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This lecture note is based on Thomas Wiemann’s.
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Recap

In Part A of the probability theory review, we discussed probability
distributions:
I CDFs and pdfs (or pmfs) fully characterize a random variable.
I Joint CDFs and joint pdfs (or pmfs) fully characterize

relationships between random variables.
But we may not always require a full characterization. Often, we are
content with knowing about key features of a random variable that
partly characterize it or its relation to other random variables.
I Recall the returns to education example where we were interested

in, e.g.,

τATT = E [Yi(1)− Yi(0)|D = 1],

and not the conditional distribution of Yi(1)−Yi(0) given D = 1.

The key concept we will cover in this lecture is expectations.
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Expectation
Definition (Expected Value)
The expected value of a random variable X is defined as

EX [X ] =

{∑
x∈supp X xfX (x), if X is discrete,∫∞

−∞ xfX (x)dx , if X is continuous.

The expected value is a one-number summary of a random variable.
I X is a random variable but EX [X ] is a number.
I Considered a measure of central tendency.

We say that the expectation of X exists if E [|X |] < ∞.

I In this course, we always (implicitly) assume that expectations
exist.

Note: You may encounter various other names for the expectation, including
”mean” or ”first moment,” as well as alternative notations. For example, we may
also express the expectation as EX [X ] =

∫
xdF (x).
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Expectation (Contd.)

Example: Consider tossing a fair coin twice. Let X be the number of
heads. Then

fX (x) =


1
4 , if x = 0,
1
2 , if x = 1,
1
4 , if x = 2,

0, otherwise,

and the expected number of heads is

EX [X ] = 0× 1

4
+ 1× 1

2
+ 2× 1

4
= 1.
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Expectation (Contd.)

Example Consider X ∼ U(a, b). Then

fX (x) =
{

1
b−a , for x ∈ [a, b],
0, otherwise.

and we have

EX [X ] =

∫ b

a
x 1

b − a dx =
x2

2(b − a)

∣∣∣∣b
a
=

a + b
2

.
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Law of the Unconscious Statistician

The next result is crucial when working with economic models
involving random variables.

Theorem (Law of the Unconscious Statistician)

Let X be a random variable and define Y = h(X) for some function
h. Then

EY [Y ] = EX [h(X)] =

{∑
x∈supp X h(x)fX (x), if X is discrete,∫∞

−∞ h(x)fX (x)dx , if X is continuous.

Without LOTUS, we would first find fY (y), then
EY [Y ] =

∑
y∈supp Y yfY (y)

With LOTUS, we do not need to go through the trouble of deriving
its distribution. Instead, we may work with the distribution of X .
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Law of the Unconscious Statistician (Contd.)

Example Let X be a continuous random variable. Consider Y = h(X)
where h(x) = 1{x ∈ A} for some set A ⊂ R. By the theorem, we
have

EY [Y ] = EX [h(X)] =

∫ ∞

−∞
1{x ∈ A}fX (x)dx =

∫
A

fX (x)dx = P(X ∈ A).

More generally, for any random variable X and set A ⊂ R, it holds
that

EX [1{X ∈ A}] = P(X ∈ A).
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Expectations (Contd.)

Expectations are defined as sums and integrals and thus inherit their
useful properties:

Theorem
Let X be a random variable. Then

EX [a + bX ] = a + bEX [X ],

∀ a, b ∈ R.
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Expectations (Contd.)

Theorem
Let X1, . . . ,Xn be random variables. Then

EX1,...,Xn

[ n∑
i=1

biXi

]
=

n∑
i=1

biEXi [Xi ],

∀ b1, . . . , bn ∈ R.

12 / 43



Expectations (Contd.)

Theorem
Let X1, . . . ,Xn be independent random variables. Then

EX1,...,Xn

[ n∏
i=1

Xi

]
=

n∏
i=1

EXi [Xi ].
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Variance

Definition (Variance & Standard Deviation)

The variance of a random variable X with µX = EX [X ] is defined as

Var(X) = EX [(X − µX )
2].

The standard deviation of a random variable X is defined as

sd(X) =
√

Var(X).

The variance (and standard deviation) are measures of dispersion.

I Characterize the spread of the distribution of X around its mean.

From the definition, it follows that

Var(X) = EX [X2]− E [X ]2.
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Variance (Contd.)

Example: Consider tossing a fair coin twice as in the earlier example.
Let X be the number of heads and recall EX [X ] = 1. We have

Var(X) = EX [X2]− 12 =
1

4
× 02 +

1

2
× 12 +

1

4
× 22 − 1 =

1

2
.
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Variance (Contd.)

Corollary
Let X be a random variable. Then

Var(a + bX) = b2Var(X),

∀ a, b ∈ R.
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Variance (Contd.)

Example Let X ∼ Bernoulli(p). Then

EX [X ] = 0f (0) + 1f (1) = p,

and
Var(X) = E [X2]− E [X ]2 = p − p2 == p(1− p).

Example Let X ∼ N(µ, σ2). Then EX [X ] = µ and Var(X) = σ2.
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Covariance
So far, we have discussed two important features of a random
variable: its mean and its variance.

We now turn to features that characterize the joint distribution of
random variables, beginning with a measure of joint dispersion: the
covariance.

Definition (Covariance)
The covariance of two random variables X and Y with µX = EX [X ]
and µY = EY [Y ] is defined as

Cov(X ,Y ) = EX ,Y [(X − µX )(Y − µY )].

From the definition, it follows that

Cov(X ,Y ) = EX ,Y [XY ]− E [X ]E [Y ].
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Covariance (Contd.)

Example Consider random variables X and Y with joint pmf given by

Y = 0 Y = 1 Total
X = 0 1

5
1
10

3
10

X = 1 3
10

2
5

7
10

Total 1
2

1
2 1

We have EX [X ] = 7
10 and EY [Y ] = 1

2 , and

Cov(X ,Y ) = EX ,Y [XY ]− EX [X ]EY [Y ]

= 1× 1× 2

5
− 7

10
× 1

2

=
1

20
.
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Covariance (Contd.)

Corollary
Let X and Y be random variables. Then

X ⊥⊥ Y ⇒ Cov(X ,Y ) = 0.

The converse does not hold in general.
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Covariance (Contd.)

Corollary
Let X and Y be random variables. Then

Cov(a + bX ,Y ) = bCov(X ,Y ),

for all a, b ∈ R.
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Covariance (Contd.)

Corollary
Let X and Y be random variables. Then

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X ,Y ).
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Covariance (Contd.)

Corollary
Let X1, . . . ,Xn be a collection of independent random variables. Then

Var
( n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi).
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Covariance (Contd.)

Theorem (Cauchy-Schwarz Inequality)
Let X and Y be random variables. Then

Cov2(X ,Y ) ≤ Var(X)Var(Y )

⇐⇒Cov(X ,Y ) ≤ sd(X)sd(Y )
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Correlation

Notice the units of Cov(X ,Y ) are the units of X times Y .

I This makes comparisons challenging to interpret.
I This motivates normalization by the units of X times Y .

This leads to a measure of linear dependence: the correlation.

Definition (Correlation)

The correlation of two random variables X and Y is defined as

corr(X ,Y ) =
Cov(X ,Y )

sd(X)sd(Y )
.

Note: corr(X ,Y ) is considered a measure of linear dependence because
corr(X ,Y ) ∈ {−1, 1} if and only if there exist a, b ∈ R such that Y = a + bX .
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Correlation (Contd.)

A consequence of the Cauchy-Schwarz inequality is the following
result:

Corollary
Let X and Y be random variables. We have

−1 ≤ corr(X ,Y ) ≤ 1.
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Correlation (Contd.)

Example
Reconsider the random variables X and Y from the earlier example.
We have

corr(X ,Y ) =
Cov(X ,Y )

sd(X)sd(Y )
=

1
20√

7×3
100 × 1

4

.

Var(X) = (7/10)(3/10) and Var(Y ) = (1/2)(1/2)
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Conditional Expectation
We now introduce the concept of conditional expectations.
I Conditional expectations characterize features of a random

variable when there is information on another random variable.

Definition (Conditional Expectation)

The conditional expectation of X given Y = y is defined as

EX |Y [X |Y = y ] =
{∑

x∈supp X xfX |Y (x |y), if X is discrete,∫∞
−∞ xfX |Y (x |y)dx , if X is continuous.

Notice that this is simply the definition of expectation where we have
replaced the pdf (or pmf) of X with the conditional pdf (or pmf) of X
given Y = y .

Note: EX|Y [X |Y = y ] is a number, however, EX|Y [X |Y ] is a random variable. In
econometrics, EX|Y [X |Y ] is often called the conditional expectation function (CEF).
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Conditional Expectation (Contd.)

Example Suppose X ∼ U(0, 1) and Y |X ∼ U(X , 1). Then

EY |X [Y |X ] =

∫ 1

X
y 1

1− X dy =
y2

2(1− X)

∣∣∣∣1
X

=
1− X2

2(1− X)
=

1 + X
2

(Note: fY |X (Y | X) = 1{Y ∈ [X , 1]} 1
1−X ) and

EY |X [Y |X = x ] = 1 + x
2

.

Notice that EY |X [Y |X ] ∼ U
(
1
2 , 1
)
, but EY |X [Y |X = x ] is a number.
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Conditional Expectation (Contd.)

Corollary
Let X and Y be random variables. Then

EY |X [X + XY |X ] = X + XEY |X [Y |X ].

Similarly, for all functions h1, h2, and g ,

EY |X [h1(X) + h2(X)g(Y )|X ] = h1(X) + h2(X)EY |X [g(Y )|X ].
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Law of Iterated Expectations

Theorem (Law of Iterated Expectations (LIE))

Let X and Y be random variables. Then

EY [Y ] = EX [EY |X [Y |X ]].
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Conditional Variance
Another useful feature of Y given X is its conditional variance.
I Measures dispersion of Y given X .

Definition (Conditional Variance)
The conditional variance of Y given X is defined as

Var(Y |X) = EY |X [(Y − µY |X )
2|X ] = EY |X [Y 2|X ]− EY |X [Y |X ]2,

where µY |X = EY |X [Y |X ].

Example Consider the returns to education example from the
previous lecture.
I Var(Y |D = 1) is the variance of hourly wages of college

graduates.
I Var(Y |D = 0) is the variance of hourly wages of non-graduates.
I Intuitively, which do you think is greater? Why?
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Law of Total Variance

Corollary (Law of Total Variance (LTV))

Let X and Y be random variables. Then

Var(Y ) = EX [Var(Y |X)] + Var(EY |X [Y |X ]).

Proof:

EX [Var(Y |X)] + Var(EY |X [Y |X ])

= E [E [Y 2|X ]− E [Y |X ]2] + E [(E [Y |X ]− E [E [Y |X ]])2]

= E [E [Y 2|X ]− E [Y |X ]2] + E [E [Y |X ]2 − 2E [Y |X ]E [Y ] + E [Y ]2]

= E [E [Y 2|X ]]− 2E [Y ]E [E [Y |X ]] + E [Y ]2

= E [Y 2]− E [Y ]2 = Var(Y )
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Mean Independence

Recall that independence of random variables places a strong
restriction on their joint distribution.

We now turn to a weaker restriction: mean independence.

Definition (Mean Independence)
Y is said to be mean independent of X if

EY |X [Y |X ] = EY [Y ].

I Mean-independence of Y with respect to X implies that X has
no predictive value for Y in terms of mean-squared error.

I Independence of Y and X implies that X has no predictive value
for Y under any loss.
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Mean Independence (Contd.)

The next result states that mean independence is a weaker restriction
on the joint distribution than independence.

Corollary
Let X and Y be random variables. Then

X ⊥⊥ Y ⇒ EY |X [Y |X ] = EY [Y ].

The converse does not hold in general.
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Summary

This concludes our review of probability theory!
I Part A discussed distributions of random variables.
I Part B discussed features of distributions of random variables.

But there is another distinct task in the analysis of causal questions.
I In the next lecture, we begin the review of estimation.
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