

Problem Set: Expectation

Problem 1 (Continuous LOTUS and Quantiles). *Let $X \sim U(a, b)$ with $a < b$ and define $Z = \mathbb{1}\{X \leq t\}$ for some $t \in \mathbb{R}$.*

- (a) *Compute $E[X]$ and $Var(X)$.*
- (b) *Using LOTUS, compute $E[Z]$ and interpret it. For which values of t does your formula change?*
- (c) *Let $q \in (0, 1)$. Show that the q -quantile of X is $F_X^{-1}(q) = a + (b - a)q$. Use this to compute the median.*

Problem 2 (Covariance, Correlation, and Variance of a Sum). *Consider the bivariate discrete random vector (X, Y) with joint pmf*

		$Y = 0$	$Y = 1$
		$\frac{1}{5}$	$\frac{1}{10}$
$X = 0$	$\frac{3}{10}$		
	$\frac{2}{5}$		$\frac{2}{5}$

- (a) *Compute the marginals $P(X = x)$ and $P(Y = y)$; then compute $E[X]$, $E[Y]$, $Var(X)$, and $Var(Y)$.*
- (b) *Compute $Cov(X, Y)$ and $\text{corr}(X, Y)$.*
- (c) *Compute $Var(X + Y)$ directly from the joint pmf, and verify $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$.*
- (d) *Are X and Y independent? Justify concisely.*

Problem 3 (Conditional Expectation/Variance, LIE, and LTV). *Let $X \sim U(0, 1)$ and, conditional on X , let $Y | X \sim \text{Bernoulli}(X)$ (i.e., $P(Y = 1 | X) = X$).*

- (a) *Compute $E[Y | X]$ and $\text{Var}(Y | X)$.*
- (b) *Use the Law of Iterated Expectations (LIE) to compute $E[Y]$.*
- (c) *Use the Law of Total Variance (LTV) to compute $\text{Var}(Y)$ by evaluating $E[\text{Var}(Y | X)]$ and $\text{Var}(E[Y | X])$ separately.*
- (d) *Compute $\text{Cov}(X, Y)$ and $\text{corr}(X, Y)$.*

Problem 4 (Mean Independence vs. Independence). *Construct random variables with mean independence without independence. Let $X \sim \text{Bernoulli}(1/2)$ taking values $\{0, 1\}$. Define*

$$Y | X = \begin{cases} \text{Uniform}(-2, 2), & \text{if } X = 0, \\ \text{Takes values } \{-3, +3\} \text{ with prob. } 1/2 \text{ each,} & \text{if } X = 1. \end{cases}$$

- (a) *Show that $E[Y | X] = 0$ and compute $E[Y]$.*
- (b) *Prove Y is not independent of X by finding an event A such that $P(Y \in A | X) \neq P(Y \in A)$.*
- (c) *Conclude that Y is mean independent of X but not independent of X .*