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Lecture Outline

® Volatility
® Does the BSM predict market option price?
® Volatility Smile/Smirk

® Volatility Surface
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Volatility

® In the Black—Scholes—Merton (BSM) model, volatility is the only

unobservable input:
V(S,K, T,r,o)

® The model assumes that o is a known and constant parameter.

® In reality, volatility violates both assumptions:
® Not constant (empirical facts):
® |t changes over time (stochastic or time-varying volatility).

® |t differs across strikes and maturities (volatility smile/surface).

® Not directly observable (conceptual fact): Future volatility cannot be
measured; implied volatility must be inferred from option prices.

® Because volatility is unobservable and time-varying, market participants form
different expectations about it—resulting in substantial dispersion in implied
volatilities across the market.
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Stylized Facts about Volatility
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® Volatility is not constant. It fluctuates significantly over time.

® Volatility clusters. High-volatility periods tend to be followed by more high
volatility, and low-volatility periods tend to persist as well.

® Volatility is mean reverting. Extremely high or low volatility eventually moves
back toward long-run average levels.

® Volatility is asymmetric. In equity markets, volatility typically rises when prices fall
and (often) declines when prices rise — a pattern known as the leverage effect or

volatility—return asymmetry.
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Stylized Facts about Volatility (cont'd)

(Today we will focus on the following cross-sectional features of volatility:)

® Volatility smile/skew. Implied volatility exhibits a systematic pattern across
strikes — the “smile” or “skew” — indicating that options with different
moneyness levels embed different volatility expectations.

® Term structure of volatility. Implied volatility varies systematically with
maturity, reflecting how the market’s expectation of future uncertainty
changes over different horizons.
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Estimating/Forecasting Volatility

Historical Volatility

® Historical (or realized) volatility uses past price data to estimate how much
the asset typically moves.

® First compute log returns from past prices:
S
Re_x = In (”) k=1,....K
St—k-1

® The volatility estimate is the standard deviation of these returns, scaled
(annualized) by h:

K
] >t Rk
K

Ohist = \/ h

where:
® h = 252 for daily data,

® h =52 for weekly data.

7/53



Estimating/Forecasting Volatility

Historical Volatility

® This method assumes:

® recent past behavior is informative about the near future,

® the volatility during the lookback window is roughly constant.

(TN - T R SRR

A B C D
Date Price log return  Squared
t 102 0.985% 9.707E-03
t-1 101 4.041% 0.0016329
t-2 97 -2.041% 0.0004165
t-3 99 -1.005%  0.000101
-4 100

average 0.495% 0.0005619
annualize (*255) 126.242% 0.14328
volatility 37.852%

8/53



Estimating/Forecasting Volatility
Exponentially Weighted Moving Average (EWMA)

® Historical volatility treats all past returns equally. EWMA improves this by
giving more weight to recent data and gradually downweighting older
observations.

® Compute log returns as before.
® Apply exponentially decreasing weights:
wk, where0 < w <1
For example, RiskMetrics (J.P. Morgan) uses:
w = 0.94 (daily).

® The volatility estimate is:

Kk R2
) ko WHRE_,

Gewma = 4| h K
k
D ko W
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Estimating/Forecasting Volatility

Exponentially Weighted Moving Average (EWMA)

® |ntuition:

® recent shocks matter more for predicting tomorrow'’s volatility,

® helps capture volatility clustering.

W ;U & WM

=
o

=
=

A B C D E F

Date Price log return  Squared weight (0.9) w*Squared
t 102 0.985% 9.707E-05 1 9.70677E-05
-1 101 4.041% 0.0016323 0.9 0.001469638
t-2 97 -2.041% 0.0004165 0.81 0.000337383
t-3 99 -1.005%  0.000101 0.723 7.36357E-05

t-4 100

average 0.495% sum 3.439 0.001977724
annualize (*255) 126.242% weighted average 0.000575087

annualize (*255)

volatility

0.146647175

38.295%
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Estimating/Forecasting Volatility
GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

® GARCH models capture a key empirical fact: volatility today depends on
volatility yesterday and recent shocks.

® The simplest model, GARCH(1,1), has two equations:
® Return equation:
re=p+e, e~ (0,07)

® Variance equation:
2 2 2
0 = w+ae_y + Bor_y

where:
® o = reaction to new shocks (volatility jumps),
® 3 = persistence of past volatility,

® w = long-run average level.
® Typical empirical values:
a ~ 0.05-0.10, B ~ 0.90-0.95

a+ 3 <1 (ensures mean reversion)
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Estimating/Forecasting Volatility

GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

® Key intuition:
® A big return shock today raises tomorrow's volatility.
® High volatility tends to persist (volatility clustering).

® Much more realistic than the “constant volatility” assumption of BSM.

A B C D E F

Conditional

1 Date Price log return Squared®255 lagged variance

2 t 102 0.985% 0.024752275 0.41639735 5.884%

3 -1 101 4.041% 0.416397351 0.10621312 3.674%

4 t-2 97 -2.041% 0.106213121 0.02575736 2.942%

5 1-3 99 -1.005% 0.025757359 2.576%

[ -4 100

w = 0.495%, o = 0.05, and 8 = 0.9.
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Comparing Volatility Estimation Methods

Method Inputs Formula / Model Intuition Pros / Cons
L R I I _
Historical K past log returns 6" = — Z Ry Volatility is just the + Very simple,
f Ki= sample variance of  easy to compute
past returns. — Treats all days
equally; ignores
clustering and
changing volatility
EWMA K past log returns (”féWMA = Recent returns get  + Captures volatil-
R: and decay factor Zf—o Wka,k more weight; old ity clustering
w —K A data gradually “for- 4+ Still easy to im-
2k=o W gotten.” plement
— Choice of w is
somewhat ad hoc;
still not a full model
GARCH(1,1) Past shocks €;_1 Return: r = pte; Volatility today  + Flexible; matches
ar;d past variance  Variance: oy = depends on yes- clustering and

Ti—1

2 2
wtae,_;+Por_

terday’s shock and
yesterday's volatil-
ity.

mean reversion

+ Widely used in

practice
— More complex;
parameters must

be estimated statis-
tically
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Practical Issues in Estimating Volatility from Past Prices

® |n the Black—Scholes world, the underlying follows a lognormal diffusion with
a constant volatility.

If this were true:

® more data = better estimates,
® higher-frequency data = more precision.

® In reality, markets do not behave this cleanly. Several practical issues
arise:
® 1. Choice of observation interval (daily? weekly? intraday?).

® Higher frequency contains more information, but ultra-high frequency data
introduces noise: bid—ask bounce, microstructure effects, stale quotes on some
exchanges.

® In practice, daily data is a reasonable compromise for most asset classes.

® 2. Should we estimate the mean return?

® The sample mean is tiny relative to daily volatility. Using it adds noise without
improving accuracy.

® Standard practice: assume mean = 0.
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Practical Issues in Estimating Volatility from Past Prices

® 3. How much past data should we include?

® More data increases statistical precision. But markets change—volatility in 2008
or 2020 may not reflect volatility today.

® Use long enough windows to get stability, but avoid mixing very different
economic regimes.

® 4. What to do with outliers (e.g., 1987 crash, COVID-19 spike)?

® OQutliers can dominate historical volatility calculations.

® No universally correct answer: remove them? downweight them? keep them to
capture tail risk?

® Best practice: examine sensitivity and use judgment.

15/53



Forecasting Volatility: Practical Suggestions

® Evaluate forecasting methods out-of-sample. The real test is not how
well a model fits history, but how it performs on future data.

® All volatility forecasting methods are noisy. Even the best approaches
produce large forecast errors, especially at short horizons.

® Use zero mean for returns. Subtracting the sample mean often makes
volatility estimates worse, as the sample mean is itself very imprecise.

® Simple models often work surprisingly well. Historical volatility over a

long window performs about as well as many complex alternatives, and is
more robust to structural change.
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Forecasting Volatility: Practical Suggestions

® Forecasts are more reliable for longer horizons. One-day-ahead volatility
is very difficult to predict, but 3-6 month volatility is typically easier due to
mean reversion.

® GARCH models are good for short horizons. They adapt quickly to new
information but require:

® a long data history for accurate parameter estimation,

® careful checking of model assumptions.
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How Practitioners Estimate Volatility

® Practitioners do not use historical or GARCH volatility to price
options.
® These methods are used mainly for risk management (VaR, ES, stress testing).

® Option markets use implied volatility (IV).

The implied volatility surface is the key pricing input.

Workflow on an options desk:
@ Observe liquid option prices — compute IVs.

® Fit a smooth implied volatility surface.
© Price and hedge exotic/illiquid options using the surface.
O Use historical EWMA /GARCH only for risk, not pricing.
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Implied Volatility

e Definition. Implied volatility (V) is the value of o that makes an option
pricing model (e.g., Black—Scholes—Merton) match the option price observed
in the market:

Cinodel (S0, K, T, 1, Gimpt) = Gkt

® |V is often considered the best estimate of volatility available, because it
incorporates all information and beliefs reflected in market prices (including
expectations, risk premia, and supply—demand effects).

® There is a one-to-one mapping between price and IV: higher uncertainty =
higher option price = higher implied volatility.

® In many markets (FX, equity index options), traders quote volatility, not option
prices. The volatility surface is the central object used in pricing and hedging.
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Implied Volatility

® |V is the same for European calls and puts with the same Sy, K, T.
® In the market, put—call parity must also hold (ignoring small arbitrage bounds):

kat - Pmkt - 50 - e_rTK.
® The BSM option prices should satisfy the parity.
Ces — Pss = So—e K.

Subtract:
Cgs — Gkt = Pss — Prkt-

® Suppose the IV for the put is 20%. l.e., Pss = Pmk when IV=20%. Hence,
Cgs — Gkt should be zero as well when IV=20% is used.

® Therefore: One implied volatility per strike—maturity pair, not one per option.
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The VIX Index
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Trading Volatility

® The CBOE publishes indices of implied volatility. The most important is the
VIX, which measures the market’s expectation of annualized 30-day S&P
500 volatility, extracted from a broad set of SPX options.

® VIX Futures (introduced in 2004)
® Contract size: 1,000 x VIX index level

® Minimum tick: 0.01 (1 volatility basis point)

® Futures allow investors to trade expected future volatility, not the VIX today.

® VIX Options (introduced in 2006)

® European-style settlement in cash.

® Call payoff:
100 x max(VIXT — K, 0)

® Note: VIX options are options on VIX futures, not on the spot VIX.
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Trading Volatility

® The VIX is like a “temperature gauge”: you can observe it at each moment,
but you cannot store it or carry it forward. Therefore, no cost-of-carry
pricing model (like for commodities). VIX derivatives are priced based on
expectations and the implied volatility surface.

® Example: VIX futures: Buy April VIX futures at 18.5, sell at 19.3:

Profit = (19.3 — 18.5) x 1,000 = $800.
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Variance Swaps and Volatility Swapsx

® Variance swaps: A forward contract on the realized variance of returns over
a future period.

® Strike is quoted as a variance (e.g. 0.20% = 0.04).
® Realized variance =annualized average of R?, assuming mean return = 0.
® Payoff = Notional x (Realized Var — Strike Var).

® Traders who expect higher future volatility buy variance.

e Example: Expect high volatility through Dec. 31, strike = 20% vol = 0.04
variance. If realized variance ends at 0.06, the payoff = notional x (0.06 —
0.04).

® Volatility swaps: Similar idea, but payoff is based on realized volatility
instead of variance.

® More intuitive (investors think in vol), but harder to value.
® Cannot be perfectly hedged using options — less commonly traded.
® Variance swaps are preferred because realized variance can be replicated

exactly using a strip of OTM options.

24 /53



BSM option price = Market option price?

® Let's compare BSM options prices to market prices at a point in time
® The data is from May 3, 2007
® The S&P 500 index was at S = 1502.39
® The one-month risk-free rate was at r = 4.713%(c.c.)
® The dividend yield on the S&P 500 was about g = 1.91%

® Using the previous 3 months of returns:

o=/ & S8 (s — 7) x V252 = 12.35%

25/53



Comparing BSM predictions to market prices

SPX (S&P 500 INDEX) Today ccrate  divyield volatility
1502.39 5/3/2007  0.04713 0.0191 0.1236
| CALLS PUTS
Maturity Time to T Strike Moneyness K/S Mkt Price B/S BSC/Mkt Mkt Price B/S BSP/Mkt
6/15/2007 0.12 1430 0.952 839 80.12 0.955 6.2 3.19 0.514
6/15/2007 0.12 1435 0.955 79.4 75.74 0.954 6.7 3.78 0.564
6/15/2007 0.12 1440 0.958 75 71.44 0.953 7.3 4.46 0.610
6/15/2007 0.12 1445 0.962 70.6 87.24 0.952 9 523 0.662
6/15/2007 0.12 1450 0.965 66.3 63.14 0.952 8.7 6.10 0.701
6/15/2007 0.12 1455 0.968 62.1 59.15 0.952 9.3 7.08 0.761
6/15/2007 0.12 1480 0.972 579 55.27 0.955 10.1 8.17 0.809
6/15/2007 0.12 1485 0.975 53.8 51.52 0.958 10.9 9.39 0.862
6/15/2007 0.12 1470 0.978 49.8 47.89 0.962 11.9 10.74 0.902
6/15/2007 0.12 1475 0.982 459 44.40 0.967 12,6 12.22 0.970
6/15/2007 0.12 1480 0.985 42.1 41.05 0.975 14.1 13.84 0.982
6/15/2007 0.12 1485 0.988 38.4 37.84 0.986 15.4 15.61 1.014
6/15/2007 0.12 1490 0.992 348 3479 1.000 17.05 17.52 1.028
6/15/2007 0.12 1495 0.995 31.4 31.88 1.015 18.55 19.59 1.056
6/15/2007 0.12 1500 0.998 28.05 29.13 1.039 20.35 21.82 1.072
6/15/2007 0.12 1505 1.002 24.55 26.54 1.081 21.95 24.19 1.102
6/15/2007 0.12 1510 1.005 22 24.10 1.095 24 2673 1.114
6/15/2007 0.12 1515 1.008 19.3 21.81 1.130 26.2 29.41 1.123
6/15/2007 0.12 1520 1.012 16.6 19.68 1.186 286 32.25 1.128
6/15/2007 0.12 1525 1.015 14.8 17.70 1.196 31.2 35.24 1.130
6/15/2007 0.12 1530 1.018 123 15.86 1.290 34 38.38 1.129
6/15/2007 0.12 1535 1.022 103 1417 1.376 37 41.66 1.126
6/15/2007 0.12 1540 1.025 8.6 12.61 1.467 40.3 45.07 1.118
6/15/2007 0.12 1545 1.028 7.05 11.19 1.587 437 48.62 1.113
6/15/2007 0.12 1550 1.032 5.95 9.89 1.663 47.4 52.30 1.103
6/15/2007 0.12 1555 1.035 4.5 872 1.937 51.2 56.09 1.096
6/15/2007 0.12 1560 1.038 3.7 7.65 2.068 55.2 60.00 1.087
6/15/2007 0.12 1565 1.042 29 6.69 2.308 59.4 64.01 1.078
6/15/2007 0.12 1570 1.045 2.325 583 2509 63.7 68.13 1.070
6/15/2007 0.12 1575 1.048 1.9 5.07 2.667 68.2 72.33 1.061

When K/S is low (OTM Puts & ITM Calls), IV is greater.
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Volatility Smirk /Skew

® Note that the BSM assumes that volatility is constant.

® Volatility Smirk/Skew: The volatility used to price a low-strike-price option
(i.e., a OTM put or a ITM call) is significantly higher than that used to price
a high-strike-price option (i.e., a ITM put or a OTM call).

Implied
volatility

K5,

n
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Volatility Skew/Smirk: Why?

® 1. Negative correlation between equity prices and volatility (the
leverage effect). When stock prices fall, volatility tends to rise - OTM
puts become more valuable — higher IV. When prices rise, volatility tends to
fall = OTM calls become less valuable — lower IV.

® 2. Market crash of 1987 fundamentally changed option pricing. Before
1987, equity options showed little smile or skew. After Black Monday (a 22%
one-day drop), traders demanded:

® more protection against extreme downside risk,
® more compensation for selling crash insurance.

This permanently steepened the volatility skew.

® 3. Why don’t ITM calls show similar high volatility? ITM calls are often
used as low-capital substitutes for stock holdings:

® A =~ 1 — behaves like stock,

® |ower cash outlay — leveraged exposure.
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Volatility Smile

® FX options typically exhibit a symmetric volatility smile rather than the
steep downside skew seen in equity options.

® Why a smile in FX markets?

® FX rates do not have a natural “crash direction.” Equity indices have a
built-in downside risk (stocks can collapse). Currency pairs can move sharply
in either direction.

Implied
volatility

v

K/S,
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Volatility Prediction: Implied Volatility

® The volatility smile reveals a limitation of the Black—Scholes model. If
BSM were correct, all options would share the same volatility. In reality,
implied volatility varies by strike and maturity.
® This means implied volatility contains market information about future
uncertainty, but it is not an unbiased forecast of future realized volatility.

® |V reflects both expectations and risk premia demanded by investors.

® More sophisticated models can generate a smile. Examples include:
stochastic volatility models (Heston), local volatility models (Dupire), models
with jumps or stochastic interest rates (see Appendix for discussion).

® In practice: market makers use “practitioner Black—Scholes.”
® They keep the BSM formula but replace the constant volatility assumption.

® Each option gets its own volatility input taken from the implied volatility
surface.

® This ensures that model prices match observable market prices.
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A Simple Practitioners’ Approach to Pricing with the Smile

® Record the implied volatility smile. Traders observe recent IVs across
strikes and construct the current implied volatility curve (smile or skew).

® Assume the smile shape will persist.

© Estimate the at-the-money (ATM) IV. ATM implied volatility is typically
the most reliable and liquidly observed.

@ Adjust IV for each strike using the smile. For a given moneyness K /S,
use the smile curve to obtain an appropriate IV instead of using a single
“constant” volatility.

© Plug this adjusted IV into the Black—Scholes formula. This is known as
“practitioner Black—Scholes”: BSM model + strike-specific IV.
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Example: Practitioner Smile-Based Pricing
® Current stock price: So = 100
® Time to maturity: T = 0.25 years (3 months)
® Risk-free rate: r = 2%
® ATM implied volatility observed from the market: oary = 20%

® Recent smile shows:

® |V for 90 strike = 25%
® |V for 100 strike = 20%
® |V for 110 strike = 23%

Goal: Price a 110-strike call.
@ ATM IV is 20%, but smile shows OTM calls use IV = 23%.

@® Use o0 = 0.23 in Black-Scholes:
Ci10 = 2.02 (using IV = 23%, not 20%)
© BSM with constant volatility (20%) would give:

CH3Y =1.40  (underpricing the call)
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A Simple Practitioners’ Approach to Pricing with the Smile

® Use the adjusted IV surface to compute Greeks (A, I, ©, vega, etc.)
that match market pricing behavior.

® Market making: fit a smooth curve through the smile.
® Often fit a quadratic, spline, or exponential curve to IV vs. strike.

® Options with IV above (below) the curve — overpriced (underpriced).

® Market makers quote tighter or wider spreads based on this deviation.
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A More Sophisticated Practitioners’ Approach

® Goal: Compare the relative value of many options at once (different strikes
and maturities).

® Problem: Raw option prices cannot be compared directly.
® Different strikes — different intrinsic values.

® Different maturities — different time value, interest rates, and uncertainty.

® Price differences alone do not indicate whether one option is “expensive” or
“cheap.”

® Solution: Convert all option prices into implied volatilities. 1V normalizes
price differences by expressing everything in volatility units:

IV = “how much volatility is the market implying?”

This allows apples-to-apples comparison across all strikes and maturities.
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A More Sophisticated Practitioners’ Approach

Volatility Surface

® Once IVs are computed across all strikes and maturities, practitioners arrange
them into a volatility surface:

K
= —. T
S ( a3 )
® This surface summarizes:

® the skew/smile (variation across strike), and

® the term structure (variation across maturity).

® The volatility surface becomes the central tool for:
® pricing OTC and exotic options,
® computing Greeks,
® fitting models (local vol, stochastic vol),

® relative value trading (identifying cheap/expensive options).
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A More Sophisticated Practitioners’ Approach

Volatility Surface

Volatility Surface E=mini S&P 500 Futures Options : 2015-02-23

Implied Volatility
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A More Sophisticated Practitioners’ Approach

Examples

® To value a new option, locate its position on the volatility surface.

Table 20.2

1 month
3 month
6 month
1 year
2 year
5 year

o* :a<g),T)

Volatility surface.

K/So
0.90 0.95 1.00 1.05 1.10
14.2 13.0 12.0 13.1 14.5
14.0 13.0 12.0 13.1 14.2
14.1 13.3 12.5 13.4 143
14.7 14.0 13.5 14.0 14.8
15.0 14.4 14.0 14.5 151
14.8 14.6 14.4 14.7 15.0
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A More Sophisticated Practitioners’ Approach

Examples
® Example 1: 9-month, K/Sy = 1.05 (OTM call).
® Table gives IVs: 13.4% (0.5 year) and 14.0% (1.0 year).
® |Interpolate along maturity to get: 0" ~ 13.7%
® Use 0" in BSM or a binomial tree to compute the option value.
e Example 2: 1.5-year, K/So = 0.925 (ITM put).
® Strike dimension — interpolate across K/So.
® Maturity dimension — interpolate across T.
® Apply bilinear interpolation (2D). Result:c™ ~ 14.525%
® Use this IV to price the option.

® Alternative approach: fit a regression-based IV surface.

® Estimate:
K K\? K 2
o = — T —T fTe.
& a+b<50>+c +d<50) +e<50 )—i—

® Smooths noisy market Vs and avoids jumps in the surface.
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Summary

® Despite its inaccuracies BSM serves as a useful benchmark.
® Gives decent approximation to prices close to the money.

® |t also works reasonably well to hedge options positions against changes in
stock prices using delta or delta-gamma hedging.

® Models have been proposed to correct some of the shortcomings.
® Stochastic volatility
® Jumps
® Fat tails

® All of these models are consistent with the idea that OTM puts are expensive
relative to BSM prices because investors seeking protection from large losses
(e.g., jumps down) must pay a higher (insurance) premium
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Appendix: Volatility Estimation

40/53



Numerical Example: Prices and Log Returns

Suppose we observe the following daily closing prices for a stock:

Day| 0 1 2 3 4 5
S [ 100 102 101 105 103 106

— St
Rt = |n (St_1>

t | 1 2 3 4

Daily log returns are

5

R: | 0.01980 —0.00985 0.03884 —0.01923

R? | 0.000392 0.000097 0.001509 0.000370 0.000824

0.02871
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Numerical Example: Historical Volatility

Using the 5 daily log returns
Ri,...,Rs,

the (daily) historical variance estimator is

Udally Z Rt 5 = 5.

5
SORIA0.003102 = Gl = m ~ 0.000638
t=1

Daily historical volatility:

Gaaiy = v/0.000638 ~ 0.02527 (2.53% per day)

Annualizing with h = 252 trading days:

Gannual = V252 Ggaity &~ 0.4011  (40.1% per year)
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Numerical Example: EWMA Volatility
EWMA gives more weight to recent returns. Let w = 0.94 and use the same 5 returns.
Index the returns from most recent to oldest:

kK | 0 1 2 3 4
return Rs Rs Rs R> R:1
value | 0.02871 —0.01923 0.03884 —0.00985 0.01980

Weights:
w® = 1.0000, w' = 0.94, w? ~ 0.8836, w* ~ 0.8306, w* ~ 0.7807
4

Z wk ~ 4.4349
k=0

EWMA daily variance:

S WERE . 0.002892
S wk 44349

&gaily, EWMA = =~ 0.000652

Daily EWMA volatility:
S daity, ewma = V'0.000652 ~ 0.02553 (2.55% per day)

Annualized:

Gannual, EWMA = V252 G aaity, ewma =~ 0.4053  (40.5% per year)
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Numerical Example: GARCH(1,1) Volatility

Consider a simple GARCH(1,1) model:

r=p+ e, €~ (0,0’?)7

2 2 2
ot = w+ ae_1 + for_s.

For this example, set:

=0, a=0.05 =094, ao+F=099<1.

We choose w so that the long-run (unconditional) variance matches our historical
estimate 63, &~ 0.000638:

2 w

= — ~(1-— ~ -6
Uoo_].*a*ﬂ = w~(1-0.99) x 0.000638 ~ 6.38 x 10~ ".
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Numerical Example: GARCH(1,1) Volatility (cont'd)

Start with the long-run variance as the initial value:
07 = 05 = 0.000638.
Shocks are just returns (since u = 0):

€t = Rt.
Step 1: Compute o3

e1 = R1 = 0.01980, ¢ ~ 0.000392

03 = w+ o€} + Bot ~ 0.00000638 + 0.05(0.000392) + 0.94(0.000638) ~ 0.000626

o2 = v/0.000626 ~ 0.02502 (2.50% per day)
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Numerical Example: GARCH(1,1) Volatility (cont'd)

Step 2: Compute o3

€2 = R, = —0.00985, €5 ~ 0.000097

03 = w + a€s + Bo? ~ 0.00000638 + 0.05(0.000097) + 0.94(0.000626) ~ 0.000600

o3 = +/0.000600 ~ 0.02449 (2.45% per day)

Interpretation:
® A large shock today (¢2 big) raises tomorrow’s variance ¢7;.

® In the absence of large shocks, o2 slowly drifts back toward the long-run level.
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Appendix: Volatility Models

(Chapter 27)
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Local Volatility Models

® Ildea: The Black—Scholes model assumes volatility is constant. Local volatility
models relax this by allowing volatility to depend on the current stock price and
time:
dSt = ,uStdt + U(St7 t) Stth.

® One popular example is the Constant Elasticity of Variance (CEV) model:
dS; = pSidt + (057 1)S:dW,.

® Interpretation of ~:

® ~ = 1: reduces to the Black—Scholes model (constant volatility).
° y<1:
® When S; falls, S increases relative to St,
® = volatility rises at low prices,
® = OTM puts become more valuable,
® = volatility smirk (equity skew) appears.
® ~ > 1: volatility rises with price (sometimes seen in futures/options on
commodities).

® Takeaway: Local volatility models can generate a smile or smirk because volatility
changes depending on where the stock price is.
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Stochastic Volatility Models

® Idea: Volatility itself moves randomly over time, rather than being constant. This
helps explain why options imply different volatilities at different strikes.

The Heston Model is a leading example:
dS; = pSedt + /v SedW,
dvi = 0(w — vi)dt + &/ v dB;.
® Meaning of parameters:
® w: long-run average variance.
® 0: speed of mean reversion (how fast variance returns to w).
® ¢: "vol of vol” — how much variance itself fluctuates.
® p: correlation between stock returns (dW;:) and volatility shocks (dB:).

® Why Heston explains the smirk:
® If p < 0 (empirically true for equities): bad market moves — higher volatility.

® Higher volatility — higher crash probability.
® This makes OTM put options relatively expensive.

® = downward-sloping volatility skew.
® Intuition: A drop in price increases volatility, which increases the chance of an even
bigger drop.
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Jumps in Stock Prices
® Idea: Stock prices occasionally experience sudden large jumps (e.g., 1987 crash,
2020 COVID crash). The Black—Scholes model cannot capture this.

® A jump—diffusion model adds a jump component to price movements:
dSt = ,LLStCIt + O'Stth + J(Q) Sf dPt

® Interpretation:
® dP; is usually 0, but equals 1 with a small probability — a jump occurs.
® J(Q) is the jump size (can be random or fixed).
® If J(Q) <0, the jump is downward — a crash.
® Impact on options:
® |f downward jumps are possible, tail risk increases.
® OTM puts become much more valuable.
® = steeper volatility smirk.
® Downside jump risk = expensive insurance.

® Pricing jumps is harder, because Black—Scholes cannot be used directly. More
advanced numerical methods are required (Monte Carlo, Fourier transforms, etc).
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Implied Tree Models

® Idea: Normally, we start with a model (e.g., binomial tree) — compute option
prices. With implied trees, we reverse the process:

Use observed option prices = infer the stock price tree.
® Once calibrated, the implied tree:
® matches market option prices exactly,

® produces a local volatility surface implicitly,

® can be used to price other options consistently.
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Implied Tree Models

® Example: Given:

So = 1502.39, K = 1500, o = 12.36%, r = 4.713%, § = 1.91%, T = 0.12.

Compute initial binomial parameters:

e u=e"VT=10437, d=1/u=009581.
(r=8)T _
o Risk-neutral p= & —9 _ 0.5086.
u—d
® BSM/binomial price: ¢ = 28.394.
® Market price: ¢™* = 20.35 (model overprices).

® Implied-tree step: Adjust o (and therefore u and d) until model = market:
o =8.24% (new p = 0.5446)

Now the tree is calibrated — can be used to price other options.
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Other Modern Volatility Models

® Beyond local volatility, stochastic volatility, and jump models, modern
quantitative finance uses several advanced models to better match the observed
volatility smile and surface.

® SABR Model (Hagan, Kumar, Lesniewski, Woodward, 2002)

Widely used in interest-rate and FX markets.

Models both the asset price and its volatility as stochastic processes.
Flexible enough to generate smiles, skews, and term structure effects.
Provides simple formulas that traders can implement quickly.

® Rough Volatility Models (Gatheral, Jaisson, Rosenbaum, 2018)

® Based on the empirical finding that volatility moves “roughly,” showing long
memory and very jagged paths.

® Captures the fine structure of volatility better than classical models.

® Produces realistic short-term smiles and accurate VIX dynamics.

® Why these models matter in practice:

® They fit market implied volatility surfaces more accurately.
® They improve pricing of exotic options and risk management.
® They help traders understand how the smile evolves over time.
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