

Problem Set: Introduction

Problem 1 (Descriptive, Predictive, or Causal?). *For each of the following research questions, classify whether it is: descriptive, predictive, or causal. Briefly justify.*

- (a) *What fraction of Korean firms pay dividends in 2024?*
- (b) *What will be Samsung Electronics' stock return next quarter?*
- (c) *How does increasing margin requirements affect stock market volatility?*
- (d) *Do firms with female CEOs have higher return on assets?*

Problem 2 (Potential Outcomes Framework). *Suppose we are studying the effect of attending college ($D_i = 1$) on annual income Y_i . For an individual i :*

$$Y_i(1) = \text{income if attends college}, \quad Y_i(0) = \text{income if does not attend}.$$

- (a) *Define the **Individual Treatment Effect (ITE)**.*
- (b) *Define the **Average Treatment Effect (ATE)**.*
- (c) *Define the **Average Treatment Effect on the Treated (ATT)**.*
- (d) *Define the **Average Treatment Effect on the Untreated (ATU)**.*
- (e) *Explain why the Fundamental Problem of Causal Inference prevents us from observing the ITE directly.*

Problem 3 (Estimand vs. Parameter). Suppose the true population effect of college on income is

$$\tau^* = E[Y_i(1) - Y_i(0)].$$

- (a) Is τ^* a parameter or an estimand? Why?
- (b) Consider the difference in conditional expectations:

$$\tau = E[Y_i | D_i = 1] - E[Y_i | D_i = 0].$$

Is τ a parameter or an estimand?

- (c) Suppose you compute

$$\hat{\tau}_N = \frac{1}{N_1} \sum_{i:D_i=1} Y_i - \frac{1}{N_0} \sum_{i:D_i=0} Y_i$$

from a random sample. What is $\hat{\tau}_N$ called?

- (d) Explain the logical relationship between parameters, estimands, and estimators.

Problem 4 (Randomization and Identification). Suppose we could randomly assign half of the population to attend college.

- (a) Discuss how randomization implies independence between treatment assignment D_i and potential outcomes $(Y_i(0), Y_i(1))$.
- (b) Under randomization and SUTVA, show that

$$ATE = E[Y_i | D_i = 1] - E[Y_i | D_i = 0].$$

- (c) Explain intuitively why randomization solves the selection bias problem.

Problem 5 (ATE, ATT, and ATU). Consider a population of 10 individuals. For each i , the potential outcomes $(Y_i(1), Y_i(0))$ are listed below. Suppose the observed treatment D_i equals 1 for $i = 1, \dots, 5$ and equals 0 for $i = 6, \dots, 10$. Define $Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$ as the observed outcome.

i	1	2	3	4	5	6	7	8	9	10
$Y_i(0)$	3	2	4	5	6	2	3	1	4	5
$Y_i(1)$	5	5	5	7	6	6	4	4	6	6
D_i	1	1	1	1	1	0	0	0	0	0

- (a) Compute the **true** ATE, ATT, and ATU using the potential outcomes table.
- (b) Compute the difference in observed means $\tau \equiv E[Y | D = 1] - E[Y | D = 0]$ for this population.
- (c) Show the ATT decomposition:

$$E[Y | D = 1] - E[Y | D = 0] = ATT + (E[Y(0) | D = 1] - E[Y(0) | D = 0]).$$

Interpret the second term.