convergence in Probability
Recall convergence in the context of sequences of real numbers:
I Consider x , x1, . . . , xn ∈ R. We write xn → x if

∀ε > 0,∃Nε ∈ N : |xn − x | < ε, ∀n ≥ Nε.

Convergence in probability generalizes this notion of convergence to
sequences of random variables.

Definition (Convergence in Probability)
Let X1, . . . ,Xn be a sequence of random variables, and let X be
another random variable. We say Xn converges in probability to X if

∀ε > 0,P(|Xn − X | > ε) → 0 as n → ∞.

We write Xn
p−→ X .

In words: If Xn
p−→ X , then Xn deviates from X by no more than ε

with large probability as n → ∞.
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Consistency
We consider convergence in probability to analyze whether an
estimator θ̂n for θ will eventually be arbitrarily close to the true
parameter value.

Definition (Consistency)
We say an estimator θ̂n for a parameter θ is consistent if

θ̂n
p−→ θ.

Consistency is often considered a minimum requirement for an
estimator.
I If the estimator is not arbitrarily close to the true parameter even

with infinitely many observations, then there is little hope that it
will be reasonably close when the sample size n is finite.

I No inconsistent estimator is considered to be “good enough.”

Note: Equation θ̂n
p−→ θ implicitly considers n → ∞. Unless otherwise stated, we

always consider n → ∞ in this course.
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Consistency (Contd.)

µ̂
(1)
n = 0; µ̂

(2)
n = X1; µ̂

(3)
n = 1

n
∑n

i=1 Xi ; µ̂
(4)
n = 1

n+λ

∑n
i=1 Xi

Example Consider the estimators µ̂
(1)
n and µ̂

(2)
n . We have, for all

ε > 0,

P(|µ̂(1)
n − µ| > ε) = P(|0− µ| > ε) 9 0

P(|µ̂(2)
n − µ| > ε) = P(|X1 − µ| > ε) 9 0

Hence, neither µ̂(1)
n nor µ̂(2)

n are consistent estimators of µ.

I Since neither estimator meets the minimum requirement, we
won’ t consider them any further.
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Weak Law of Large Numbers
To show consistency of less trivial estimators, we need new technical
tools. The most important is the Weak Law of Large Numbers
(WLLN):

Theorem (Weak Law of Large Numbers (WLLN))

Let X1, . . . ,Xn
iid∼ X be a random sample. Then

1

n

n∑
i=1

Xi
p−→ E [X ].

In words: As n → ∞, the sample average concentrates around its
mean.

Example Consider the estimator µ̂(3)
n . By the WLLN,

µ̂
(3)
n

p−→ µ,

so that µ̂(3)
n is a consistent estimator of µ.
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Weak Law of Large Numbers (Contd.)

We discussed consistency of the estimators µ̂
(1)
n , µ̂

(2)
n , and µ̂

(3)
n . What

about µ̂(4)
n ?

Note that

µ̂
(4)
n =

1

n + λ

n∑
i=1

Xi =
n

n + λ
· 1n

n∑
i=1

Xi ,

so that µ̂(4)
n is a function of 1

n
∑n

i=1 Xi and n
n+λ . What’s next? Bear

with me...

The WLLN provides convergence in probability of the sample average.
Now, we need tools to:

I Derive convergence in probability of random vectors;
I Derive convergence in probability of functions of random vectors.
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Joint Convergence in Probability
Definition (Joint Convergence in Probability)
Take k ∈ N and let X̃n = (X1,n, . . . ,Xk,n), n ≥ 1, be a sequence of
random vectors, and let X̃ = (X1, . . . ,Xk) be another random vector.
We say X̃n converges in probability to X̃ if

∀ε > 0,P

√√√√ k∑
j=1

(Xj,n − Xj)2 > ε

→ 0, as n → ∞.

We won’ t use this directly due to the following result:

Theorem
Take k ∈ N and let X̃n = (X1,n, . . . ,Xk,n), n ≥ 1, be a sequence of
random vectors, and let X̃ = (X1, . . . ,Xk) be another random vector.
Then

Xj,n
p−→ Xj , ∀j = 1, . . . , k ⇒ X̃n

p−→ X̃ .
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Continuous Mapping Theorem

The following theorem delivers a powerful tool for proving
convergence of any continuous functions of sample averages.

Theorem (Continuous Mapping Theorem (CMT))

Let Xn, n ≥ 1, be a sequence of random vectors, and let X be another
random vector. If Xn

p−→ X , then

g(Xn)
p−→ g(X),

for any function g that is continuous at g(x), ∀x ∈ supp X .

Example Let An
p−→ a ∈ R and Bn

p−→ b ∈ R. Consider g(a, b) = a/b.

Then
g(An,Bn)

p−→ g(a, b),

by the CMT as long as b 6= 0.
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Continuous Mapping Theorem (Contd.)

Example Consider µ̂(4)
n . We show µ̂

(4)
n

p−→ µ in four steps:
1. Define An = n

n+λ and Bn = 1
n
∑

Xi

2. Define g(a, b) = a · b. So, g(An,Bn) = µ̂
(4)
n

3. By the WLLN, Bn
p−→ E(X) = µ

4. An → 1

5. By the CMT
g(An,Bn)

p−→ µ · 1 = µ.
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Continuous Mapping Theorem (Contd.)

Example: Consider σ̂2
n. We show

σ̂2
n

p−→ σ2

in four steps:
Recall σ̂2

n = 1
n
∑

X2
i − ( 1n

∑
Xi)

2

1. Define An = 1
n
∑

X2
i and Bn = 1

n
∑

Xi

2. Define g(a, b) = a − b2. So, g(An,Bn) = σ̂2
n

3. By the WLLN, An
p−→ E(X2) and Bn

p−→ E(X) = µ

4. By the CMT

g(An,Bn)
p−→ E(X2)− E(X) = σ
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Convergence in Distribution
We showed that both µ̂

(3)
n and µ̂

(4)
n are consistent for θ.

I But, different estimators could have different variances.
We introduce the concept of convergence in distribution:

I Allows us to assess the dispersion of estimators as n grows large.
I Allows us to make approximate probability statements about

estimators.

Definition (Convergence in Distribution)

Let Xn, n ≥ 1, be a sequence of random variables, and let X be
another random variable. We say Xn converges in distribution to X if

P(Xn ≤ t) → P(X ≤ t), ∀t ∈ R.

We write Xn
d−→ X .

In words: If Xn
d−→ X , then the distribution of Xn is approximately

equal to the distribution of X for large n.
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Central Limit Theorem

The next result is a powerful tool for deriving the asymptotic
distribution of sample averages.

Theorem (Central Limit Theorem (CLT))

Let X1, . . . ,Xn
iid∼ X be a random sample. Then

√
n
(
1
n
∑n

i=1 Xi − µ
)

σ

d−→ N(0, 1),

where µ ≡ E [X ] and σ ≡ sd(X) > 0.

In words: As n grows large, the distribution of the sample average is
approximately normal.

Remarkable because we have not assumed that X is normal!
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Central Limit Theorem (Contd.)

Example Consider µ̂(3)
n . By the Central Limit Theorem (CLT), we

have
√

n
(
µ̂
(3)
n − µ

σ

)
d−→ N(0, 1).

Hence, for large n, we may approximate the distribution of√
n(µ̂(3)

n − µ) with
N
(
0, σ2

)
.

i.e., µ̂(3)
n

d−→ N(µ, σ2/n)
Note that this approximation is of little practical help unless we may
substitute parameter estimates for the unknown parameters.
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Delta Method

If Yn has a limiting Normal distribution, then the delta method allows
us to find the limiting distribution of g(Yn) where g is any smooth
function.

Theorem (The Delta Method)

Suppose that
√

nYn − µ

σ

d−→ N(0, 1)

and that g is a differentiable function such that g ′(µ) 6= 0. Then

√
ng(Yn)− g(µ)

| g ′(µ) | σ
d−→ N(0, 1)
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Delta Method (Contd.)

Example Given
√

n
(
µ̂n−µ
σ

)
d−→ N(0, 1), the asymptotic limit of

√
n(µ̂2

n − µ2) is

By the Delta method, since g(µ) = µ2, g ′(µ) = 2µ,

√
n(µ̂2

n − µ2)
d−→ N(0, σ2(2µ)2)
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Slutsky’ s Theorem
The result of the CLT continues to hold when parameter estimates are
substituted for unknown parameter values.

Theorem (Slutsky’ s Theorem)

Let An, and Bn, be sequences of random variables. Let A be another
random variable and b ∈ R. If An

d−→ A and Bn
p−→ b, then

Bn + An
d−→ b + A,

and
BnAn

d−→ bA.

If in addition b 6= 0, then also

An
Bn

d−→ A
b .
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Slutsky’ s Theorem (Contd.)

Example Consider σ̂2
n and µ̂

(3)
n . Consider

√
n µ̂

(3)
n − µ

σ̂n
=

σ

σ̂n

√
n µ̂

(3)
n − µ

σ
,

so that Slutsky’ s theorem suggests taking An ≡
√

n µ̂
(3)
n −µ
σ and

Bn ≡ σ
σ̂n

. Then,

By CLT, An
d−→ N(0, 1)

By WLLN & CMT, Bn
p−→ 1,∀σ > 0

By Slutsky’s, BnAn
d−→ 1 · N(0, 1)
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Slutsky’ s Theorem (Contd.)

Example Consider σ̂2
n and µ̂

(4)
n . We want to show that

√
n µ̂

(4)
n − µ

σ̂n

d−→ N(0, 1).

We have

√
n

n
n+λ

1
n
∑n

i=1 Xi − µ

σ̂n
=

√
n

n
n+λ

1
n
∑n

i=1 Xi− n
n+λµ+ n

n+λµ− µ

σ̂n

=
n

n + λ︸ ︷︷ ︸
→1

√
n
(
1
n
∑n

i=1 Xi − µ
)

σ̂n︸ ︷︷ ︸
d−→N(0,1)

+
√

n
µ
(

n
n+λ − 1

)
σ̂n︸ ︷︷ ︸

µ

(
−
√

nλ
n+λ

)
σ̂n →0

By Slutsky’s, done.
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Standard Errors
Informally, these examples show that the sampling distribution of the
estimators can be approximated with N(µ, σ2/n). For this purpose,
practitioners often use so-called standard errors.

Definition (Standard Error)
Let θ̂n and σ̂n be estimators such that

√
n
(
θ̂n − θ

σ̂n

)
d−→ N(0, 1).

The standard error of θ̂n is defined as

se(θ̂n) =
σ̂n√

n
.

For large n, we may approximate the sampling distribution of an
estimator θ̂n for θ with

√
n-normal asymptotic distribution by

N(θ, se(θ̂n)
2). 49 / 62



Confidence Intervals
Researchers often construct asymptotic confidence intervals to
succinctly characterize the approximate sampling distribution:

Theorem
Let θ̂n be an estimator for θ earlier. For α ∈ (0, 1), consider

Cn =
[
θ̂n − z1−α/2 · se(θ̂n), θ̂n + z1−α/2 · se(θ̂n)

]
,

C+
n =

[
θ̂n − z1−α · se(θ̂n),∞

)
,

C−
n =

(
−∞, θ̂n + z1−α · se(θ̂n)

]
,

where z1−α = Φ−1(1− α) is the 1− α quantile of a standard normal.
Cn, C+

n , and C−
n are asymptotically valid 1− α confidence intervals.

I.e.,
P(θ ∈ C̃n) → 1− α, for C̃n = Cn,C+

n ,C−
n .

Note Cn is random (a function of sample), θ is fixed. 50 / 62



Confidence Intervals (Contd.)

Proof. We prove the theorem only for Cn.

P(θ ∈ Cn) = P(θ̂n − z1−α/2 · se(θ̂n) < θ < θ̂n + z1−α/2 · se(θ̂n)

= P(−z1−α/2 ≤ θ̂nθ

se(θ̂n)
≤ z1−α/2)

= P
(

θ̂nθ

se(θ̂n)
≤ z1−α/2)− P(

θ̂nθ

se(θ̂n)
≤< −z1−α/2

)
→ P(Z ≤ z1−α/2)− P(Z ≤ −z1−α/2)

= Φ(z1−α/2)− Φ(−z1−α/2)

= Φ(z1−α/2)− (1− Φ(z1−α/2))

= (1− α/2)− (1− 1− α/2) = 1− α ∵ 1− α/2 ≡ Φ−1(1− α/2)
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Bivariate Central Limit Theorem
Slutsky’ s Theorem considered the joint convergence of sequences of
random variables when one of the sequences converges to a constant.
We need tools to understand joint convergence when both sequences
converge to a random variable. Fortunately, we have:

Theorem (Bivariate Central Limit Theorem)

Let X̃1, . . . , X̃n
iid∼ Ỹ be a sample of bivariate random vectors where

X̃i = (X1,i ,X2,i) and X̃ = (X1,X2) Then

√
n
(
1

n

n∑
i=1

X̃i − µ

)
d−→ N(0,Σ),

where µ ≡ E [X̃ ] and

Σ ≡ Var(X̃) =

[
Var(X1) Cov(X1,X2)

Cov(X1,X2) Var(X2)

]
.
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Bivariate Central Limit Theorem (Contd.)

Example Consider a sample (Y1,X1), . . . , (Yn,Xn)
iid∼ (Y ,X) where

X ∼ Bernoulli(p) with unknown p ∈ (0, 1). Suppose we are interested
in the joint distribution of the estimators

En[YX ] =
1

n

n∑
i=1

YiXi and En[Y (1− X)] =
1

n

n∑
i=1

Yi(1− Xi).

By the (bivariate) CLT, we have

√
n
([

1
n
∑n

i=1 YiXi
1
n
∑n

i=1 Yi(1− Xi)

]
−
[

E [YX ]
E [Y (1− X)]

])
d−→ N(0,Σ),

where Σ =

[
Var(YX) Cov(YX ,Y (1− X))

Cov(YX ,Y (1− X)) Var(Y (1− X))

]
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Bivariate Slutsky’ s Theorem

As was the case with the univariate CLT, its bivariate analogue is
particularly useful when combined with a Slutsky-type result:

Theorem (Bivariate Slutsky’ s Theorem)

Let An, n ≥ 1, and Bn, n ≥ 1, be sequences of bivariate random
vectors. Let A be another bivariate random vector and b ∈ R2. If

An
d−→ A and Bn

p−→ b,

then
An + Bn

d−→ A + b,

and
BT

n An
d−→ bT A.
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Bivariate Slutsky’ s Theorem (Contd.)

Example Let An and Bn be sequences of bivariate random vectors
such that An

d−→ N(0,Σ) and Bn
p−→ b ∈ R2. By Slutsky’ s Theorem,

BT
n An

d−→ bT N(0,Σ) ≡ N(0, bTΣb),

Suppose now that Zn such that Zn
d−→ N(0, I2), and Σ̂n is a sequence

of estimators such that Σ̂−1
n exists and Σ̂n

p−→ Σ. By CMT,

BT
n Σ̂

−1/2
n

p−→ bTΣ−1/2

wherever Σ−1 exist. By Slutsky’s,

BT
n Σ̂

−1/2
n Zn

d−→ bTΣ−1/2N(0, I2)
d
= N(0, bTΣ−1/2Σ−1/2b)
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Bivariate Slutsky’ s Theorem (Contd.)

Example Construct the estimator

En[YX ]− En[Y (1− X)] =

[
1
−1

]T [ En[YX ]
En[Y (1− X)]

]
.

Hence, by Slutsky’ s Theorem that

[
1
−1

]T√
n
([

1
n
∑n

i=1 YiXi
1
n
∑n

i=1 Yi(1− Xi)

]
−
[

E [YX ]
E [Y (1− X)]

])
d−→ N

(
0,

[
1
−1

]T
Σ

[
1
−1

])
,

where Σ =

[
Var(YX) Cov(YX ,Y (1− X))

Cov(YX ,Y (1− X)) Var(Y (1− X))

]

56 / 62



Outline

Estimators

Finite Sample Properties
Bias
Variance
Mean Squared Error

Large Sample Properties
Consistency
Asymptotic Distribution

On the Interpretation of Estimates

57 / 62



On the Interpretation of Estimates
Thus far, we have exclusively discussed estimators θ̂n for a parameter
θ.

I θ̂n is a function of the sample X1, . . . ,Xn ∼ X , so random.

I How does real-world data come in?

Data is a realization of our sample X1, . . . ,Xn.

I The data is the collection of numbers: x1, . . . , xn.

An estimate is a realization of our estimator θ̂n:

I The estimator θ̂n(X1, . . . ,Xn) is a random variable;
I The estimate θ̂n(x1, . . . , xn) is a number.

This distinction between estimators and estimates can be confusing.

I We can make probabilistic statements about θ̂n(X1, . . . ,Xn).

I We cannot make probabilistic statements about θ̂n(x1, . . . , xn).

Note: To make matters worse, θ̂n often denotes both the estimator (random) and
the estimate (fixed), so that you have to figure it out yourself from context!
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On the Interpretation of Estimates (Contd.)

The confusion between estimators (random) and estimates (fixed) is
particularly severe in the context of confidence intervals.

Recall that an asymptotic 1− α confidence interval is such that

P(θ ∈ Cn) → 1− α.

Let cn denote a realization of Cn (i.e., what you computed using
data).

I It is correct to say Cn covers θ with prob. of 1− α.

I It is incorrect to say cn covers θ with prob. of 1− α.

I P(θ ∈ cn) = 1{θ ∈ cn} ∈ {0, 1}. This is a comparison of
numbers!
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On the Interpretation of Estimates (Contd.)

Statistics courses often introduce the idea of repeated experiments to
interpret confidence intervals:
I “If I were to repeat the same experiment again and again, each

time computing a 1− α confidence interval, then the confidence
intervals would cover the true parameter 100(1− α)% of the
time.”
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On the Interpretation of Estimates (Contd.)

Example Consider µ̂(3)
n . Suppose that we collected data and that

µ̂
(3)
n = 10, and se(µ̂(3)

n ) = 3.

Then, an asymptotic 1− α confidence interval is given by

cn = (10− 1.96× 3, 10 + 1.96× 3) = (4.12, 15.88) .

Here cn denotes a realization of the confidence interval Cn:

I We’ve collected data (a realization of our sample);
I Computed the estimator µ̂(3)

n and its standard error se(µ̂(3)
n );

I Calculated a 1− α confidence interval cn.

What is P(θ ∈ cn)? We don’t know.
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Summary
This concludes the Part C of our statistics review.

I Introduced the sample analogue principle to develop estimators;
I Discussed finite sample properties of estimators, in particular,

their bias, variance, and MSE;

I Generalized the concept of convergence to random variables via
convergence in probability and convergence in distribution;

I Studied large sample properties of estimators, in particular, their
consistency and asymptotic distribution.

A key insight was that under fairly general conditions, approximate
probabilistic statements about estimators can be made using their
asymptotic distribution.

In Part D, we discuss how estimators and their (approximate) sampling
distributions can be leveraged to assess whether the true parameter θ
takes a particular value, say, θ0. This is known as hypothesis testing.
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