BUSS975 Causal Inference in Financial Research

Review A: Probability

Professor Ji-Woong Chung
Korea University

This lecture note is based on Thomas Wiemann’s.
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Sample Space & Events

Probability theory starts with the idea of an experiment.

The sample space, denoted (2, is the set of possible outcomes of an
experiment.

Realizations (or outcomes) of the experiments are points in the sample
space, w € ().

Collections of realizations are called events E C ().

Example: Consider tossing a coin twice. Then

Q= {HH,HT, TH, TT}, where for example w = HH is the outcome
of landing heads twice. The event of the first toss being tail is
E={TH,TT}.
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Indicator Functions

Definition (Indicator Function)

Let €2 be a sample space and E C 2 denote an event. The indicator
function of E is defined as

1, ifwekE,
0, ifwé¢eE,

Hwe E}=1g(w) = { Yw € Q.

Example: Consider tossing a fair coin twice as in the previous
example. Let E; = {TT} and Es = {TH, TT}. We have

]]_{TTE E1} = ]l{TTG EQ} = ]l{THE EQ} =1

l{TH S El} = 0.
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Indicator Functions (Contd.)

Indicator functions allow us to succinctly express “yes-or-no”
questions. As these questions become more convoluted, this approach
proves helpful thanks to a few key properties of indicator functions:

Lemma

Let €) be a sample space and Eq, E5 C € denote two events. The
following hold Yw € Q.

1.

IH{w e E1}F = 1{w € E}, Vk € R\ {0};

2. ]l{wgé El}:1—]l{w€ El};
3.
4, ]1{&)6 EIUEQ}: ]l{we E1}+Il{w€ EQ}—]I{wG ElﬂEQ}.

]1{(4.) e EEnN E2} = ]l{w E El}]l{w E EQ};
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Probabilities

Probabilities characterize the likelihood of an event in a sample space.

Definition (Probability Measure)

A probability measure on 2 is a function P : Q2 — [0, 1] satisfying:
1. P(2) =1;
2. P(E)>0,VECQ;
3. P(ELUE)) = P(E1)+ P(E), VE1,E2 CQ: E;NEy = 0.

Example: Consider tossing a coin twice. Let P(w) = 1/4, Vw € Q

defined in the earlier example. Then P(HH) = P(TT) =1/4 and
P({HT,TH}) =1/2.
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Random Variables

Random variables allow us to form a bridge between the sample space
of an experiment and data.

Definition (Random Variable)

A random variable is a function
X: Q=R

that assigns a real number X(w) to each outcome w € ().

Example: Consider flipping a coin twice and let X(w) be the number
of heads in w. Then for w = TH we have X(w) = 1.

Note: More mathematical rigor is necessary for a technical definition of a random
variable, but that would exceed the scope of this course.
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Cumulative Distribution Functions

The cumulative distribution function allows for succinctly
characterizing random variables.

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
the function Fx : R — [0, 1] defined by

Fx(x) = P(X <x), ¥x € R.

Notation: Capital letters X typically denote random variables, while lower case
letters x typically denote realized values (i.e., a number). We write X ~ Fx to
state that X has distribution Fx.
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Cumulative Distribution Functions (Contd.)

The next result is crucial: it states that the CDF effectively contains
all the information about a random variable.

Theorem
Let X and Y be random variables with CDFs Fx and Fy, respectively.
If Fx(x) = Fy(x), Vx € R, then P(X € E) = P(Y € E).

For two random variables X and Y with CDFs Fx and Fy,
respectively, we say that X and Y are identically distributed —

denoted by X 2 Y — if Fx(x) = Fy(x), ¥x € R.
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Cumulative Distribution Functions (Contd.)

Example: Consider flipping a fair coin twice as before. Let X be the
number of heads. Then

0 if x <0,
1/4 if x €]0,1),
3/4 ifxell,2),
1 if x> 2.

Fx(X) =

Now consider a second random variable Y equal to the number of
tails. We have X < Y.

The example highlights that X 2y does not imply X =Y.
Two random variables can be identically distributed, but their

realizations do not have to be equal.
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Discrete Random Variables
Definition (Discrete Random Variable)
A random variable X is discrete if it takes countably many values
{x1,Xa,...}. The probability mass function (pmf) of X is defined as
fx(x) = P(X = x), Vx € R.
The support of X is given by

supp X = {x € R| fx(x) > 0}.

The support of X is the set of values it can take. By the definition of
probabilities, it holds that fx(x) > 0, Vx € R and

> K =1

xesupp X
The pmf and CDF of X are related via

Fx() = PX<x)= S KX < x}

x'esupp X
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Discrete Random Variables (Contd.)

Example: Consider flipping a fair coin twice, with X(w) is the
number of heads. We have

supp X = {0, 1,2}

and the corresponding pmf is

1/4 ifx=0,
fe(x) = 1/2 ifx=1,

1/4 if x=2,

0 otherwise.

We may easily calculate Fx(1) via the earlier equation as

Fx(1) = x(0) + fx(1) = 3/4.
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Continuous Random Variables
Definition (Continuous Random Variable)

A random variable X is continuous if there exists a function
fx : R — R satisfying:

1. fx(x )>0 Vx € R;

2. f x)dx = 1;

3 P(a<X§b ffx )dx, Va < b € R.

The function fx is called the probability density function (pdf) of X.
The pdf and CDF of X are related via

Fx(X) = P(X < X) = /X fx(t)dt

By the fundamental theorem of calculus, we have

S F(x) = ().
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Continuous Random Variables (Contd.)

Example: Consider the idea of choosing a random number between 0
and 1. For this purpose, construct the random variable X with pdf

1 for x €0, 1],
fx(x) =
x(x) {0 otherwise.

Clearly fx(x) > 0, Vx € R and [*_fx(t)dt = [} 1dt = 1. The
corresponding CDF is given by

0 forx <0,
Fx(x) = qx forx €]0,1],
1 for x> 1.

This random variable X is called a standard uniform random variable,
and write X ~ U(0,1).
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Caveat
Discrete and continuous random variables can lead to confusion.

When X is a continuous random variable do not interpret fx(x) as
P(X = x). By Definition, P(X = [ x(t)dt = 0 which is not
equal to fx(x) (in general). fx( ) P(X = x) only works for discrete
random variables.

Note also that pdfs may take values larger than 1 or even be
unbounded, but pmfs must map to [0, 1].

Example: Uniform distribution on the interval [0, 1/2] has probability
density fx(x) =2 for 0 < x < 1/2 and fx(x) = 0 elsewhere.

Example: pdf of fx(x) = ﬁ is unbounded.
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Cumulative Distribution Functions (Contd.)

Lemma below allows us to readily express different kinds of
probabilities using the CDF of the corresponding random variable.

Lemma

Let X be a random variable and F be the corresponding CDF. Then:
1. Pla< X< b)=P(X<b)—P(X<a)=F(b)— F(a);
2. PX>x)=1-P(X<x)=1-F(x);

3. If X is continuous, then

F(b)— F(a)=Pla<X<b)=Pa<X<h

—Pa<X<b)=Pa<X<bh).

~—
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Quantile Functions
Another characterization of a random variable is its quantile function.

Definition
Let X be a random variable and F be the corresponding CDF. The

quantile function (or inverse CDF) is the function
F~1:10,1] — supp X defined by

F~'(q) = inf{x | F(x) 2 g}, Yq € [0,1].

When F is strictly increasing and continuous, then F~1(q) is the
unique real number that satisfies

PX<F'(q) =q.

Note: If you are unfamiliar with the infimum operator inf, just think of it as the
minimum (that will suffice for this class).
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Important Univariate Distributions

Discussed two well-known probability distributions:
» Binomial random variables

» Uniform random variable

Will introduce other examples of frequently-occurring discrete and
continuous random variables.

P Use the examples to gain intuition about how random variables
can be leveraged for modeling a real-world experiment.

» The most important example provided is the normal distribution:
Study this carefully!
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Important Discrete Distributions

Definition (Discrete Uniform Distribution)

Let kK > 1 be a given integer. Suppose that X has pmf given by

(%) 1/k, forx=1,...,k,
X) =
X 0, otherwise.

We say that X has a uniform distribution on {1,..., k}, and write
X ~ U{1,... k}.

The discrete uniform distribution is for randomly choosing a single
value from a finite set of values with equal probability.
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Important Discrete Distributions (Contd.)

Definition (Bernoulli Distribution)
Let p € (0,1) be a given scalar. Suppose that X has pmf given by

p, if x =1,
fx(x) =q1—-p, ifx=0,
0, otherwise.

We say that X has a Bernoulli distribution and write
X ~ Bernoulli(p).

The Bernoulli distribution represents a single coin flip where the
probability of a success is denoted by p.

Note that for x € {0,1}, we may write the pmf as
fix(x) = p*(1 - p)' ™.
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Important Discrete Distributions (Contd.)

Definition (Binomial Distribution)

Let p € (0,1) and n € N be given. Suppose that X has pmf given by

Np*(1—p)">, forx=0,...,n
f‘ x) = (x)p ( ) ) s Ty
x(x) {0, otherwise.

We say that X has a Binomial distribution and write
X ~ Binomial(p, n).

The Binomial distribution represents the number of successes in a
sequence of n coin flips, where the probability of a success is p.

Notation: ( ) denotes the number of possible combinations of x out of n elements

n
X
— that is,
ny n!
x| x(n=x)!
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Important Continuous Distributions

Definition (Uniform Distribution)
Let a < b € R be given scalars. Suppose that X has pdf given by

L for x € [a, b]
f‘ X — b_a7 ) )
x(x) {0, otherwise.

We say that X has a uniform distribution on [a, b], and write
X ~ U(a, b).

The uniform distribution represents choosing a number from the
interval [a, b] at random. The CDF of the uniform distribution:

P(X < x) =522 = Fx(x)
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Normal Distribution

Definition (Normal Distribution)

Let x € R and o > 0 be given scalars. Suppose that X has pdf given
by

_ 1 (x —p)?
fx(x) = Wexp <—%2 , Vx e R.

We say that X has a normal distribution and write X ~ N(u,o?).

The normal distribution is immensely important in statistics and
econometrics.

» Normal distributions often end up being suitable approximations,
as formalized by the Central Limit Theorem. .

The normal distribution is symmetric around u:

fx(pu+0) = fx(p—9), Vo € R.
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Normal Distribution (Visualization)

Density f(x)

0.2 |-

0.1

| | | | | | | | | |

| |
-7—-6-5-4-3-2-10 1 2 3 4

Notes. Normal densities with 4 = —2,0 =2 in red, and 4t = 0,0 = 1 in blue.
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Normal Distribution (Contd.)

If w =0 and o =1, we say that X has a standard normal distribution:

» Denote its pdf by ¢(x);
» Denote its CDF by ®(x);
» Denote its quantile function by ®~!(x).

There exists no closed-form expression for ®(x). Conventions in
statistics and econometrics make it worthwhile to memorize some key
values:

—1.96) ~ 0.025 and ®~1(0.025) ~ —1.96.

—1.64) ~ 0.050 and ®~1(0.050) ~ —1.64.

1.96) ~ 0.975 and ®71(0.975) ~ 1.96.
1.64)

> P(
> P(
> P(
> &(1.64) ~0.950 and ®71(0.950) ~ 1.64.

29/54



Normal Distribution (Contd.)

We state the following useful properties without proof:
Lemma
Let X ~ N(u,0?) and Z ~ N(0,1). Then,

_, d
g 250 S

g

bu+ozZ2x

This lemma implies P(a < X < b) = @(%) — P(h)

30/54



Outline

Random Vectors
Joint CDFs, marginals and conditionals pmfs and pdfs
Independence
Bivariate Normal Distribution

31/54



Outline

Random Vectors
Joint CDFs, marginals and conditionals pmfs and pdfs

32/54



Random Vectors

So far, we've only discussed univariate distributions.

We often need tools to characterize relationships between random
variables.

A random vector is a function from the sample space to RY, for some
deN, ie., X:Q— R

» It’s a simple generalization of random variables.

» Each component of a random vector is itself a random variable.

For ease of exposition, let’s focus on bivariate random vectors
(d =2).

Concepts generalize naturally to higher dimensions d > 2.
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Joint Cumulative Distribution Functions

The joint CDF succinctly characterizes random vectors.

Definition (Joint Cumulative Distribution Function)

The joint cumulative distribution function (joint CDF) of a random
vector (X, Y) is the function Fx y : R? — [0, 1] defined by

Fxy(x,y) = P(X <x,Y <y), ¥(x,y) € R%

Note that this definition applies regardless of whether X and Y are
continuous or discrete random variables.
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Discrete Random Vectors

Definition (Bivariate Discrete Random Vector)

A pair of discrete random variables (X, Y) is a bivariate discrete
random vector. The joint probability mass function (joint pmf) is
defined as

fxy(x,y)=PX=x,Y=y),V¥(x,y) e R2.

Example: Consider the random vector (X, Y') with joint pmf given by

Y=0|Y=1

X=0
X=1

Sledoni—

Thus fx,y(0,1) = P(X =0,Y =1) = .
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Discrete Random Vectors (Contd.)

Definition (Marginal Probability Mass Function)

If (X,Y) is a discrete random vector with joint pmf fx y, then the
marginal pmf of X is defined by

fx(x) = P Z PX=x,Y =y) Z fx,vy(x,y).

yEsupp Y yEsupp Y
The marginal pdf of Y is defined analogously.

Example: Consider again the joint pmf of the previous example. We
have P(X =0) = 3 as

Y=0|Y=1]| Total
— I T 3
A
Total 3 5 1
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Continuous Random Vectors

Definition (Bivariate Continuous Random Vector)

A pair of continuous random variables (X, Y) is a bivariate continuous
random vector. The joint probability density function (joint pdf) is a
function fx y : R? — R that satisfies the following properties:

1. fX y(X y) >0, V(X y) € RQ'
2. [7 7 v (x,y)dxdy = 1;
3. P((X,Y) e A) = [ [,fxy(x,y)dxdy, VA C R?.

Example: Consider randomly choosing a point on the unit square
with coordinates (X, Y). Then

1, if (x,y) €[0,1]%,
0, otherwise.

fX,Y(Xay) = {

1 1
We have P(X < 5,Y < 35) = ;.

N[ =
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Continuous Random Vectors (Contd.)

Definition (Marginal Probability Density Function)

If (X,Y) is a continuous random vector with joint pdf fx y, then the
marginal pdf of X is defined by

fx(x) = /OO fx,y(x,y)dy.

—0o0
The marginal pdf of Y is defined analogously.
Example: Recall the uniform distribution on the unit square:

1, if (x,y) €[0,1]%,

0, otherwise.

fxy(x,y) = {

We have fx(x) = 1{x € [0,1]} and fy(y) = 1{y € [0,1]}.
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Conditional Distributions

Joint distributions characterize the relationship between random
variables.

Marginal probability density (or mass) functions are another name for
the probability density (or mass) functions we discussed in the setting
of random variables.

“Marginal’ highlights the context of multiple random variables.
We now introduce the concept of conditional distributions.

Conditional distributions characterize a random variable when
there is information on another random variable.
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Conditional Distributions (Contd.)

Definition (Conditional Probability Mass Function)

If (X,Y) is a discrete random vector with joint pmf fx y, then the
conditional pmf of X given Y is defined by

by (xly) = POX = x| ¥ = y) = PE =Y =9) _ Fovl(xy)

PY=y) — fly) ’

V(x,y) € R?: fy(y) > 0 (and is undefined otherwise). The
conditional pmf of Y given X is defined analogously.

Example: Consider again the joint pmf of the previous example. We

have .
PX=0,Y=0) Lt 2
P(X=0|Y=0)= ’ =32 ==C
( | ) P(Y =0) 25
P(Y=0,X=0) + 2
P(Y=0|X=0)= . =2 =c.
P(X =0) & 3
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Conditional Distributions (Contd.)
Definition (Conditional Probability Density Function)

If (X,Y) is a continuous random vector with joint pdf fx y, then the
conditional pdf of X given Y = y is defined by

f
fxiy(xly) = —=——=,
X|Y( ’y) fY(_)/)
V(x,y) € R? where fy(y) > 0 (and is undefined otherwise). Then,
PXeAlY =y) = /“4 fx|v (x|y) dx.
The conditional pdf of Y given X = x is defined analogously.

From the definitions of the conditional pmf and pdf, we see that

.y (x,y) = fxy (xI¥) fy (v) = fyx (v [x) fx (x).
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Independence

We now turn to a restriction on the relationship between random
variables that is of the highest importance in all the identifying
assumptions we will consider in this course.

Definition (Independence)

Two random variables X and Y are independent if
PXeAYeB)=PXecAP(YeB),VA,BCR.

Independence is denoted by X 1L Y.

Checking the above equation by brute force is challenging.
Fortunately, we have the following key result:

Theorem
Let (X, Y') have joint pdf (or pmf) fx y. Then

XLY & foy(xy)=fx(x)fyly), V(x,y) € R%.
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Independence (Contd.)

An immediate consequence of the previous theorem is the following
result:

Corollary

Let (X,Y') have joint pdf (or pmf) fx y. Then

XLY & fyylxly) =), ¥(xy) € R%.

Proof:

fx vy (xly) = ffY(()y)
fx (x)F ( ) _ N
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Independence (Contd.)

Example: Consider again the joint pmf of the previous example. The
example showed that P(X =0 | Y = 0) = 2 but we have
P(X=0)= 1%. Hence, by the corollary, we can conclude that X and
Y are not independent.

Suppose now that the joint pmf of (X, Y) is instead given by

Y=0|Y=1]| Total
_ 1 T T
=01 ¢ 1§ 13
X=1] g i 2
Total % % 1

Now we have fx(x)fy(y) = fx.y(x,y), ¥(x,y) € R% Hence, by the
theorem, we can conclude that X 1L Y.
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Independence (Contd.)

The next result is important for working with random variables within
economic models.

Corollary

Let (X,Y) be two random variables. Then, for any function h,

X LY = X1h(Y).

Proof: Define h™}(B) = {y € R|h(y) € B}. VA,BCR

P(x € A h(y) e B)=P(x € A,y € h"(B))
=Pxc AP(ye h}(B) ~XL1Y
= P(x € A)P(h(y) € B)
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Bivariate Normal Distribution

We now turn to one particularly important bivariate distribution.

Definition (Bivariate Normal Distribution)

Let (ux, py) € R? and

2
o g
=X "X (ox,0v,0xy) € R® such that c%0% > 0%y

be given. Suppose that the random vector (X, Y) has joint pdf given

by
1 1 /(x—p T X—p
1 1 — KX =1 - HX
fy(x,y) = 27| 2| 1/2 €xp < 2 (y - MY) . (Y - “Y>> .

We say that (X, Y') has a bivariate normal distribution and write
(X, Y) ~ N(u, %), where i = (px, pry).
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Bivariate Normal Distribution (Contd.)

Bivariate normals are convenient because their marginal (and
conditional) densities can be succinctly expressed. If
(X,Y) ~ N(u,X), then

> X ~ N(ux,0%) and Y ~ N(uy,0%);
2
> Y|X:XNN(MY‘i'UXTY(X_MX)aU%/_UXTY)-
ox 2

g

Another useful property of normal random vectors is that
independence reduces to a simple condition.

Theorem
Let (X,Y) ~ N(u,%). Then

XLY < oxy=0.
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Bivariate Normal Distribution (Contd.)

Lemma
Let (X,Y) ~ N(u, %), and Z ~ N(0, ). Then:

1. ¥2 (if) —u~Z;

1 X\ .
2. u+322Z ~ <Y>'

3. For given a,b € R, we have

aX +bY ~ N <aux+bw, (a b)T <Z>> :

4. If in addition X 1L Y, then

aX + bY ~ N (apx + buy, a*ck + b*c¥) .

Notation: For d € N, I; denotes the identity matrix in d dimensions.
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x2-Distribution
By the previous lemma, we’re equipped to construct independent
normal random variables from any bivariate normal random vector
(X,Y) given p and X.
It allows for the construction of another well-known probability
distribution: The y?-distribution
Theorem

Let Z ~ N(0, ). Then
Z'Z =7} + 7} ~ x*(2),

where x?(df) denotes the x>-distribution with df-degrees of freedom.
More generally, if Z ~ N(0, Ip,) for some m € N, then

Z'Z2=) 77 ~x*(m).
i=1
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x2-Distribution
We formulate the following corollary for ease of application:

Corollary

Let X ~ N(u,3), where supp X =R™. Then

(X =) "= (X = p) ~ x*(m)

Proof:!
X =) TSN X =p) = (X =) (=) TS2(X = p)
= [B7V2X = )T [ETVA(X - )]

=27Z2=) "7} ~x*(m).
i=1

Theorem: Let A be a positive semidefinite symmetric matrix. Then there is

exactly one positive semidefinite and symmetric matrix B such that A = BB.
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x?-Distribution (Contd)

0.5 ]

0.4 |

0.3 |

0.2 |

0.1

_m:2

b b 10 15 20

Notes: x? desities with different dfs.
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Summary
Thus far, we focused on distributions of random variables:
» CDFs and pdfs (or pmfs) fully characterize a random variable.

» Joint CDFs and joint pdfs (or pmfs) fully characterize
relationships between random variables.

But, knowning everything about a random variable or its relation to
other random variables is not always necessary.

» Often, we are content with knowing about key features of a
random variable that partly characterize it or its relation to other
random variables.

» The causal question did not consider the distribution of hourly
wages for college graduates had they not pursued higher
education. Instead we were content with knowing the expected
returns to education.

In Part B of the probability theory review, we will cover concepts that
summarize key features of a random variable’s (or random vector’s)
distribution
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