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Chapter 1

Introduction

1.1 Descriptive, Predictive, and Causal Ques-
tions

When conducting empirical research in finance, it is useful to distinguish
three types of questions we might ask about data:

e Descriptive questions: These aim to describe how things are or were,
focusing on statistical properties and relationships. For example, ”Has
industry concentration increased over time?” or "What is the typical
cost of financial distress for firms?” Such questions summarize data
without making guesses about new or unseen outcomes.

e Predictive questions: These aim to predict an unknown outcome
without necessarily changing anything in the system. For instance,
"What will the GDP be next quarter?” or ”Can we predict a website
visitor’s income from their browsing behavior?” Here we use historical
patterns to guess future or otherwise unobserved values, but we are not
explicitly asking about causal effects.

e Causal questions: These ask what happens to Y when we change
X, all else being equal. In other words, they concern cause-and-effect
relationships. For example, "Do increases in financial disclosure re-
quirements cause changes in firm value?” or "What is the effect of
raising the minimum wage on employment levels?” Causal questions
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involve imagining some intervention or change in X and asking how it
would alter Y in a ceteris paribus world.

Only the third type — causal questions — requires us to grapple with the
idea of what would happen under different scenarios for the same entity.
Descriptive and predictive analyses can often be done with straightforward
statistics or machine learning, but causal analysis demands something more:
we must infer an outcome under a hypothetical change, which is fundamen-
tally a missing data problem (since we don’t actually see the hypothetical
scenario directly). As we’ll see, this is where concepts like counterfactuals,
potential outcomes, and careful research design come into play.

1.2 What is Causality? A Counterfactual No-
tion

Causality, in the narrow sense we use in this course, means estimating the
effect of a change in one variable (X) on another variable (Y'), holding ev-
erything else equal. The Latin phrase ceteris paribus (”other things being
equal”) is often used to emphasize this. Intuitively, to say "X causes Y7
we want to know: if we could somehow change X while keeping all other
relevant factors unchanged, how much would Y change as a result? If we
cannot hold other factors equal, then any observed association might be due
to those other changing factors rather than a true causal effect of X on Y.
A formal way to think about causality is through counterfactuals. Con-
sider an individual firm or person. We imagine two scenarios: one where the
"treatment” X happens, and one where it does not. If we could compare that
entity’s outcome Y in these two scenarios, the difference would be the causal
effect of X on Y for that entity. For example, suppose we want to know the
effect of obtaining an MBA on a person’s earnings. Ideally, we’d take one
person and observe their earnings in two alternate universes: one in which
they earned an MBA, and one in which they did not. The difference in those
earnings would be the individual causal effect of the MBA for that person.
The catch is: we can never observe both universes at once. In reality, each
person either gets an MBA or not — we see only one outcome for each person.
The other outcome (the one that would have happened under the alternative
scenario) is the counterfactual, which is fundamentally unobservable. This
is often called the Fundamental Problem of Causal Inference: for any given
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unit, we cannot observe the counterfactual outcome that corresponds to the
alternative treatment state. We only get to see one side of the "what if.”

Remark 1.1 (Fundamental Problem of Causal Inference). In the words of
statistician Paul Holland, “the fundamental problem of causal inference is
that it is impossible to observe the value of Y;(t) and Y;(t') on the same unit
and same moment in time”. We cannot rewind time and apply a different
treatment to the same unit to see what would happen. This is why causal
inference is challenging — we must infer those missing pieces (the counter-
factuals) indirectly

Because we can’t directly see counterfactual outcomes, a core strategy in
causal inference is to find ways to approximate the all-else-equal comparison.
That often involves making assumptions or using clever study designs to
ensure that, aside from the treatment of interest, the groups we compare are
as similar as possible.

1.3 Correlation vs. Causation

It’s crucial to distinguish correlation from causation. A saying you might
have heard is “Correlation does not imply causation.” Two variables X and
Y can be correlated (statistically associated) without X truly causing changes
in Y. There are several reasons this can happen:

e Reverse causality: Maybe Y actually causes X, rather than the
other way around. A tongue-in-cheek example: carrying an umbrella is
correlated with rain, but obviously carrying umbrellas does not cause
rain — it’s the rain that causes people to carry umbrellas. Similarly, in
finance, a rise in stock prices might be correlated with CEO optimism,
but it could be that rising stock prices make CEOs optimistic (rather
than optimism raising stock prices). Time order and logic help clarify
which way causality could run.

e Confounding: X and Y might be correlated because some third fac-
tor influences both. Consider a classic nonsensical example: in some
data, ice cream sales strongly correlate with shark attack incidents.
Does buying ice cream cause shark attacks? Of course not. The con-
founder here is the weather: hot summer weather leads to more ice
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cream consumption and more people swimming in the ocean (hence
more shark encounters). In a financial context, suppose we find that
companies with more fire insurance have higher profits. It might be
that well-managed (and thus more profitable) firms are also the ones
savvy enough to buy insurance — the underlying management qual-
ity drives both insurance purchase and profits, confounding the naive
relationship.

Spurious correlations: Sometimes two variables move together purely
by chance or due to broad trends, with no direct or indirect causal link.
Especially when many variables are tested, you'll eventually find some
weird correlations. For example, one humorous analysis found a 94%
correlation between the per-capita consumption of American cheese and
the stock price of a large asset management firm (BlackRock) over a
certain period. This doesn’t mean eating cheese influences stock prices
(or vice versa) — it’s a spurious correlation. In the stock market realm,
analysts have noted bizarre correlations like the ”Super Bowl indicator”
(whereby stock market performance correlates with which conference
wins the Super Bowl) or instances where completely unrelated stocks
move together for some time. These are coincidences or driven by un-
seen common factors, not true causation.

Selection bias: Sometimes what looks like a relationship can be due
to who or what is observed in each condition. For example, imagine
observing that patients who receive a certain medical treatment tend to
have worse health outcomes than those who don’t. Does the treatment
harm patients? Possibly not — it could be that the sickest patients are
the ones receiving the treatment (a doctor gives the treatment to those
in dire need), whereas healthier patients didn’t need it. A ”perfect doc-
tor” who always gives the right treatment might paradoxically appear
to have worse patient survival rates, because we only see her treating
the most serious cases. In finance, we might observe that firms who
undertake defensive mergers have poorer stock performance afterward
than those that don’t — not necessarily because the mergers caused
poor performance, but perhaps because only firms already facing de-
cline choose to merge (the underlying trouble causes both the merger
decision and the performance drop). Selection bias can thus mask or
even reverse the true causal effect in raw data.
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The key lesson is that coming first or being associated is not enough to
establish causality. Roosters crow before sunrise, but they do not cause the
sun to rise. A finance example: Suppose we find that companies announcing
stock buybacks see their stock price go up on average. It might be tempt-
ing to say "buybacks cause price increases.” But what if companies tend to
announce buybacks when they feel undervalued or when business is strong?
The observed price rise could partly reflect underlying good news rather than
a causal impact of the buyback itself. To claim causation, we must rule out
or control for alternative explanations and isolate the effect of the variable
of interest.

To isolate causation, we ideally want to compare identical worlds where
only X differs. In practice, we approximate this by finding or creating com-
parison groups that are as similar as possible except for X. Randomized
experiments, natural experiments, and various econometric techniques are
all about making the treated vs. control groups comparable so that any
remaining differences in Y can be attributed to the difference in X (rather
than confounders). We will delve into these methods later, but first, let’s
formalize the causal inference framework more concretely.

1.4 The Potential Outcomes Framework

One powerful way to formalize causal ideas is the potential outcomes frame-
work, also known as the Neyman-Rubin causal model (after Jerzy Neyman
and Donald Rubin). This framework introduces the idea of labeling outcomes
by the treatment status under which they are realized.

Consider a binary treatment for simplicity (extension to multiple treat-
ments is possible but we’ll start with two states like "treated” vs "not
treated”). Let D; be an indicator for whether unit ¢ (which could be an
individual, a firm, etc.) receives the treatment. In our examples, D; = 1
might indicate ”"went to college” (or ”got the treatment”), and D; = 0 indi-
cates "did not go to college” (or "no treatment”). For each unit i, we define
two potential outcomes:

e Y;(1) = outcome for i if treated, D; = 1

e Y;(0) = outcome for ¢ if untreated, D; =0

These Y;(1) and Y;(0) represent the two parallel universe outcomes we dis-
cussed earlier. Only one of them will actually materialize for unit 7 in reality,
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depending on whether 7 is treated or not. The other is the counterfactual out-
come. We sometimes call Y;(1) and Y;(0) unit-level potential outcomes. They
formalize the "what-if”: Y;(0) answers ”what would ¢’s outcome be under no
treatment?” and Y;(1) answers ”"what would it be under treatment?”

By observing data, we see either Y;(1) or Y;(0) for each ¢, never both. The
observed outcome Y; can be written in terms of these potential outcomes and
the treatment indicator:

Y; = DYi(1) + (1 — Dy)Y;(0).

This expression means: if D; = 1, then Y; = 1-Y;(1)+0-Y;(0) = Y;(1) (we ob-
serve the treated potential outcome); if D; = 0, then Y; = 0-Y;(1)+1-Y;(0) =
Yi(0) (we observe the untreated outcome). This relies on an assumption
called consistency, which essentially says the observed outcome corresponds
to the appropriate potential outcome for the treatment actually received — a
reasonable assumption as long as we have a well-defined treatment condition.

Because we never observe both Y;(1) and Y;(0) together for the same i,
the individual-level causal effect Y;(1) — Y;(0) is inherently unobservable for
any given unit. This is just restating the fundamental problem: we lack
the counterfactual for each individual. However, we can talk about average
effects across a population, and those can sometimes be estimated with the
right assumptions.

1.4.1 Defining Causal Effect Measures

Since individual causal effects Y;(1) — Y;(0) are not directly observable, re-
searchers usually focus on average causal effects over populations or subpop-
ulations. Here are some common effect measures in the potential outcomes
framework:

e Individual Treatment Effect (ITE): For unit ¢, 7, = Y;(1) — Y;(0).
This is the individual-level causal effect. As noted, 7; is not observable
for any single ¢ because we cannot see both Y;(1) and Y;(0) for the same
unit.

e Average Treatment Effect (ATE): matg = E[Y;(1) — Y;(0)]. This
is the expected causal effect of the treatment for a randomly chosen
unit in the population. It answers: on average, how much does the
outcome change due to the treatment? The ATE includes everyone,
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regardless of whether they actually receive the treatment or not. It is
often the target parameter for policy questions like ”if we implement
this policy for everyone, what would be the average effect?”

e Average Treatment Effect on the Treated (ATT): 7orr = E[Y;(1)—
Yi(0) | D; = 1]. This is the average causal effect among those who actu-
ally received the treatment. In other words, it’s the average benefit (or
harm) that the treated group got from being treated, relative to what
they would have experienced without treatment. For example, if we
look at people who went to college (D = 1), Tapr is how much college
increased their earnings on average compared to if those same people
hadn’t gone. A key thing to note is that one part of this quantity is
observable: E[Y;(1) | D; = 1] is just the average outcome we observe
for treated units. But E[Y;(0) | D; = 1] is counterfactual (what the
treated would have gotten on average had they not been treated).

e Average Treatment Effect on the Untreated (ATU): tary =
E[Y;(1) = Yi(0) | D; = 0]. This is the average effect for those who
did not receive the treatment (had they received it). For instance, how
much would the currently non-college individuals benefit on average
if they did go to college? Again, one part of this (the average Y;(0)
for untreated) is observable, but E[Y;(1) | D; = 0] is a counterfactual
mean.

e Conditional Average Treatment Effect (CATE): 7(x) = E[Y;(1)—
Yi(0) | X; = «]. This is the average treatment effect for a specific sub-
group defined by some characteristics X; = z. For example, we might
ask: "What is the average effect of college on earnings for women, as
opposed to men?” That would be a CATE by gender. CATEs allow
the treatment effect to potentially vary with observed covariates.

Each of these measures can be the parameter of interest depending on
the research question. For instance, if policymakers are considering a broad
policy applied to everyone, the ATE is often the relevant quantity. If we want
to evaluate a program that only affects those who participate, we might care
about the ATT (the effect on those who actually get the treatment). If we're
curious about bringing a treatment to a group that currently doesn’t have it
(e.g., extending a financial product to people who haven’t adopted it yet),
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ATU could be of interest. If we are focusing on a particular segment (say,
small firms vs. large firms), we might estimate a CATE for that segment.

Example (Choosing the right effect measure): Imagine a policy that encour-
ages all high school graduates to attend college. If we consider implementing
it universally, the ATE (the effect for a randomly selected student) would be
most relevant. Now imagine a more targeted policy: suppose we only want
to encourage students from schools with historically low college enrollment
rates to go to college. In that case, we are interested in the effect on those
who otherwise might not attend. That is closer to an ATU for the currently
untreated population (those who typically wouldn’t go without encourage-
ment). In contrast, if we were evaluating the return on college for those
who do attend (say, to justify student loan programs for current college stu-
dents), we might focus on the ATT. The point is, the causal question dictates
which parameter is most relevant. Regardless of which effect we look at, the
central challenge remains: how do we estimate these causal effect parame-
ters using the data we have? We need to relate these theoretical quantities
(E[Y (1) = Y(0)], etc.) to things we can actually observe. This leads us to
the idea of identification and estimands.

1.5 Target Parameters vs. Estimands

A parameter is a quantity that describes some aspect of the truth in the
population. In causal inference, our target parameter might be a causal effect
like the ATE or ATT — something defined in terms of the potential outcome
distributions. For example, the true ATE, denoted 7%, could be written as:

7 = E[Yi(1) = Y,(0)] = E[Yi(1)] - E[Yi(0)].

This is what we want to know: say, the difference in average earnings if
everyone goes to college vs. if no one goes to college. It’s a fixed number
(for a given population and well-defined treatment), not a random variable
— though we don’t know its value, it exists out there as a fact about the
population.

The problem is that 7* involves those counterfactual expectations E[Y;(1)]
and E[Y;(0)]. We cannot directly observe those because any given individual
contributes to either the Y;(1) group or the Y;(0) group, not both. However,
we can observe things like F[Y; | D = 1] = the average outcome among
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those who actually received the treatment, and E[Y; | D = 0] = the average
outcome among those who did not. These are features of the observed data
distribution. We call a quantity likd]

r=EY|D=1—-E[Y|D =0

An estimand (or sometimes just an identified contrast in the data). An
estimand is a function of the observable distribution that we intend to use
to estimate the target parameter. In our case, 7 is the difference in average
outcomes between treated and untreated units in the population. If the
treated and untreated groups were comparable in all relevant aspects, 7 would
equal the true causal effect 7*. But in general, 7 could differ from 7% due to
selection bias or confounding.

Let’s consider a simple hypothetical example to illustrate this distinction
between the causal effect and the naive observed difference: Suppose we have
a small population of 10 individuals, and we’re interested in the effect of col-
lege (D = 1) on earnings Y. The table below lists each individual’s potential
earnings with college Y;(1), potential earnings without college Y;(0), and their
actual college attendance D;. (This example is contrived for illustration.)

Individual ¢ Yi(1) (college) Y;(0) (no college) D; (college?)
1 8 3 1
2 6 2 1
3 ) 3 1
4 8 2 1
5 7 3 1
6 4 4 0
7 8 6 0
8 6 2 0
9 8 2 0
10 9 3 0
Population Mean: 6.9 3.0 -

Table 1.1: Hypothetical potential outcomes and treatment assignment for 10
individuals.

1To simplify notation, I will drop the subscript ¢ whenever the meaning is clear from
the context.
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In this hypothetical population, five individuals went to college (D = 1
for i = 1-5) and five did not (D = 0 for ¢ = 6-10). The true average
causal effect here can be computed by comparing the two potential outcome
columns:

e E[Y(1)] = average of Y;(1) for i = 1 to 10 = 6.9 (as shown in the table).
e E[Y(0)] = average of Y;(0) for i =1 to 10 = 3.0.

So the true ATE in this toy example is 6.9 — 3.0 = 3.9. On average,
college attendance raises earnings by 3.9 (in whatever units these are).

Now, what would a naive observer compute from the observable data?
They would compare the average earnings of those who went to college vs
those who didn’t:

e EIY | D = 1] = average Y among the college group. Those who went
to college (IDs 1-5) have observed earnings Y = Y (1) (since they took
the treatment). The mean for them is (8 4+6+5+8+7)/5 = 6.8.

e E[Y | D = 0] = average Y among the no-college group. Those who
didn’t go (IDs 6-10) have Y = Y (0). The mean for them is (4 + 6 +
2+2+3)/5 = 3.4

The observed difference is 6.8 — 3.4 = 3.4. This 7 = 3.4 is our estimand
(difference in group means). Compare that to the true effect 3.9. They're
not the same — our estimand is biased by 0.5 in this scenario. Why the
discrepancy? Because in this setup, the individuals who chose to go to college
happened to be those with somewhat lower Y (0) outcomes on average (notice
the Y(0) for IDs 1-5 average to 2.6, whereas for IDs 6-10 it’s 3.4). In other
words, the college-goers in this toy example tended to come from backgrounds
or have characteristics that gave them lower earnings potential had they not
gone compared to those who didn’t go. This is a form of selection bias. Here
it caused the naive observed gap (3.4) to understate the true effect (3.9) —
but it could easily go the other way or even flip the sign in other cases.

We call 7 = E[Y | D = 1] — E[Y | D = 0] the observational difference
in means (an example of an estimand), and 7% = E[Y (1) — Y(0)] the causal
effect (target parameter). The gap between them is precisely due to the
fact that D = 1 and D = 0 groups differ in ways other than the treatment.
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Formally, we can write:

E[Y|D=1—E[Y |D =0
observed\aifference

=EY(1)-Y(0) | D=1+ (E}Y(0) | D =1] - E[Y(0) | D = 0])

/ N

TV TV
ATT selection bias

The first term on the right is the ATT (average treatment effect on the treated
in our population). The second term is the selection bias term — the difference
in average Y (0) between those who would choose treatment and those who
wouldn’t. If the treated group already had different expected outcomes even
in the absence of treatment, then simply comparing their observed outcomes
to others will mix up the true effect with this pre-existing difference.

In our numeric example: E[Y (1) — Y (0) | D = 1] for IDs 1-5 was about
4.2 (the ATT), and E[Y(0) | D=1] — E[Y(0) | D =0] =2.6 — 34 = —0.8.
Plugging in: 4.2 4+ (—0.8) = 3.4, which matches the observed gap. The
selection bias here is negative (meaning the treated had lower Y (0) potential),
causing the observed gap to be smaller than the true effect.

The goal of causal inference is to find ways to eliminate this selection
bias (or more generally, any difference between the estimand and the target
parameter), so that we can interpret an observed data contrast as a causal
effect. In other words, we want conditions under which our estimand equals
the target parameter.

When we succeed, we say the parameter is identified by that estimand.
Identification is a property of the data-generating process and our assump-
tions — it means we can conceptually express the causal effect using only
observable quantities. After establishing identification, we still have the task
of estimation (using sample data to approximate the estimand). We tackle
identification first, because if you cannot even write the causal effect in terms
of observable distributions, no amount of data or fancy statistics will recover
it.

1.6 Identification: Assumptions for Causal In-

ference

Identification refers to the link between the causal parameter (e.g. ATE)
and some observed data distribution. To identify a causal effect, we need to
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make assumptions that bridge the unobserved world of (Y (0),Y (1)) and the
observed world of (Y, D). The classic assumptions that allow identification
of treatment effects in the potential outcomes framework are:

1. SUTVA (Stable Unit Treatment Value Assumption) — which
has two parts:

2. No interference between units: The outcome for unit ¢ is not af-
fected by the treatment status of other units. In other words, Y;(D)
depends only on i’s own treatment D, not on who else was treated.
(So if Alice receives the treatment, it doesn’t change Bob’s potential
outcomes.) This rules out spillovers or contagion effects across units
for the scope of the analysis.

3. No hidden variations of treatment: There is effectively one version
of the treatment and one version of control. Receiving the treatment
D =1 has a well-defined effect — there aren’t multiple distinct ways
or intensities of being "treated” that could lead to different outcomes.
This also implies a consistency: if we say Y;(1) is the outcome under
treatment, whenever ¢ is observed with D; = 1 we assume that outcome
is indeed Y;(1) (and not some other variant).

In simpler terms, SUTVA means each unit’s potential outcomes are stable
in that they don’t fluctuate based on others’ treatments or different forms of
the treatment. Formally, we can state: for any units ¢ and 7, and treatment
indicators D, D’ for j, Y;(D) is the same regardless of D’ (no interference),
and D; = 1 unambiguously corresponds to the outcome Y;(1) (no multiple
versions). SUTVA is usually considered a foundational assumption to even
define Y (1), Y (0) properly. In many finance applications, no interference of-
ten holds by design, but not always (e.g., one firm’s treatment might not
directly affect another in some studies, though caution: in market settings
interference can occur, such as spillover of policies across firms or macroe-
conomic effects). No hidden variation means we have clearly defined what
the "treatment” entails (e.g., a specific policy change, not a vague bundle of
different interventions).

1. Ignorability (a.k.a. Exogeneity or Unconfoundedness) — this is the
crucial assumption that who gets treated is "as good as random,” at
least conditional on some observed variables. Formally, ignorability
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means the treatment D; is independent of the potential outcomes once
we account for some covariates X;. In notation:

{Y(0),Y()} L D[ X,

for all 7, and additionally we require positivity (overlap): 0 < P(D; =
1| X; =x) <1 for all z in the support of X.

The independence part says that, within strata defined by X;, the dis-
tribution of potential outcomes does not depend on whether D = 1 or 0.
Intuitively, conditional on X, the treated and untreated units are compa-
rable — there are no unobserved factors that systematically tilt outcomes
between treated and control. The positivity part just ensures that for every
combination of covariates, there is a nonzero chance of seeing both treatment
and control; if some group never gets the treatment (or always gets it), then
we can’t compare outcomes in that subgroup — you can’t learn the effect
there because there’s no variation in D to use.

If X; includes all confounding variables, this assumption is often termed
strong ignorability or conditional unconfoundedness. If we don’t need any
X (i.e., D is outright random unconditionally), then D is independent of
Y (0),Y (1) and we call it ignorability without caveats. In practice, X; would
be things like pre-treatment characteristics (e.g., in a finance study, we might
condition on firm size, industry, prior performance, etc. — basically any ob-
servable that could affect both the likelihood of treatment and the outcome).
Ignorability means that after controlling for those, there’s no hidden bias;
all variables that influenced both the treatment selection and the outcome
have been accounted for. In an ideal randomized experiment, ignorability
holds by design (random assignment makes D independent of all potential
outcomes). In observational studies, ignorability is an assumption — a strong
one — that we hope holds, often aided by control variables or strategies like
matching.

In plain language, ignorability means we can ignore how individuals ended
up in the treated vs. control group when analyzing outcomes. The potential
outcomes are effectively exchangeable between treated and untreated groups
once we condition on X. It’s as if the treatment was random (within cells of
X). If this holds, then any outcome differences we observe (conditional on
X) can be attributed to the treatment, not to systematic differences in who
got treated.

Given these assumptions, we can establish a very important result:
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Theorem 1.1 (Identification of the ATE under SUTVA and Ignorability).
Under SUTVA and conditional ignorability, the average treatment effect is
identified by the difference in observed outcome means between treated and
untreated groups (conditional on X ). In particular, if Y(0),Y (1) 1L D | X,
then:

E[Y(1) — Yi(0)] = BY; | D =1, X] — E[Y; | D; =0, X],

with the right-hand side understood as adjusted for X (i.e. an average over
X walues if needed).

Proof. Under SUTVA, Y; = D;Y;(1) + (1 — D;)Y;(0) as noted earlier. Under
ignorability, E[Y(0) | D=1, X =z] = E[Y(0) | D =0,X = z] = E[Y(0) |
X = z] because the distribution of Y (0) doesn’t depend on D once X is
fixed (and similarly for Y(1)). By consistency (part of SUTVA), for units
with D =1,Y =Y(1); for D =0, Y = Y(0). So consider the conditional
expectation of Y given D and X:

e For the treated (D =1): E]Y |D=1,X=2z|=E[Y(1) | D=1,X =
z]. By ignorability, this equals E[Y (1) | X = z]. By consistency, that
is E)Y;(1) | X = «z].

e For the untreated (D = 0): E[Y | D =0,X =2 = E[Y(0) | D =
0,X=2]=E[Y(0)]| X =z

Thus within each stratum X = x, the difference in observed means is E[Y |
D=1,X=z|-FEY|D=0,X=2|=FE[Y(1)| X =2]-E[Y(0) | X = 1],
which is the true conditional ATE for that stratum. If we then average over
the distribution of X, we get ExE[Y (1) | X] — E[Y(0) | X] = E[Y(1)] —
E[Y (0)] = ATE. In the special case that no X is needed (completely random
D), the reasoning is even simpler: E(Y | D =1) = E(Y(1)) and E(Y | D =
0) = E(Y(0)), so their difference gives E[Y (1) — Y (0)]. O

Proof. By consistency, Y =Y (1) if D =1and Y = Y(0) if D = 0. Ignora-
bility implies E[Y (1) | X, D] = E[Y (1) | X] and similarly for Y'(0). Hence,
within strata of X, differences in observed means equal true causal effects.
Averaging over X yields the ATE. m

The above result is basically saying: if treatment selection is effectively
random (conditional on observables), the selection bias vanishes. The treated
and control groups can serve as proper counterfactuals for each other. In our
earlier table example, ignorability was violated (since who went to college
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depended on unobserved factors that also affected Y'(0)), hence the observed
difference diverged from the true effect. But if, hypothetically, students had
been randomly assigned to college or not, then those who went and those who
didn’t would have, in expectation, the same distribution of ability, family
background, etc. — all the things that affect earnings besides college. In that
randomized scenario, we would expect the observed earnings gap to reflect
only the causal effect of college. Indeed, randomization is the gold standard
because it guarantees (in expectation) that Y (0), Y (1) are independent of D.

To emphasize, positivity/overlap is required for the identification to be
meaningful. If a certain type of unit always gets treated, we cannot learn
their untreated outcome from data (since we never observe any untreated
like them). In randomized experiments, overlap is usually by design (unless
the experiment is stratified with some strata always assigned to one condi-
tion). In observational studies, one must be cautious that for all relevant
subgroups, there are some treated and some untreated; otherwise, we have
an extrapolation problem.

A quick corollary of the identification result: under the same assump-
tions, not only is ATE identified, but also ATT and ATU can be iden-
tified and in fact they equal each other and the ATE. If D is indepen-
dent of potential outcomes, then the treated group is essentially a ran-
dom sample of the population in terms of outcomes, and similarly for un-
treated. Thus E[Y(0) | D = 1] = E[Y(0) | D = 0] = E[Y(0)], and
ElY(1)| D=1]=E[Y(1) | D=0] = E[Y(1)]. It follows that:

o ATT = E[Y(1)=Y(0) | D = 1] = E[Y(1) | D = 1] - EV(0) | D =
1] = B (1) = E[Y(0) | D = 1]. But E[Y(0) | D = 1] = E[Y(0)] by
independence, so ATT = E[Y(1)] — E[Y(0)] = ATE.

e Similarly, ATU = E[Y(1) — Y(0) | D = 0] will also equal E[Y(1)] —
E[Y (0)] under independence, giving ATU = ATE.

In other words, if treatment is unconfounded (ignorable), the distinc-
tion between ATE, ATT, and ATU disappears — the treatment effect is the
same for everyone on average because selection into treatment isn’t related
to outcome potential. This is often approximately true in experiments (since
treatment is random). In observational studies, however, ATT and ATE
can differ if, say, those who self-select into treatment have different effects
than those who don’t (heterogeneous treatment effects coupled with selective
uptake).
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To recap: we have established that, under SUTVA and ignorability, the
causal effect of interest can be expressed in terms of observable quantities.
This step — expressing E[Y (1) — Y (0)] as something like E[Y | D = 1] —
E]Y | D = 0] — is the identification step. The assumptions we invoked are
strong, but without some assumptions, causal inference is impossible (by the
fundamental problem). The art and science of causal research is often about
finding situations where these assumptions hold plausibly, or using designs
that make the assumptions more credible.

1.7 Statistical Inference: From Estimand to
Estimate

Identification tells us what quantity in the population we need to look at
(e.g. a difference in means). The next challenge is that we don’t have the
whole population data — we typically have a sample of data. We need to use
the sample to estimate the estimand, and then infer the parameter. This is
where familiar statistical inference tools come in (like law of large numbers,
central limit theorem, confidence intervals, etc.).

Suppose we have a random sample of N units from the population. A
natural estimator for the ATE (given it’s identified by difference in means)
is the difference in sample averages between treated and control units:

.1 1
A IR D DR

D=1 0 4.D;=0

where N; is the number of treated units in the sample and Ny is the number
of controls. This 7 is just the observed difference in outcomes in our sample.
It is a random variable (since it depends on the particular sample we drew),
whereas the true 7 in the population is fixed (but unknown). We consider 7
an estimator of 7.

Under standard statistical assumptions (like that our sample is i.i.d. from
the population), 7 will be a good estimator of 7 in large samples. By the Law
of Large Numbers (LLN), as N — oo, N% > p,—1 Yi will converge to E[Y |
D =1} and NLO > p,—o Yi Will converge to E[Y" | D = 0]. So 7 will converge
tor=E[Y | D=1]— E[Y | D =0]. If our identification assumptions hold,
that 7 equals the causal effect of interest, then 7 is a consistent estimator
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of that causal effect. In short, with enough data, the sample difference in
means will be arbitrarily close to the population difference in means.

The Central Limit Theorem (CLT) further tells us that 7 will be approx-
imately normally distributed around the true 7 for large N, with a variance
that we can estimate. This lets us construct standard errors and confidence
intervals for our estimate of the causal effect. For instance, we might say
"our estimated ATE is 3.4, with a 95% confidence interval of [1.2, 5.6],”
acknowledging sampling uncertainty.

This two-step perspective — first identification (defining which population
quantity equals the causal effect under assumptions), then estimation (using
sample data to approximate that quantity) — is extremely helpful. It sep-
arates the conceptual question ”Can this causal effect be learned from this
kind of data, in principle?” from the practical question ”How do we actually
compute it and how precise will our answer be?”

Joshua Angrist and Jorn-Steffen Pischke often phrase it as: First solve the
identification problem (a modeling task — deciding what assumptions let you
interpret something as causal), then solve the statistical inference problem
(an estimation task — using data to get numbers with uncertainty)

In the context of our course, initially we assume we have an identification
strategy in place (so we know which estimand equals the causal effect). We
might then worry about how to actually estimate it (taking into account
issues like sampling variation, finite samples, etc.). Both steps are important
for credible research.

So far in this chapter, we’ve mostly discussed the first part: concepts of
causality and identification. We treated comparisons as if we had the entire
population. But of course, in practice you'll be working with samples of
data, running regressions, etc., which come with noise. Rest assured, classical
statistical techniques (estimation, hypothesis testing) will be our tools there
— and later in the text we will also discuss how to compute correct standard
errors in various scenarios, since issues like clustering, heteroskedasticity, etc.,
often arise in real financial data.
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1.8 Randomized Experiments: The Gold Stan-
dard

If you take one thing from the identification discussion, it should be: random
assignment of treatment eliminates selection bias. In a randomized controlled
trial (RCT), units are assigned to treatment or control purely by chance (like
flipping a coin). This ensures, in expectation, that the treated units are no
different from control units in any systematic way except that one group
got the treatment and the other didn’t. Formally, randomization guarantees
ignorability: D 1L Y(0),Y (1) (often even without needing any X) because
the coin flip doesn’t care about your potential outcomes. Thus E[Y (1) | D =
1] = E[Y(1) | D = 0] and similarly for Y'(0). By our theorem, E[Y | D =
1] — E[Y | D = 0] directly estimates the ATE. No fancy adjustments needed
— just comparing means is valid.

Thought experiment: Imagine we could randomize who goes to college.
Take a large group of high school graduates and randomly send some to col-
lege and some straight to work, irrespective of their personal preferences or
backgrounds. If this were possible (and ethical), after a number of years we
could compare the average earnings of the two groups. Because of random-
ization, any differences in innate ability, family background, motivation, etc.,
should wash out between the groups. Thus, any earnings difference could be
attributed to the college education itself. Randomization would have solved
our selection problem by making the two groups comparable. Indeed, ran-
domization ”balances” both observable and unobservable factors on average.

Randomized experiments are considered the gold standard for causal in-
ference. In fields like medicine or psychology, performing experiments is
common (clinical trials, A/B tests, etc.). In finance and economics, pure
experiments are rarer, but not unheard of. For example, governments or
researchers might run field experiments on microfinance loan offers, or regu-
lators might pilot a new rule in a randomly chosen subset of firms. However,
in many cases, experiments in finance are difficult, costly, or unethical. We
usually cannot randomly assign interest rates, randomly force some firms to
adopt a new accounting standard and not others, or randomly decide which
banks get bailed out, etc. Ethical and practical constraints mean we often
deal with observational data — data where the ”treatments” (policy changes,
corporate decisions, economic shocks) were not under our control.

Even when we can’t conduct a true experiment, the ideal of randomization



1.8. RANDOMIZED EXPERIMENTS: THE GOLD STANDARD 21

guides our approach. We look for ways to approximate the experiment. This
leads to what Angrist and Pischke (2010) call "identification strategies”:
essentially, a research design intended to solve the causal inference problem.
An identification strategy typically involves either:

e Finding or exploiting a natural experiment: situations where
something like random assignment happened by accident or by design
of someone else. For example, a regulatory change might affect some
firms but not others in a way that is arguably unrelated to their charac-
teristics (as if randomly assigned). Or geographic boundary differences:
perhaps one region got a policy and a neighboring region didn’t, and
it’s plausibly arbitrary. These scenarios can sometimes be analyzed
like experiments (this is the idea behind techniques like difference-in-
differences and some natural experiment studies).

e Using instrumental variables (IV): finding a variable (instrument)
that influences the treatment but is independent of the outcome ex-
cept through that treatment. An IV can mimic random assignment
by pushing some units to take the treatment and others not, in a way
unrelated to their outcome potential. We'll devote a chapter to this.

e Regression discontinuity designs (RDD): when treatment assign-
ment is determined by a rule or cutoff (like only firms above a certain
size get regulated, those below do not), we can sometimes treat units
near the cutoff as quasi-randomly split. RDD leverages that idea to
estimate causal effects at the margin.

e Controlled regression and matching methods: using statistical
control for observed covariates X (as in multiple regression or propen-
sity score matching) to make treated and control groups comparable.
Essentially, these adjust for differences in X hoping ignorability holds
conditional on X. This is a classical econometric approach (think of
including all the controls in a regression to reduce omitted variable

bias).

e Panel data methods: if we observe the same units over time, we can
difference out some sources of bias. Fixed-effects models, for exam-
ple, control for time-invariant differences between units. Event studies
around policy changes can help as well.
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Each of these strategies has its own assumptions and conditions for valid-
ity, and they aim to emulate the ideal experiment in different ways. We will
explore each in subsequent chapters. For instance, an instrumental variable
provides a source of variation in D that is as-good-as random, a regression
discontinuity exploits local randomization at a cutoff, matching tries to repli-
cate a randomized block design by pairing similar units, and so on.

Terminology: We often say a study has a credible identification strategy
if the authors can persuasively argue that, given their design, the assump-
tions (like ignorability) hold and thus their estimand equals the causal effect.
Reviewers will ask ”What is your identification strategy?”, which is essen-
tially "How are you getting at causation and not just correlation? What
quasi-experimental variation or assumptions are you relying on?”. A clear
identification strategy is at the heart of modern empirical finance research,
especially in what Angrist & Pischke dubbed the “Credibility Revolution” in
econometrics.

In our course, after this conceptual introduction, we will delve into specific
identification strategies commonly used in financial research:

e We will review linear regression and how it relates to causal inference
(with a focus on what happens if you include controls, etc., and what
regression coefficients mean causally under assumptions).

e We'll discuss panel data techniques (difference-in-differences, fixed ef-
fects, etc.) which are frequently used when we have time-series cross-
sectional data on firms or countries.

e We'll explore instrumental variables (IV) for scenarios with endogeneity
concerns (like reverse causality or omitted confounders).

e We'll examine regression discontinuity (RD) designs where applicable
in finance (e.g., certain financing thresholds, rating cutoffs, etc., that
create discontinuities).

e We'll cover matching methods and propensity score techniques as ways
to preprocess observational data.

e Additionally, practical issues like standard errors (clustering by firm or
time, dealing with heteroskedasticity, etc.) are important because get-
ting a correct estimate is not enough; we also need correct uncertainty
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quantification, especially with panel data where observations are not
independent.

By the end, you should have a toolkit of methods to tackle causal ques-
tions in finance, and a clear understanding of the assumptions each method
requires. We emphasize both theory and practice: the theoretical founda-
tions (like the potential outcomes framework and assumptions we introduced
here) ensure you understand what you're estimating and when you can in-
terpret it causally, while the practical examples (from real financial research
settings) ensure you can actually apply these methods to data and interpret
results.

To conclude this introductory chapter, let’s circle back to the big picture
in a conversational tone:

Causal inference is like detective work. You, the analyst, are trying to
figure out the effect of a "suspect” (the treatment) on an ”outcome”. But
you arrive at the scene after the fact — you see the outcome and whether the
treatment happened, but you can’t directly see the alternate scenario. So
you gather evidence (data), control for alibis (confounders), maybe find an
informant (instrument) who randomly gave away some treatments, or look
at natural accidents (policy changes) that acted like experiments. You do
all this to reconstruct the counterfactual story: what would have happened
without the treatment? Only then can you finger the treatment as the cause
(or exonerate it).

In financial research, this process is both challenging and exciting. Fi-
nancial markets and firms are complex, and purely random assignments are
rare. But with creativity and rigor, we can leverage theory, institutional
details, and statistical tools to make credible causal claims. As we proceed,
remember: always ask ”What am [ comparing, and is that comparison apples-
to-apples for causality?” Keep the mantra ”all else equal” in your head. If
you satisfy that, you're doing causal inference; if not, you're likely still in
the realm of descriptive or predictive analysis. Moving forward, each chapter
will build on these ideas, examining specific methods to achieve that ceteris
paribus comparison in various contexts. By the end of this journey, you’ll not
only grasp the foundations laid out here, but also be able to implement and
critically evaluate causal inference techniques in the wild world of financial
data.
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