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Lecture Outline

• Exotic options
• Descriptions and uses
• Pricing with Monte Carlo simulations and binomial trees

• Chapters 26 and 27
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Exotic Options

• Exotic options are nonstandard contracts whose payoffs differ from the
simple call/put structure. They are often created by slightly modifying
(“tweaking”) standard options.

• They are designed to solve specific business or risk-management problems
that cannot be addressed well using ordinary European or American options.

• Examples: protection only if a price barrier is hit, payoff based on an average
price, payoff depending on multiple assets, etc.

• Exotic options are typically engineered and sold by investment banks or
professional money managers.

• Banks hedge these products dynamically and charge fees for structuring and
risk management.

• Clients (corporations, institutions, hedge funds) use them to customize risk
exposure.
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Exotic Options

• The goal is not to memorize formulas for each exotic option.
• Instead, focus on intuition: how the payoff works and why the exotic structure

is needed.

• Key questions to ask about any exotic option:

1 What problem does this exotic option solve? (Hedging, cost reduction,
targeted payoff, path dependence, barrier protection, etc.)

2 Can it be approximated or replicated using a portfolio of standard
options?

• If yes, this often provides intuition and may help adapt/extend the BSM
framework.

3 Is it cheap or expensive relative to a standard option that provides a
similar payoff? (Important for traders evaluating relative value.)

4 How do we price it when no closed-form formula exists?
• Simulation (Monte Carlo)
• Binomial/trinomial trees
• PDE methods
• Replicating portfolios
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Binary Options
Path-Independent Exotic Options

• Binary (digital) options have payoffs that depend only on whether the underlying
ends above or below a strike price—not on how far it moves. They are commonly
used to express pure directional bets or to build payoffs that jump at a threshold.

• Cash-or-Nothing Options: Pay a fixed cash amount if the option finishes in the
money.

• Call: pays $1 if ST > K , otherwise 0

Value = e−r(T−t)N(d2)

• Put: pays $1 if ST < K

Value = e−r(T−t)N(−d2)

• Asset-or-Nothing Options: Pay the underlying asset itself if the option finishes in
the money.

• Call: pays ST if ST > K

Value = S e−q(T−t)N(d1)

• Put: pays ST if ST < K

Value = S e−q(T−t)N(−d1)
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Binary Options
Path-Independent Exotic Options

• Key Relationship to Standard Options: Consider the portfolio:

• long one asset-or-nothing call with strike K , and

• short K cash-or-nothing calls with strike K .

• What is its payoff at maturity?

• If ST > K : payoff = ST − K × 1 = ST − K

• If ST ≤ K : payoff = 0− K × 0 = 0

• This is exactly the payoff of a standard European call option.

max(ST − K , 0)

• Binary options are important because they serve as building blocks. Many exotic
options—and even the standard Black–Scholes call—can be expressed as portfolios
of digital (binary) instruments.
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Compound Options
Path-Independent Exotic Options

• Compound options are options whose underlying asset is another option. They
allow investors to delay committing to a potentially expensive option position.

• Types of compound options:

• Call on Call (CoC): right to buy a call option in the future.

• Put on Call (PoC): right to sell a call option in the future.

• Call on Put (CoP): right to buy a put option in the future.

• Put on Put (PoP): right to sell a put option in the future.

• Such options are useful when:

• the underlying option is expensive,

• but the buyer is uncertain whether they will need it, or

• they want to hedge a future risk that depends on an event that may or may
not occur.
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Compound Options
Path-Independent Exotic Options

• Pricing: Closed-form solutions exist for certain types (e.g., call on call), but in
practice, binomial or trinomial trees (backward induction) are often used.

• Illustrative Example: Using a Call on a Cap (Real Corporate Application)

• A company is bidding on a large infrastructure project. If they win, they must
borrow $200 million for 2 years. Their risk: interest rates may rise between
today and the contract award date.

• Buying a 2-year interest rate cap today would hedge this risk—but if they
lose the bid, the cap is useless and very expensive.

• Solution: buy a call option on the cap (a call-on-call):
• If the firm wins � they exercise the call, pay the premium, and secure the rate

cap.
• If they lose � the compound option expires worthless; loss is limited to the

small premium.

• This strategy reduces upfront costs and hedges only if needed.

• Compound options provide flexible, lower-cost hedges when the need for an option
depends on a future event.
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Binomial Tree Diagram for the Compound Call Example
• S = K = 100, u = 1.2, d = 0.8, ∆t = 0.5, r = 5%

• Risk–neutral probability:p = er∆t−d
u−d ≈ 1.0253−0.8

0.4 ≈ 0.5633, 1 − p ≈ 0.4367

• Discount factor per step: e−r∆t ≈ 0.9753
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)
⇒ CoC0 ≈ 7.8
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Gap Options
Path-Independent Exotic Options

• A gap call has two strike levels:

• Trigger price K2 — determines whether the option pays,
• Payout strike K1 — determines how much the option pays.

• Payoff at maturity:

Gap Call Payoff =

{
ST − K1, if ST > K2,

0, if ST ≤ K2.

• Even if the option finishes deeply in the money (e.g., ST huge), it only activates
when the trigger K2 is crossed. When triggered, the payoff behaves like a standard
call with strike K1.

• When are gap options used? Gap options appear naturally in:

• Employee stock compensation and performance targets
• Structured products where “activation” and “payout” are separate
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Gap Options
Path-Independent Exotic Options

• Valuation formula for a gap call:

Cgap = Se−qTN(d1) − K1e
−rTN(d2),

where

d1 =
ln(S/K2) + (r − q + 1

2
σ2)T

σ
√
T

, d2 = d1 − σ
√
T .

• The gap option uses K2 in the activation test (d1, d2), but the payoff uses K1.
This is why the formula looks like a “hybrid” of a digital and a vanilla call.
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Illustration

• Pays S–K1 when S > K2. K1 = 90 and K2 = 100

• Does this option cost more or less without the gap with K = K1?
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Barrier Options
Path-Dependent Exotic Options with Path-Independent Valuation

• Barrier options are options whose payoff depends on whether the underlying asset
crosses a specified barrier level during the option’s life.

• The option may be activated or extinguished depending on the path.
• Therefore: payoff is path dependent (not just based on ST ).

• Knock-Out Options — cease to exist if the barrier is breached.

• Down-and-out: knocked out if price falls below the barrier.

• Up-and-out: knocked out if price rises above the barrier.

• Knock-In Options — come into existence only if the barrier is touched.

• Down-and-in: activated if price falls below the barrier.

• Up-and-in: activated if price rises above the barrier.

• Rebate Options — pay a fixed cash amount if the barrier is hit.

• Down rebate: pays if price drops below the barrier.

• Up rebate: pays if price rises above the barrier.
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Barrier Options
Path-Dependent Exotic Options with Path-Independent Valuation

• Important pricing relationship: knock-in + knock-out = vanilla option.

• Example: Down-and-in call + Down-and-out call = Standard European call.

• This allows closed-form barrier valuations using modified BSM formulas.

• Which is worth more?

• A barrier option is always worth less than the otherwise identical vanilla option.

• Why? The barrier introduces conditions that reduce the chance of payoff.
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Down-and-In Barrier Option
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Barrier Options
Pricing and Parity Relationships

• Barrier Parity Relations For any barrier level, the knock-in and knock-out versions
sum to the corresponding vanilla option:

c = cUI + cUO , c = cDI + cDO ,

p = pUI + pUO , p = pDI + pDO .

These identities allow barrier option valuation by computing one component and
backing out the other.

• Pricing Methods

• Binomial/trinomial trees (must track whether barrier is hit).
• Monte Carlo simulation (works well for knock-out; requires special tricks for

knock-in).
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Barrier Options
Pricing and Parity Relationships

• Example: Currency Put Options (Standard vs. Barrier) Parameters:

x0 = 0.9, σ = 0.10, r$ = 0.06, re = 0.03, T = 0.5

Table below shows put prices under different strikes and barrier levels.

Strike (K) Standard Down-and-In Barrier Up-and-Out Barrier
($) 0.8000 0.8500 0.9500 1.0000 1.0500

K = 0.8 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
K = 0.9 0.0188 0.0066 0.0167 0.0174 0.0188 0.0188
K = 1.0 0.0870 0.0134 0.0501 0.0633 0.0847 0.0869
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Lookback Options
Path-Dependent Exotic Options with Path-Dependent Valuation

• (Strike) Floating Lookback Call
• Allows the holder to buy at the minimum price observed during the option’s

life. Payoff: ST − Smin.
• Provides full protection against missing the lowest entry price.

• (Strike) Floating Lookback Put
• Allows the holder to sell at the maximum price observed during the option’s

life. Payoff: Smax − ST .
• Provides full protection against missing the best exit price.

• Fixed Lookback Call
• Strike is fixed, but payoff depends on the highest price during the life of the

option. Payoff: max(Smax − K , 0).
• Useful for capturing upside volatility without needing market timing.

• Fixed Lookback Put
• Strike is fixed, but payoff depends on the lowest observed price. Payoff:

max(K − Smin, 0).
• Provides strong protection against downside volatility.
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Lookback Options
Path-Dependent Exotic Options with Path-Dependent Valuation

• Comments
• Lookback options are usually expensive because the holder receives perfect

hindsight on the price path.
• Closed-form pricing formulas exist under:

• continuous monitoring of the underlying price,
• lognormal (GBM) price dynamics.

• Related to shout options: the holder can “freeze” the intrinsic value once
during the option’s life.

• A shout option lets the holder lock in the intrinsic value at one chosen time.
Final payoff is the maximum of the locked-in value and the European payoff at
maturity.
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Non-Standard American Options
Path-Dependent Exotic Options with Path-Dependent Valuation

• Bermudan Options (intermediate between American and European)
• The holder may exercise only on specific, pre-specified dates prior to maturity

(not continuously).
• Strike price or other contractual features may change over time.
• Often valued using the same techniques as American options (e.g., binomial or

trinomial trees), but with exercise allowed only at designated nodes.
• Useful when issuers want flexibility but not the full early-exercise freedom of

American options.

• Typical Applications
• Many callable bonds (callable only on coupon dates).
• Corporate warrants with staged exercisability or reset features.
• Employee stock options where reset/ratchet mechanisms change the strike

when options become deep out-of-the-money.
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Non-Standard American Options
Path-Dependent Exotic Options with Path-Dependent Valuation

• Illustrative Example
• A 7-year warrant may allow exercise only on specified dates during years 3–7.
• The strike could adjust over time, e.g.:

• Years 3–4: K = $30
• Years 5–6: K = $32
• Year 7: K = $33

• Reflects the firm’s desire to control dilution timing and manage incentive
alignment.
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Asian Options
Path-Dependent Exotic Options with Path-Dependent Valuation

• Definition
• Payoff is based on the average price of the underlying over a specified period.

• Averages can be arithmetic or geometric; monitoring can be continuous or
discrete.

• The dependence on the full price path (not just ST ) makes the option path
dependent.

• When Asian Options Are Useful
• When economic exposure is naturally tied to an average price (e.g., exchange

rates for importers/exporters, energy or commodity procurement, electricity
load pricing).

• When there is concern that the underlying price at a single moment may be
distorted or manipulated.

• When the underlying trades in thin or volatile markets where point-in-time
prices are unreliable.

• Some convertible bonds embed Asian features: conversion triggers or ratios
are often based on the average stock price over a window (e.g., 20-day
average near maturity).
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Asian Options
Path-Dependent Exotic Options with Path-Dependent Valuation

• Valuation Insight
• Asian call options are typically less valuable than comparable European calls.
• Reason: averaging reduces the effective volatility of the payoff relative to

using the terminal price ST .
• Lower volatility → lower option value.
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Basic Types of Asian Options

• Averaging Method: Arithmetic vs. Geometric
• Suppose the underlying price is sampled every h time units from t = 0 to T .

• Arithmetic average: A(T ) = 1
N

∑N
i=1 Sih

• Geometric average:G(T ) = (Sh × S2h × · · · × SNh)
1/N

• Geometric average is always less than or equal to the arithmetic average ⇒
geometric Asian options are cheaper.

• Average Price vs. Average Strike
• Asians can average the underlying price or the strike.

• Below: payoff formulas for European Asian options.

Arithmetic Geometric
Average price call max[0, A(T )− K ] max[0, G (T )− K ]
Average price put max[0, K − A(T )] max[0, K − G (T )]
Average strike call max[0, ST − A(T )] max[0, ST − G (T )]
Average strike put max[0, A(T )− ST ] max[0, G (T )− ST ]
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Example
Hedging Currency Exposure with Asian Options

• XYZ receives monthly revenue of ¿ 100m but incurs costs in USD. Let xi denote
the spot dollar price of one euro in month i . In one year, the dollar value of the 12
revenue payments (with discounting at rate r) is:

¿ 100m×
12∑
i=1

xi e
r(12−i)/12

• Ignoring interest rates, the total euro exposure relevant for hedging simplifies to:

12∑
i=1

xi = 12×

(
1

12

12∑
i=1

xi

)
which is proportional to the arithmetic average exchange rate over the year.

• A natural hedge is an arithmetic average price put option that places a floor K
on the average dollar-per-euro exchange rate:

max

(
0, K − 1

12

12∑
i=1

xi

)
• This protects XYZ against a year-long weakening of the euro, not just a single-day

drop.
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Example
Hedging Currency Exposure

• Alternative hedging strategies
• A single long-dated European put (1-year maturity).

• A basket of 12 monthly European puts (each matched to a cash flow).

• Geometric- or arithmetic-average Asian puts.

• A currency swap that exchanges fixed EUR cash flows for USD at a fixed rate.

• Currency option valuation: Use the Black–Scholes–Merton formula with a
constant dividend yield, recognizing that a foreign currency earns the foreign
risk-free rate.

• Example parameters: Spot = $0.90/EUR, strike K = 0.90, USD rate r = 6%,
EUR rate reuro = 3%, volatility σ = 10%.

a. 12 European puts expiring in 1 year 0.2753
b. Basket of 12 monthly options 0.2178
c. 12 geometric-average puts 0.1796
d. 12 arithmetic-average puts 0.1764
e. Currency swap ?

a > b because the long-dated option has more time value (positive Θ). b > c,d because averaging
reduces effective volatility. Swap value is typically zero at initiation—no option upside.
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Pricing Asian Options

• Closed-form solution for the geometric-average case
• When the underlying follows geometric Brownian motion, the geometric

average of prices is itself lognormal.
• Therefore, Asian options based on the geometric average can be priced using a

Black-style formula, with an analytically derived mean and variance of the
average.1

• Provides a useful benchmark and lower bound on arithmetic-average Asian
option prices.

• Pricing the arithmetic-average case
• Binomial or trinomial trees: Possible but computationally intensive because

the average introduces full path dependence (the number of states grows
rapidly with time steps).

• Monte Carlo simulation: The most common approach; handles path
dependence naturally. Variance-reduction techniques (control variates using
geometric Asians, antithetic sampling, etc.) are widely used.

• Approximation methods: Moment matching, lognormal approximations, or
PDE methods can also be applied.

1Under GBM, the geometric average has an exact lognormal distribution. The arithmetic average of
lognormal variables, however, is not lognormal and has no closed form. See Hull, Chapter 26.13.
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Exchange Options
Multivariate Options

• Definition
• An exchange option pays off only if one asset outperforms another.

max(0, ST − NT )

• Useful when the goal is relative performance hedging (e.g., commodity
spreads, equity relative value, FX crosses).

• Value of a European Exchange Call (Margrabe Formula)

Se−qSTN(d1) − Ne−qNTN(d2)

where

d1 =
ln
(
S
N

)
+ (qN − qS + 1

2σ
2)T

σ
√
T

, d2 = d1 − σ
√
T ,

and the effective volatility of the spread is

σ =
√
σ2
S + σ2

N − 2ρσSσN .
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Exchange Options
Multivariate Options

• Key intuition
• This is the Black–Scholes formula adapted to the ratio S/N.

• Correlation ρ reduces uncertainty in the relative performance: strong positive
correlation → lower effective volatility → cheaper exchange option.

• Application: Implied Correlation
• Given market prices of exchange options, one can back out the implied

correlation ρ between assets.

• Widely used in multi-asset derivatives, equity basket products, commodities,
and FX.
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Quantos
Multivariate Options

• Definition
• A quanto is a derivative that lets an investor hold an asset denominated in one

currency, but receive payoffs in another currency without currency risk.

• The payoff is converted at a fixed (or effectively hedged) exchange rate,
regardless of where FX rates move.

• Example: Nikkei put warrants traded on the AMEX
• Payoff is in USD, but is linked to the yen price of the Nikkei relative to a

yen-denominated strike.

• Investors gain exposure to Japan’s equity market without USD/JPY
exchange-rate uncertainty.
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Example: Payoff of Quanto Call vs. Regular Foreign Call
Numerical Illustration

• Consider a call option on a foreign stock:

• Strike (in foreign currency): K = 100

• Payoff of foreign call (in foreign currency): max(ST − K , 0)

• Spot FX today (domestic per foreign): X0 = 1.0

• Two FX scenarios at maturity:

• Weak foreign currency: XT = 0.8
• Strong foreign currency: XT = 1.2

• Payoffs in domestic currency:

ST max(ST − K , 0) Regular call (weak FX) Regular call (strong FX) Quanto call
(foreign) XT = 0.8 XT = 1.2 (fixed X0 = 1.0)

80 0 0 0 0
100 0 0 0 0
120 20 16 24 20
140 40 32 48 40

Regular foreign call: payoff = XT · max(ST − K , 0) depends on FX.

Quanto call: payoff = X0 · max(ST − K , 0) is independent of FX at maturity.
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Quantos
Multivariate Options

• Why quantos are attractive
• Prevent exposure to both the foreign asset price and the FX rate. A US

investor in Japanese stocks normally faces both Nikkei risk and USD/JPY risk.

• A quanto payoff embeds a currency forward that locks the exchange rate at
which the foreign payoff is converted.

• However, the effective notional of the FX exposure changes with the level of
the underlying asset.

• Because of this variable notional, a simple FX forward cannot perfectly hedge
the position.

• Hence the name: “quanto” = quantity-adjusting option.
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Pricing Exotic Options
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Pricing Exotic Options

• Multiple approaches to pricing exotic derivatives
• Modified Black–Scholes–Merton formulas Closed-form (or semi closed-form)

solutions exist for certain structures (e.g., geometric Asian options, barrier
options, exchange options). These typically require assumptions such as
lognormality and continuous monitoring (See, e.g., Chapter 26 in Hull).

• Binomial or trinomial trees Useful for early-exercise features (e.g.,
Bermudan, American-style exotics) or when state variables evolve discretely.
Complexity increases with path dependence.

• Monte Carlo simulation The most flexible approach, especially when the
payoff depends on the full price path, multiple underlyings, or complicated
triggers. Works well in high dimensions but requires variance-reduction
techniques for accuracy.
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Valuation Framework for Exotic Options

• 1. Path-Independent Exotics
• Payoff depends only on ST (not on the path).
• Typically valued with standard techniques such as BSM or binomial trees.
• Some have closed-form solutions (e.g., binary/digital options, compound

options, option packages).

• 2. Path-Dependent Exotics with Path-Independent Valuation
• Payoffs depend on the path, but valuation does not require tracking every

path detail.
• Examples: American options, barrier (knock-in/knock-out), lookback options.

These can often be priced using modified BSM formulas, PDE methods, or
recombining trees.
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Valuation Framework for Exotic Options

• 3. Path-Dependent Exotics with Path-Dependent Valuation
• Payoff depends on the entire history of St , and valuation requires simulating or

tracking that history.
• Examples: Asian options (arithmetic), mortgage-backed securities (MBS),

variance swaps.
• Monte Carlo simulation or advanced tree methods (non-recombining lattices)

are often required.

• 4. Multivariate Exotics
• Payoff depends on multiple underlying assets, indices, or rates.
• Examples: Exchange options, quanto options, basket options, rainbow options.
• Valuation usually requires Monte Carlo simulation or multivariate analytical

formulas (when available).
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Binomial (Risk-Neutral) Trees
• Recall the one–step binomial model under the risk-neutral measure.

• Assume: S0 = 100, K = 100, T = 1, r = 2%, σ = 30%.

• Up factor under GBM:u = eσ
√
T = 1.34986, d = 1

u = 0.74082.

• Risk-neutral probability:p = erT−d
u−d = 0.4597.

• The value of any derivative with payoff f (S1) is:

V0 = e−rT
[
p f (S1,u) + (1− p)f (S1,d)

]
.

• For a call option:

S0 = 100

p = 0.4597

c0 = 15.731
S1,u = 134.986

f1,u = 34.986

S1,d = 74.082

f1,d = 0
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Monte Carlo Simulation on Risk-Neutral Trees
• Instead of computing the expectation analytically, we can simulate up/down

movements.

• In Excel, RAND() generates U ∼ Uniform(0, 1).

1 Generate N values of RAND().
• If RAND() < p, move to the up state.
• If RAND() > p, move to the down state.

2 For each simulation j , obtain the simulated price:

S
(j)
1 ∈ {S1,u,S1,d}.

3 Compute the payoff in each simulation:

V (S
(j)
1 ) = max(S

(j)
1 − K , 0).

4 The Monte Carlo estimator of the option value is:

V̂0 =
1

N

N∑
j=1

e−rTV (S
(j)
1 ).
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Monte Carlo Simulation on Risk-Neutral Trees
• For example, using p = 0.4587, the following 10 simulations are obtained.

RAND() Move Price at T Payoff Discounted

0.457335 up 134.986 34.986 34.293
0.393937 up 134.986 34.986 34.293
0.090053 up 134.986 34.986 34.293
0.878148 down 74.082 0 0
0.658659 down 74.082 0 0
0.759579 down 74.082 0 0
0.798027 down 74.082 0 0
0.061689 up 134.986 34.986 34.293
0.969222 down 74.082 0 0
0.392675 up 134.986 34.986 34.293

Average 17.147
Std. error 5.715

• With only N = 10, the estimate V̂0 = 17.147 differs significantly from the
true value V0 = 15.731.

• Increasing N improves accuracy.
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Monte Carlo Simulation on Risk-Neutral Trees
• How large should N be?

• The precision of Monte Carlo estimates improves at rate 1/
√
N.

• Standard error:

s.e. =
σ̂√
N
,

where σ̂ is the sample standard deviation of discounted payoffs.

• In the earlier example, σ̂/
√
10 = 5.715.

• A 95% confidence interval is:[
V̂0 − 2s.e., V̂0 + 2s.e.

]
= [5.717, 28.577].

• The interval is extremely wide because N = 10 is too small.

• Increasing to N = 1000:

V̂0 = 15.725, s.e. = 0.52.

• Confidence interval becomes:

[14.685, 16.765],

which is much tighter.
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Multi-step Trees
• As the nubmer of steps increases, the estimate becomes more precise.
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Multi-step Trees: Monte Carlo Simulation

• Generate stock prices: When RAND() > p, go down. Otherwise, go up

• 1,000 simulations of stock prices. Get ST , compute fT e
−rT , take the average.
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Why Monte Carlo Simulations?
• Why do we need Monte Carlo simulation when we already have the

binomial tree?
• Trees work well when the payoff depends only on the terminal price ST .

• Many derivatives have path-dependent payoffs: the payoff depends on the
entire sequence of prices over time, not just the final one.

• For such securities, the number of distinct paths grows exponentially, making
the tree non-recombining and computationally infeasible as n becomes large.

• Example: Asian call option

max

(
1

T

T∑
t=1

St − K , 0

)

• The average 1
T

∑
St differs even for paths that end at the same ST .

• Thus, knowing the terminal node alone is not enough to price the option.

• Monte Carlo simulation handles path dependence naturally by simulating the
entire price path, making it one of the most powerful tools for valuing
complex exotics.
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Why Monte Carlo Simulations?

S0 = 100

S1,d = 80.866

S1,u = 123.631

S2,dd = 65.425

S̄2,dd = 82.103

S2,ud = 100

S̄2,ud = 107.877

S2,du = 100

S̄2,du = 93.628

S2,uu = 152.847

S̄2,uu = 125.492

d

u

u

d

u

d

• Even though S2,ud = S2,du = 100, the path averages differ:S̄2,ud ̸= S̄2,du. This
makes the tree non-recombining.

• With n steps, a recombining tree has only n+ 1 terminal nodes. A non-recombining
tree has 2n nodes—computationally explosive.

• Path-dependent options (Asian, lookback, etc.) are therefore much harder to price
by tree methods.

• Monte Carlo simulation naturally avoids this explosion by simulating sample paths
rather than enumerating the entire tree.
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Monte Carlo Simulations Without Trees

• Monte Carlo simulation is not limited to binomial trees.
• Trees were useful to introduce risk-neutral pricing.
• But once no-arbitrage and risk-neutrality are established, we are free to

simulate any valid risk-neutral process.

• Key requirement: Risk-neutral pricing must hold — meaning the asset price
process must admit a dynamic replication argument (no-arbitrage).

• On a tree, these no-arbitrage conditions hold by construction.

• Once we accept risk-neutral pricing, we can simulate price paths from any
assumed process:

• Lognormal GBM (as in the Black–Scholes–Merton model),

• Time-varying volatility models (Heston, GARCH),

• Stochastic interest rates,

• Jump–diffusion models.
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Monte Carlo Simulations Under Lognormality

• Under the GBM assumption, stock prices evolve as:

dSt = rStdt + σStdWt .

• Discretized for simulation:

St+∆t = St exp
(
(r − 1

2σ
2)∆t + σϵt

√
∆t
)
,

where ϵt ∼ N(0, 1).

• Alternatively:

ln

(
St+∆t

St

)
∼ N

(
(r − 1

2σ
2)∆t, σ2∆t

)
.

• This provides a simple algorithm for generating paths:

1 Draw ϵt ∼ N(0, 1).

2 Update St+∆t using the formula above.

3 Repeat over many time steps to generate a full price path.
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Monte Carlo Simulations with Multiple Factors

• Consider an option that pays the maximum of the returns on two stocks
(e.g., Google St and Apple Nt):

max

(
ST
S0

,
NT

N0

)
.

• Under risk-neutral pricing, the simulated processes may be:

St+∆t = St exp
(
(r − 1

2σ
2
S)∆t + σSϵ1,t

√
∆t
)
,

Nt+∆t = Nt exp
(
(r − 1

2σ
2
N)∆t + σNϵ2,t

√
∆t
)
.

• The returns of Google and Apple are likely correlated. Generate correlated
shocks via:

ϵ2,t = ρ ϵ1,t +
√
1− ρ2 vt ,

where vt ∼ N(0, 1) is independent.
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Monte Carlo Simulations with Multiple Factors
• For each simulated path i , compute the discounted payoff:

V (i) = e−rT max

(
S
(i)
T

S0
,
N

(i)
T

N0

)
.

• Estimate the option value by averaging across n simulations:

V̂0 =
1

n

n∑
i=1

V (i).

• Example (with σS = σN = 0.3, r = 0.02, ρ = 0.7):

V̂0 = 1.134.

• Consider instead the “relative return” option:

max

(
ST
S0

− NT

N0
, 0

)
.

• Simulation yields V̂0 = 0.10. This makes economic sense: if the stocks are
positively correlated, their relative performance is less volatile.
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Monte Carlo Simulation under the Heston Model

• Heston dynamics under Q (risk-neutral):

dSt = rSt dt +
√
vt St dW

(1)
t ,

dvt = κ(v̄ − vt) dt + ξ
√
vt dW

(2)
t ,

dW
(1)
t dW

(2)
t = ρ dt.

• Discretization setup:

• Choose T , number of steps N, time step ∆t = T/N.

• Choose parameters (S0, v0, r , κ, v̄ , ξ, ρ).

• Choose number of paths M.
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Monte Carlo Simulation under the Heston Model
• Step-by-step simulation for each path i = 1, . . . ,M:

1 Initialize S
(i)
0 = S0, v

(i)
0 = v0.

2 For n = 0, . . . ,N − 1:
• Draw Z1,Z2 ∼ N(0, 1) independently.
• Set correlated shocks:

ϵs = Z1, ϵv = ρZ1 +
√

1− ρ2 Z2.

• Update variance (Euler, full truncation):

v
(i)
tn+1

= max
(
v
(i)
tn

+ κ(v̄ − v
(i)
tn

)∆t + ξ

√
max(v

(i)
tn

, 0)
√
∆t ϵv , 0

)
.

• Update price (log-Euler):

S
(i)
tn+1

= S
(i)
tn

exp
(
(r − 1

2
v
(i)
tn

)∆t +

√
v
(i)
tn

√
∆t ϵs

)
.

3 At T compute payoff f (S
(i)
T ) (e.g., max(S

(i)
T − K , 0)).

• Estimate option price:

V̂0 = e−rT 1

M

M∑
i=1

f (S
(i)
T ).
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Summary

• Main tools for pricing derivatives:
• Modified Black–Scholes–Merton formulas,
• Binomial/trinomial trees,
• Monte Carlo simulation.

• Binomial trees:
• Essential for American-style options where optimal early exercise must be

evaluated.
• Useful when backward induction and ordered outcomes are important.

• Monte Carlo simulation:
• Widely used in practice for complex or path-dependent derivatives.
• Steps:

1 Simulate many sample paths under the risk-neutral measure.
2 Compute discounted payoffs per path.
3 Estimate value as the average of payoffs.
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Summary

• Monte Carlo is especially useful for:
• Path-dependent payoffs:

• Asian options, barrier options, lookback options,
• Options on maxima/minima, rainbow and basket options.

• Multi-asset derivatives where correlations matter.

• Also useful for pricing under general dynamics:
• Stochastic volatility,
• Stochastic interest rates,
• Jump–diffusion processes.

• Increasing computational power has made Monte Carlo one of the most
flexible and powerful pricing tools.
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