BUSS975 Causal Inference in Financial Research

Review B: Expectations

Professor Ji-Woong Chung
Korea University

This lecture note is based on Thomas Wiemann’s.
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Recap

In Part A of the probability theory review, we discussed probability
distributions:

» CDFs and pdfs (or pmfs) fully characterize a random variable.

» Joint CDFs and joint pdfs (or pmfs) fully characterize
relationships between random variables.

But we may not always require a full characterization. Often, we are
content with knowing about key features of a random variable that
partly characterize it or its relation to other random variables.

» Recall the returns to education example where we were interested
in, e.g.,
TarT = E[Yi(1) = Yi(0)|D = 1],

and not the conditional distribution of Y;(1) — Y;(0) given D = 1.

The key concept we will cover in this lecture is expectations.
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Expectation
Definition (Expected Value)

The expected value of a random variable X is defined as

Ex[X] = > xesupp x XIx(x), if X'is discrete,
X ffooo xfx (x)dx, if X is continuous.

The expected value is a one-number summary of a random variable.
» X is a random variable but Ex[X] is a number.
» Considered a measure of central tendency.

We say that the expectation of X exists if E[|X]|] < oo.

» In this course, we always (implicitly) assume that expectations
exist.

Note: You may encounter various other names for the expectation, including
"mean” or "first moment,” as well as alternative notations. For example, we may
also express the expectation as Ex[X] = [ xdF(x).
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Expectation (Contd.)

Example: Consider tossing a fair coin twice. Let X be the number of
heads. Then

i, if x=0,

1 .

=, ifx=1
fx(x) =< 2 ’
x(x) i, if x=2,

0, otherwise,

and the expected number of heads is
1

1 1
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Expectation (Contd.)

Example Consider X ~ U(a, b). Then
1

—, for x € [a, b]
£ _ b—a>’ ’ ’
x(x) {0, otherwise.

and we have
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Law of the Unconscious Statistician

The next result is crucial when working with economic models
involving random variables.

Theorem (Law of the Unconscious Statistician)

Let X be a random variable and define Y = h(X) for some function
h. Then

Ev[Y] = Ex[h(X)] = ZOSESUPPX h(x)fx(x), I:fX /:s discrfete,
7o, h(x)fx(x)dx, if X is continuous.
Without LOTUS, we would first find fy(y), then

EY[Y] = Zyesupp Y.ny(.y)
With LOTUS, we do not need to go through the trouble of deriving
its distribution. Instead, we may work with the distribution of X.
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Law of the Unconscious Statistician (Contd.)

Example Let X be a continuous random variable. Consider Y = h(X)
where h(x) = 1{x € A} for some set A C R. By the theorem, we
have

Ey[Y] = Ex[h(X)] = /OO 1{x € AMfic(x)dx — /A fe(x)dx = P(X € A).

More generally, for any random variable X and set A C R, it holds

that
Ex[1{X e A}| = P(X € A).
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Expectations (Contd.)

Expectations are defined as sums and integrals and thus inherit their
useful properties:

Theorem

Let X be a random variable. Then
Ex[a + bX] = a + bEx[X],

VabeR.
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Expectations (Contd.)

Theorem

Let Xi,...,X, be random variables. Then

n
Ex.,.. X, [Z bi X;

i=1

n
=) biEx[Xi,
i=1

VY bi,...,b, € R.
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Expectations (Contd.)

Theorem

Let Xi,...,X, be independent random variables. Then

1%

i=1

Ex,...x,

= ]?I Ex;[Xi].
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Variance

Definition (Variance & Standard Deviation)
The variance of a random variable X with ux = Ex[X] is defined as
Var(X) = Ex[(X — ux)?]

The standard deviation of a random variable X is defined as

sd(X) = v/ Var(X).

The variance (and standard deviation) are measures of dispersion.
» Characterize the spread of the distribution of X around its mean.

From the definition, it follows that

Var(X) = Ex[X?] — E[X]?.
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Variance (Contd.)

Example: Consider tossing a fair coin twice as in the earlier example.
Let X be the number of heads and recall Ex[X] = 1. We have

1 1 1 1
Var(X):EX[Xz]—12:Z><02+§><12—1—1><22—1:§.
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Variance (Contd.)

Corollary

Let X be a random variable. Then
Var(a 4 bX) = b*Var(X),

Va,beR.

17/43



Variance (Contd.)

Example Let X ~ Bernoulli(p). Then
Ex[X] = 0f(0) + 1(1) = p,

and
Var(X) = E[X?] = E[X]* = p — p* == p(1 - p).

Example Let X ~ N(u,0?). Then Ex[X] = p and Var(X) = o2.
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Covariance

So far, we have discussed two important features of a random
variable: its mean and its variance.

We now turn to features that characterize the joint distribution of
random variables, beginning with a measure of joint dispersion: the
covariance.

Definition (Covariance)

The covariance of two random variables X and Y with px = Ex[X]
and puy = Ey[Y] is defined as

Cov(X,Y) = Ex,v[(X — ux)(Y — pny)].
From the definition, it follows that

Cov(X, Y) = Ex.y[XY] — E[X]E[Y].
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Covariance (Contd.)

Example Consider random variables X and Y with joint pmf given by

Y=0]|Y= Total
— T I 3
e T
Total 3 5 1

We have Ex[X] = ;5 and Ey[Y] =1, and
COV(X Y) EX y[XY] — Ex[X]Ey[Y]
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Covariance (Contd.)

Corollary

Let X and Y be random variables. Then
XLY = Cov(X,Y)=0.

The converse does not hold in general.
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Covariance (Contd.)

Corollary

Let X and Y be random variables. Then
Cov(a+ bX,Y) = bCov(X,Y),

for all a, b € R.
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Covariance (Contd.)

Corollary

Let X and Y be random variables. Then

Var(X +Y) = Var(X) + Var(Y) + 2Cov(X, Y).
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Covariance (Contd.)

Corollary

Let Xi,...,X, be a collection of independent random variables. Then

Var <z”: X,-) = 2”: Var(X;).
i=1 i=1
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Covariance (Contd.)

Theorem (Cauchy-Schwarz Inequality)
Let X and Y be random variables. Then

CoV*(X,Y) < Var(X)Var(Y)
<= Cov(X,Y) < sd(X)sd(Y)
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Correlation

Notice the units of Cov(X, Y) are the units of X times Y.
» This makes comparisons challenging to interpret.

» This motivates normalization by the units of X times Y.

This leads to a measure of linear dependence: the correlation.

Definition (Correlation)

The correlation of two random variables X and Y is defined as

Cov(X,Y)

corr(X,Y) = AX)sd(V)"

Note: corr(X, Y) is considered a measure of linear dependence because

corr(X,Y) € {—1,1} if and only if there exist a, b € R such that Y = a + bX.
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Correlation (Contd.)

A consequence of the Cauchy-Schwarz inequality is the following
result:

Corollary

Let X and Y be random variables. We have

—1<corr(X,Y) < 1.
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Correlation (Contd.)

Example
Reconsider the random variables X and Y from the earlier example.
We have .
Cov(X,Y) 50
corr(X,Y) = d = 20 )
Y= d00sd(Y) ~ Jra
100 ~ 4

Var(X) = (7/10)(3/10) and Var(Y) = (1/2)(1/2)
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Conditional Expectation

We now introduce the concept of conditional expectations.

» Conditional expectations characterize features of a random
variable when there is information on another random variable.
Definition (Conditional Expectation)

The conditional expectation of X given Y = y is defined as

> xesupp x XIx|y (x]y), if Xis discrete,

Exy X|Y =y|] =
X|Y[ | y] {foooo XfX|Y(X’y)dX7 if X is continuous.

Notice that this is simply the definition of expectation where we have
replaced the pdf (or pmf) of X with the conditional pdf (or pmf) of X
given Y =y.

Note: Ex|y[X|Y = y] is a number, however, Ex|y[X]|Y] is a random variable. In
econometrics, Ex|y[X|Y] is often called the conditional expectation function (CEF).
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Conditional Expectation (Contd.)

Example Suppose X ~ U(0,1) and Y|X ~ U(X,1). Then

1 1 y2 1
Eyix[Y|X] = gy
X = [ vy = |
1-X2 14X

21 -X) 2

(Note: fyx(Y | X) =1{Y € [X,1]} =5 ) and

14 x
Evix[Y[X =x] = ——.

Notice that Eyx[Y[X] ~ U (3,1), but Ey|x[Y[X = x] is a number.
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Conditional Expectation (Contd.)

Corollary

Let X and Y be random variables. Then
Similarly, for all functions hy, ha, and g,

Ey x[h1(X) + ha(X)g(Y)|X] = hi(X) + h2(X) Ey x[g(Y)|X].
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Law of Iterated Expectations

Theorem (Law of Iterated Expectations (LIE))
Let X and Y be random variables. Then

Ey[Y] = Ex[Eyx[Y|X]].
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Conditional Variance

Another useful feature of Y given X is its conditional variance.

» Measures dispersion of Y given X.

Definition (Conditional Variance)

The conditional variance of Y given X is defined as
Var(Y|X) = EY\X[(Y - MY\X)2|X] = EY|X[Y2|X] - EY\X[Y\X]Q,
where ,uy|X = Ey‘x[Y|X]

Example Consider the returns to education example from the
previous lecture.

» Var(Y|D = 1) is the variance of hourly wages of college
graduates.

» Var(Y|D = 0) is the variance of hourly wages of non-graduates.
» Intuitively, which do you think is greater? Why?
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Law of Total Variance

Corollary (Law of Total Variance (LTV))
Let X and Y be random variables. Then

Var(Y) = Ex[Var(Y|X)] + Var(Ey|x[Y|X]).

Proof:
Ex[Var(Y|X)] + Var(Ey|x[Y|X])
= E[E[Y?X] — E[Y|X]*] + E[(E[Y|X] — E[E[Y|X]})*]
= E[E[Y?|X] — E[Y|X]?] + E[E[Y|X]* = 2E[Y|X]E[Y] + E[Y]?]
= E[E[Y?|X]] — 2E[Y]E[E[Y|X]] + E[Y]?
= E[Y?] — E[Y]? = Var(Y)
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Mean Independence
Recall that independence of random variables places a strong
restriction on their joint distribution.

We now turn to a weaker restriction: mean independence.
Definition (Mean Independence)

Y is said to be mean independent of X if
Ey\x[Y|X] = Ev[Y].

> Mean-independence of Y with respect to X implies that X has
no predictive value for Y in terms of mean-squared error.

» Independence of Y and X implies that X has no predictive value
for Y under any loss.
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Mean Independence (Contd.)

The next result states that mean independence is a weaker restriction
on the joint distribution than independence.

Corollary

Let X and Y be random variables. Then
XLY = Ey|X[Y|X] = Ey[Y].

The converse does not hold in general.
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Summary

This concludes our review of probability theory!
» Part A discussed distributions of random variables.

» Part B discussed features of distributions of random variables.

But there is another distinct task in the analysis of causal questions.

» In the next lecture, we begin the review of estimation.

43/43



	Features of Probability Distributions
	Expectation
	Variance
	Covariance
	Correlation

	Features of Conditional Probability Distributions
	Conditional Expectation
	Conditional Variance

	Mean Independence

