

Problem Set: Probability

Problem 1 (LOTUS). Let X be the number of heads in two tosses of a fair coin.

- (a) Find the support and pmf $f_X(x) = P(X = x)$.
- (b) Compute the CDF $F_X(x) = P(X \leq x)$ for all real x .
- (c) Compute the median of X , i.e., any m with $F_X(m) \geq 1/2$ and $P(X < m) \leq 1/2$. (You may also use the quantile definition $F_X^{-1}(q) = \inf\{x : F_X(x) \geq q\}$.)
- (d) Using the law of the unconscious statistician (LOTUS), compute $E[g(X)]$ for $g(x) = x^2$.

Problem 2 (Continuous Uniform, CDF, PDF, and Quantiles). Let $X \sim U(a, b)$ with $a < b$.

- (a) Write the pdf f_X , the CDF F_X , and the quantile function F_X^{-1} .
- (b) Compute $P(a < X \leq \frac{a+b}{2})$.
- (c) Give a concrete example (choose a, b) where the pdf takes values greater than 1. Explain why this does not contradict $P(X = x) = 0$ for continuous X .

Problem 3 (Joint pmf, Marginals, Conditionals, and Independence). Consider the discrete bivariate random vector (X, Y) with joint pmf

		$Y = 0$	$Y = 1$
$X = 0$	$\frac{1}{5}$	$\frac{1}{10}$	
	$\frac{3}{10}$	$\frac{2}{5}$	

- (a) Compute the marginals $f_X(x)$ and $f_Y(y)$.
- (b) Compute $P(X = 0 \mid Y = 0)$ and $P(Y = 1 \mid X = 1)$.
- (c) Check independence by comparing $f_{X,Y}(x, y)$ to $f_X(x)f_Y(y)$ for all support points. Conclude whether X and Y are independent.

Problem 4 (Bivariate Normal: Standardization and Conditioning). *Suppose (X, Y) is bivariate normal with means (μ_X, μ_Y) , variances (σ_X^2, σ_Y^2) , and covariance σ_{XY} .*

(a) *Show that $Z_X = (X - \mu_X)/\sigma_X \sim N(0, 1)$ and express $P(a < X \leq b)$ in terms of the standard normal CDF Φ .*

(b) *Compute $P(Y \leq \mu_Y \mid X = \mu_X)$, given the distribution of $Y \mid X = x$,*

$$Y \mid X = x \sim N\left(\mu_Y + \frac{\sigma_{XY}}{\sigma_X^2}(x - \mu_X), \sigma_Y^2 - \frac{\sigma_{XY}^2}{\sigma_X^2}\right).$$

(c) *State a necessary and sufficient condition for X and Y to be independent in the bivariate normal case, and justify briefly.*