BUSS975 Causal Inference in Financial Research

Review C: Properties of Estimators

Professor Ji-Woong Chung
Korea University

This lecture note is based on Thomas Wiemann’s.
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Recap

The review of probability theory introduced a formal language for
characterizing uncertainty.

» Introduced random variables and their probability distributions;
» Developed concepts to describe features of random variables;

» Discussed restrictions on the joint distribution of random
variables.

With our toolbox, let’s return to the returns to education example.
E[Yi(1) = Y;(0) | Dy = 1] = E[Y; | D; = 1] — E[Y; | D; = 0],

where E[Y; | D; = 1] and E[Y; | D; = 0] are features of the joint
distribution of the observables (Y, D).

Note that E[Y; | Di = 1] and E[Y; | D; = 0] are theoretical concepts.

» Statistics forms a bridge between random variables and data.
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Random Sampling

Consider independent random variable Xi,..., X, with X; ~ F;, Vi.

» When F; =F,Vi=1,...,n, we say that Xi,..., X, are
independent and identically distributed (iid).

» To denote an iid sample of size n from F, we write
X1, X, M
Example Consider X; ~ N(u1,0%) and Xo ~ N(puz,03).
> If X; L Xy, then independent.
> If (u1,0%) = (u2,03), then identically distributed.
> If X; L X5 and (Ml,O'%) = (,LLQ,O'%), then iid.
iid

Notation: Instead of the iid notation, we also sometimes write Xi,..., X, ~ X. So
X may denote a random variable or its distribution.
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Estimators
Statistics is concerned with learning about the distribution F using a
sample Xq,..., X, ~ F.
> We will (for the most part) consider iid samples.
Instead of fully characterizing F, the focus is often on features of F.
» Features of interest are called estimands or parameters.

» For example, we may be interested in pn = E[X] where X ~ F.
Here, p is the parameter of interest.

An estimate is a “guess” for the value of the parameter of interest.

» An estimator is a function of the sample whose value serves as a
“guess” for a parameter of interest.

» For example, if y is the parameter and X, ..., X, is the sample,
then an estimator for p is a function fi,(Xi,..., Xp,).

» Importantly: p is a number but fi, is a random variable.

Notation: Subscripts on expectation operators or distribution functions are omitted
from now on whenever the context is clear.
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Estimators (Contd.)

Example: Consider a sample Xi,..., X, " F. An estimator for
F(x) = P(X < x) is given by
Fol )—liu{x-< )
n\X) = n P> Xy,

i=1
that is, the share of the sample below x is a “guess” for P(X < x).
The estimator F,, is called the empirical CDF.

The empirical CDF leads to a class of estimators that are known
under the sample analogue principle.

» Suppose we are interested in a feature of F. The sample
analogue principle suggests using the analogous feature of F, as
an estimate.
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Estimators (Contd.)

Example Consider a sample Xi,..., X, " F. Let = E[X] denote

the parameter of interest. The sample analogue principle suggests the
estimator

X 1¢
fin = En[X] = ;ZX"’
i=1
vyhere E, denotes the expectation with respect to the empirical CDF
F,.

Similarly, if the parameter of interest is 0> = Var(X), the sample
analogue principle suggests the estimator
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Estimators (Contd.)

The sample analogue principle is not the only approach to
constructing estimators. Another frequently encountered class of
estimators are extremum estimators, defined as the minimizers of loss
functions.

Example Consider a sample Xi,..., X, " F and let u = E[X] denote
the parameter of interest. Define an estimator

n
fin = argmin > (X — ).
i=1
Taking first-order conditions, we have

0= 38u (X =) =-2> (X —p).

i=1 i=1
Solving for u, we get

1 n
ﬂn:nig;xiv

which is the same as the sample mean derived earlier. 9/62



Estimators (Contd.)

For a given parameter, there are infinitely many possible estimators.

Example Consider a sample Xi,..., X, % F and let = E[X] denote
the parameter of interest. Each of the following are estimators for p:

> oY = o;
=X

57 = IZ, 1XI7
15 = 5 2oy Xi for some fixed A > 0.

> i
>
>

Which one do you like best?

Statistics provides tools that allow for comparisons of estimators.

» Allows for selecting the “best” (or — at least — a “good enough”)
estimator.
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Sampling Distribution

Recall that an estimator is a function of random variables and hence
itself a random variable.

» The sampling distribution of an estimator is a name for its
distribution.

Comparisons of estimators are analogous to comparisons of (features
of) their sampling distribution.

» The sampling distribution often depends on the sample size n.
Consider an estimator én for some parameter # of a distribution F.

» Finite sample properties describe features of the distribution of
0. These properties hold for any sample size n € N.

» Large sample properties describe features of the asymptotic
distribution of 6,. These properties hold approximately for large
enough sample sizes n.
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Bias

We begin by describing the expected deviations of the estimator from
the true parameter.

Definition (Bias)
The bias of an estimator é,, for 0 is defined as

Bias(f,) = E[f,] — 0.

The estimator is said to be
> unbiased if Bias(f,) = 0;
> downwards biased if Bias(f,) < 0
> upwards biased if Bias(f,) > 0.
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Bias (Contd.)

pt =0 P =x ad =1y X al = 5T X

Example Consider the estimators ,ug, ), /15,2), MS: ), and ,u( ) from the

previous example. We have:

Bias(jif) = E[0] — p1 = —p
Bias(ﬂ(n?)) = E[X] - pu=0,
Bias( 1 iZX, ZX,- —u =0,
i=1
1) A
Bias(fip +)\ZX =~

Note that the bias of ,u,g) depends on the unknown parameter p.
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Bias (Contd.)

Example: Consider the estimator 62 defined earlier. We have
1 ¢ 1 1\ ¢ 1
= X ) = = <n - nQ) S x-S S X
i=1 i=1 i=1 j#i

and

n

Bias(6%) = —%Var(X).

Can you construct an unbiased estimate for Var(X)?
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Estimation Variance

The previous example showed that very different estimators can have

the same bias.

» Require other features of the sampling distribution to make
comparison useful.

Another key property of an estimator is its variance:

Var(d,) = E [ (6, — E[é,,])Q] .

» The square root of this is call the “standard error”
» Describes deviations from the expected value of the estimator.

P> The expected value of a biased estimator is not the true
parameter.

Figure 1 illustrates why considering both bias and variance is useful
for distinguishing estimators.

» Draws from the sampling distribution of the estimators of the
earlier example.
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Estimation Variance (Contd.)

~(1 ~(2 ~(3 ~(4
st =0 4l = xu; u$)=%2,-":1xi; uf,)=,,ik2,-":1xi

T T T T T
—
Al 1=
< (4)
F=y M
(V5]
c
(0]
Q 05| .
0, |
| | | | |
-1 0 1 2 3
Value

Figure 1: Draws from Sampling Distributions of Estimators
Notes: Histograms of 4%, al¥, and 4" where n =10 and (u,0?) = (1,1). For

AP, a = 1.
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Estimation Variance (Contd.)

) =00 =X Y = A5 X Al = xS X

Example Consider the estimators ,u,g, ), /l,(7 ), ug, ), and ﬂ£,4). We have:

n
Var(ﬂ£,2)) =02,
2
~(3)y _ 9
Var(:un )* n 9
2
Wy _ 9
Var(,u,, ) (n + )\)

Note that the variances of ug, ), ,u(3) and ,&5,4) depend on the

unknown parameters (u, 02).
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Mean Squared Error

A popular criterion for evaluating estimators is the mean-squared error
(MSE):
MSE(6,) = E [(én - 9)2] .

» Describes the squared deviations of 6,, from the true parameter.

» [t measure “how bad” an estimator is.
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Mean Squared Error (Contd.)

Example: Consider two estimators él and ég of the same unknown
parameter 6 = 0.

The distribution of 6;: P(; = —100) = P(#; = 100) = 0.5
The distribution of fo: P(6y = 1) =1
The bias:
E[61] — 6 = (0.5)(—100) + (0.5)(100) — 0 = 0
E[fs) — 6 = (1)(1) —0 = 1.
The MSE:

MSE (61) = (0.5)(—100 — 0)% + (0.5)(100 — 0) = 10, 000
MSE(f5) = (1)(1 - 0)2 =1
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Mean Squared Error (Contd.)

The next result shows that the MSE is a one-number summary of the
bias and variance of an estimator.

Corollary

Let é,, be an estimator for . We have

MSE(0,,) = Bias(6,)? + Var(6,).

Proof. E[(0, — 0)?] = Var(0, — 0) + [E(6, — 0)]* = Var(6,) + Bias(6)?
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The Bias-Variance Trade-Off

Example Consider the two estimators él and §2.

Var(61) = E[(6, — E(9))*] = E[(61 — 0)*]
= (0.5)(—100)% + (0.5)(100)? = 10,000
Bias(1) = E[61] —6 =0
— MSE(6;) = 10,000 + 0 = 10, 000

Var(02) = E[(62 — E(9))”] = E[(61 —1)*]
=(1)(1-1)=0
Bias(fy) = E[f3] —0 =1
— MSE(f) =04+1=1
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The Bias-Variance Trade-Off

T T T T T T i 9
100 + - |—— Bias
—— Variance
—— Total Error
S
& 50 s
w
0 - |
| | | | | |

0 2 4 6 8 10
Model Complexity

Figure: Bias-Variance Trade-off
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Large Sample Properties

In the previous examples, the bias and variance depended on unknown
parameters (u, 02).

> Bias(/lgfl)) depends on y;

> Var(i'?) and Var(ilY) depend on o2;

> Var(/lsfl)) depends on (u, 02).

Without knowledge of the parameters that we want to estimate, we
can’t rank our estimators in terms of the MSE!

Instead of the (often) impossible question
> “Which estimator is best (or: ‘good enough’)?”
we instead attempt to answer the question
» “Which estimator will eventually be best? (or: ‘good enough’)’

Here, “eventually” considers gathering more and more observations.
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Large Sample Properties (Contd.)

It turns out that we can make statements about the eventual
characteristics of estimators in many settings without knowledge of
the parameters of interest.

We rely heavily on two notions of convergence of random variables
» Convergence in Probability;

» Convergence in Distribution.

Using these concepts, we study

» the consistency of an estimator, which checks whether it will
eventually be arbitrarily “close” to the true parameter value;

» the asymptotic distribution of an estimator, which approximates
its sampling distribution when n is large.
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Convergence in Probability
Recall convergence in the context of sequences of real numbers:
» Consider x, xq,...,x, € R. We write x, = x if

Ve > 0,IN, € N: |x, — x| < €,Vn > N,.

Convergence in probability generalizes this notion of convergence to
sequences of random variables.

Definition (Convergence in Probability)

Let Xi,..., X, be a sequence of random variables, and let X be
another random variable. We say X, converges in probability to X if

Ve > 0,P(| X, — X| >¢€) = 0 as n— oo.

We write X, LNS'S

In words: If X, LN X, then X, deviates from X by no more than ¢

with large probability as n — oo.
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Consistency

We consider convergence in probability to analyze whether an
estimator 8, for 6 will eventually be arbitrarily close to the true
parameter value.

Definition (Consistency)

We say an estimator 0, for a parameter 0 is consistent if

0, 2 0.

Consistency is often considered a minimum requirement for an
estimator.

P If the estimator is not arbitrarily close to the true parameter even
with infinitely many observations, then there is little hope that it
will be reasonably close when the sample size n is finite.

» No inconsistent estimator is considered to be “good enough.”

Note: Equation 6, 20 implicitly considers n — oco. Unless otherwise stated, we
always consider n — oo in this course.
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Consistency (Contd.)

A =0 gl =X @Y =19 X ) = G5 T X
. . (1 (2
Example Consider the estimators ,uf,) and ,ug, ). We have, for all
€e>0,

P(lis) = nl > €)= P(j0—p| > €) » 0
P — ul > €) = P(1X1 — | > €) » 0

Hence, neither ;19) nor ,&5,2) are consistent estimators of p.

» Since neither estimator meets the minimum requirement, we
won’t consider them any further.
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Weak Law of Large Numbers

To show consistency of less trivial estimators, we need new technical
tools. The most important is the Weak Law of Large Numbers
(WLLN):

Theorem (Weak Law of Large Numbers (WLLN))

Let X1,..., X, " X be a random sample. Then

1 n
- > X5 EX]
i=1

In words: As n — oo, the sample average concentrates around its
mean.

Example Consider the estimator ﬂf,?’). By the WLLN,

PONNY

(3)

so that [i,’ is a consistent estimator of p.
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Weak Law of Large Numbers (Contd.)

We discussed consistency of the estimators uﬁ, ), ,u,f,Q), and /l,(f). What

about ,u(4)'?
Note that
2 1< n 1
~(4) _ X = 1
n+ A4 n Z
i=1 =1
so that ,u( Vi T
with me...

The WLLN provides convergence in probability of the sample average.
Now, we need tools to:

» Derive convergence in probability of random vectors;

» Derive convergence in probability of functions of random vectors.
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Joint Convergence in Probability
Definition (Joint Convergence in Probability)
Take k € N and let X, = (Xi,ny--->Xk,n), n > 1, be a sequence of

random vectors, and let X = (X1,...,Xx) be another random vector.

We say X converges in probability to X if

P
Ve >0, P Z(Xj,n—Xj)?>e — 0, as n — oo.
j=1

We won’t use this directly due to the following result:

Theorem

Take k € N and let X, :~(X1,,,, ..., Xkn), n>1, be a sequence of
random vectors, and let X = (X1, ..., Xx) be another random vector.
Then

Xin B X Vi=1,... . k=X, & X.
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Continuous Mapping Theorem

The following theorem delivers a powerful tool for proving
convergence of any continuous functions of sample averages.

Theorem (Continuous Mapping Theorem (CMT))

Let X,,n > 1, be a sequence of random vectors, and let X be another
random vector. If X, LN X, then

g(Xa) 2 g(X),
for any function g that is continuous at g(x), Vx € supp X.

Example Let A, 2 a € R and B, 2 b € R. Consider g(a, b) = a/b.
Then

g(An, Bn) - g(a, b),
by the CMT as long as b # 0.

37/62



Continuous Mapping Theorem (Contd.)

Example Consider ,uf,) We show u( ) P, w in four steps:

1. Define A, = m and B, = ;ZX,-

2. Define g(a,b) = a- b. So, g(An, By) = /:Lf;l)
3. By the WLLN, B, & E(X) = pu

4. A, —1

5. By the CMT

g(AnaBn)&N‘lzﬂ-
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Continuous Mapping Theorem (Contd.)

Example: Consider 62. We show

.2 P
52 5 52

in four steps:
Recall 62 = 15" X2 — (1 3" X;)?

1. Define A, = %ZXI-Q and B, = %ZX,-

2. Define g(a, b) = a — b%. So, g(A,, B,) = 52

3. By the WLLN, A, & E(X?) and B, & E(X) = u
4. By the CMT

g(AnBn) B EX?) —E(X) =0
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Convergence in Distribution
We showed that both /l,(;g) and ,&5,4) are consistent for 6.
» But, different estimators could have different variances.
We introduce the concept of convergence in distribution:
» Allows us to assess the dispersion of estimators as n grows large.

» Allows us to make approximate probability statements about
estimators.

Definition (Convergence in Distribution)

Let X,,n > 1, be a sequence of random variables, and let X be
another random variable. We say X,, converges in distribution to X if

P(X,<t)— P(X<t), VteR.

We write X, i) X.

In words: If X, 9, X, then the distribution of X,, is approximately
equal to the distribution of X for large n.
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Central Limit Theorem

The next result is a powerful tool for deriving the asymptotic
distribution of sample averages.

Theorem (Central Limit Theorem (CLT))

Let Xi,..., X, " X be a random sample. Then

ﬁ(% Z,-”:;Xf — 4 N(0, 1),

where p = E[X] and o = sd(X) > 0.

In words: As n grows large, the distribution of the sample average is
approximately normal.

Remarkable because we have not assumed that X is normal!
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Central Limit Theorem (Contd.)

Example Consider /15,3). By the Central Limit Theorem (CLT), we
have

IR
Vvn <”> = N(0,1).

g

Hence, for large n, we may approximate the distribution of

V(i) — ) with
N (O, 02) .

e, i % Ny, 02/n)

Note that this approximation is of little practical help unless we may
substitute parameter estimates for the unknown parameters.
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Delta Method

If Y, has a limiting Normal distribution, then the delta method allows

us to find the limiting distribution of g(Y,,) where g is any smooth

function.

Theorem (The Delta Method)

Suppose that

Y. —

Vit
o

and that g is a differentiable function such that g’(u) # 0. Then

9 N0, 1)

At
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Delta Method (Contd.)

Example Given \/n (%) LN N(0,1), the asymptotic limit of
V(i — p?) is
By the Delta method, since g(u) = u?, g’ (1) = 2u,

V(a2 — 1) & N0, 0% (20)%)
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Slutsky’s Theorem

The result of the CLT continues to hold when parameter estimates are
substituted for unknown parameter values.

Theorem (Slutsky’s Theorem)
Let A, and B,,, be sequences of random variables. Let A be another
random variable and b € R. If A, i> A and B, LN b, then

B, +A, L btA,

and
B,A, % bA.

If in addition b # 0, then also

>
3

d
- =

ol >

3
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Slutsky’s Theorem (Contd.)

Example Consider 62 and [15,3). Consider

so that SIutsky s theorem suggests taking A, = f”" —£ and
B, = <. Then,

By CLT, A, L N(0,1)

By WLLN & CMT, B, & 1,Vo >0

By Slutsky’s, ByA, % 1- N(0,1)
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Slutsky’s Theorem (Contd.)

Example Consider 62 and ﬂ5,4). We want to show that

vt = E 9 o, 1).

On
We have
n_1x\~n . n_1s~n . _n_ _n_._
\[n—&-)\ﬁzi:lx’ K n+)\n2i:1X’ V=SV o
n A =+/n .
On On

n \/E(%Z,{,:}Xi—,u) +ﬁu<ni/\—1)

n+ A On On
S~ ~~
—1 d —/nX
—N(0,1 Iz
(0,1) (54,

Gn

By Slutsky’s, done.
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Standard Errors

Informally, these examples show that the sampling distribution of the
estimators can be approximated with N(u, o2/n). For this purpose,
practitioners often use so-called standard errors.

Definition (Standard Error)
Let é,, and &, be estimators such that
0,— 06

n

vn ( ) 9 N0, 1).

The standard error of én is defined as

. 6
Se(en) = ﬁ

For large n, we may approximate the sampling distribution of an
estimator 6, for § with \/n-normal asymptotic distribution by
N(0,se(6n)?). 19762



Confidence Intervals

Researchers often construct asymptotic confidence intervals to
succinctly characterize the approximate sampling distribution:

Theorem

Let 6, be an estimator for 0 earlier. For o € (0,1), consider
Co= 60— 21-0/2-5e(0n), Bat 210y - se(dn)]
o [én — 210 - 5e(0,), oo) ,

C, = (—oo, Op+ 21— - Se(én)} )

where z1_o = ®~(1 — «) is the 1 — a quantile of a standard normal.

Cn, Cf, and C are asymptotically valid 1 — « confidence intervals.
le.,

P e Cy) —1—a, for Co=Cp, CH, Co.

Note C, is random (a function of sample), 0 is fixed.
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Confidence Intervals (Contd.)

Proof. We prove the theorem only for C,.

PO € Co)=P(0n—21_ns-5e(0) <0< 0,+2_u-se(d)

0,0
= P(-z —a2 < — < Z1_q
(—z /2 se(0,) 1 /2)
0,0 0,0
= P — < V4 —a — P = §< —Z —«
(se(en = a-ed) =PG5 ' “)

= P(Z <z _4p) —P(Z< ~21_as2)

= ®(z1_a/2) — P(—=2z1-0a/2)

=@(z1-0/2) — (1 = ®(21-0/2))
=(1-a/2)-(1-1-a/2)=1-a1-a/2=0"(1-a/2)
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Bivariate Central Limit Theorem

Slutsky’s Theorem considered the joint convergence of sequences of
random variables when one of the sequences converges to a constant.

We need tools to understand joint convergence when both sequences
converge to a random variable. Fortunately, we have:

Theorem (Bivariate Central Limit Theorem)
Let 5(1, e ,5(,, Y be a sample of bivariate random vectors where
X,' = (XL,‘,XQJ‘) and X = (Xl,XQ) Then

Vi <1ZX = u) % N0, %),
i=1

where u = E[X] and

Y = Var()?) — [ Var(X1) Cov(Xl,X2)]

COV(Xl, XQ) Val’(Xz)
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Bivariate Central Limit Theorem (Contd.)

Example Consider a sample (Y1, X1),...,(Yn, Xn) ~ i (Y, X) where
X ~ Bernoulli(p) with unknown p € (0,1). Suppose we are interested
in the joint distribution of the estimators

En[YX] = Zyx and  E,[Y( ZY 1- X,

By the (bivariate) CLT, we have

(a0l -l ) mo
Var(YX) Cov(YX,Y(1— X))}

where ¥ = |:COV(YXa Y(1-X))  Var(Y(1-X))
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Bivariate Slutsky’s Theorem

As was the case with the univariate CLT, its bivariate analogue is
particularly useful when combined with a Slutsky-type result:

Theorem (Bivariate Slutsky’s Theorem)

Let A,,n > 1, and B,,n > 1, be sequences of bivariate random
vectors. Let A be another bivariate random vector and b € R2. If

A, %A and B, 2 b,

then
A, + B, % A+ b,

and
BTA, L bTA.
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Bivariate Slutsky’s Theorem (Contd.)

Example Let A, and B, be sequences of bivariate random vectors
such that A, % N(0,%) and B, 2 b € R2. By Slutsky’s Theorem,

BT Ay % bTN(0,3) = N(0, b7 Sb),

Suppose now that Z, such that Z, LN N(0, ly), and ¥, s a sequence
of estimators such that 321 exists and 3, 2 . By CMT,
BT, Y2 Py pTy-1/2
n
wherever X1 exist. By Slutsky’s,

)

BT$,Y22Z, & bTSV2N(0, k) £ N(0, bTR1/2571/2p)
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Bivariate Slutsky’s Theorem (Contd.)

Example Construct the estimator

EdYX] — Eo[Y(1 - X)] = [ 11] ' [En[f/"([f/x]x)ﬂ ‘

Hence, by Slutsky’s Theorem that

= i (0] - lavi )

no]'3[2))

Var(YX) Cov(YX,Y(1— X))]

where ¥ = [Cov(Y)C Y(1— X)) Var(Y(1 - X))
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On the Interpretation of Estimates
Thus far, we have exclusively discussed estimators 6, for a parameter
0.
> 0, is a function of the sample X1, ..., X, ~ X, so random.

» How does real-world data come in?

Data is a realization of our sample Xi,..., X,.
» The data is the collection of numbers: xi, ..., x,.
An estimate is a realization of our estimator 9,,:
» The estimator én(Xl, ..., Xp) is a random variable;
» The estimate é,,(xl, ..., Xp) is a number.

This distinction between estimators and estimates can be confusing.
» We can make probabilistic statements about é,,(Xl, ooy Xn).
» We cannot make probabilistic statements about én(xl, ey Xn)-

Note: To make matters worse, 0, often denotes both the estimator (random) and
the estimate (fixed), so that you have to figure it out yourself from context!
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On the Interpretation of Estimates (Contd.)

The confusion between estimators (random) and estimates (fixed) is
particularly severe in the context of confidence intervals.

Recall that an asymptotic 1 — « confidence interval is such that
POeC)—1—a.
Let ¢, denote a realization of C, (i.e., what you computed using
data).
» It is correct to say C, covers 6 with prob. of 1 — a.

P It is incorrect to say c, covers 6 with prob. of 1 — a.

> P(0 € cp) =1{0 € cp} € {0,1}. This is a comparison of
numbers!
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On the Interpretation of Estimates (Contd.)

Statistics courses often introduce the idea of repeated experiments to
interpret confidence intervals:

> “If | were to repeat the same experiment again and again, each
time computing a 1 — « confidence interval, then the confidence
intervals would cover the true parameter 100(1 — «) % of the
time.”
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On the Interpretation of Estimates (Contd.)

Example Consider ,ug,) Suppose that we collected data and that

i =10, and se(f (3)) 3.

Then, an asymptotic 1 — « confidence interval is given by
= (10— 1.96 x 3,10 + 1.96 x 3) = (4.12,15.88)..

Here ¢, denotes a realization of the confidence interval C,:

> We've collected data (a realization of our sample);

» Computed the estimator ,u( ) and its standard error se(ﬂf,g));

» Calculated a 1 — « confidence interval c,.

What is P(6 € c,)? We don’t know.
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Summary

This concludes the Part C of our statistics review.
» Introduced the sample analogue principle to develop estimators;

» Discussed finite sample properties of estimators, in particular,
their bias, variance, and MSE;
» Generalized the concept of convergence to random variables via
convergence in probability and convergence in distribution;
» Studied large sample properties of estimators, in particular, their
consistency and asymptotic distribution.
A key insight was that under fairly general conditions, approximate
probabilistic statements about estimators can be made using their
asymptotic distribution.

In Part D, we discuss how estimators and their (approximate) sampling
distributions can be leveraged to assess whether the true parameter 6
takes a particular value, say, 6y. This is known as hypothesis testing.
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