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Lecture Outline

• Volatility

• Does the BSM predict market option price?

• Volatility Smile/Smirk

• Volatility Surface
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Volatility

• In the Black–Scholes–Merton (BSM) model, volatility is the only
unobservable input:

V (S ,K ,T , r , σ)

• The model assumes that σ is a known and constant parameter.

• In reality, volatility violates both assumptions:
• Not constant (empirical facts):

• It changes over time (stochastic or time-varying volatility).

• It differs across strikes and maturities (volatility smile/surface).

• Not directly observable (conceptual fact): Future volatility cannot be
measured; implied volatility must be inferred from option prices.

• Because volatility is unobservable and time-varying, market participants form
different expectations about it—resulting in substantial dispersion in implied
volatilities across the market.
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Stylized Facts about Volatility

• Volatility is not constant. It fluctuates significantly over time.

• Volatility clusters. High-volatility periods tend to be followed by more high
volatility, and low-volatility periods tend to persist as well.

• Volatility is mean reverting. Extremely high or low volatility eventually moves
back toward long-run average levels.

• Volatility is asymmetric. In equity markets, volatility typically rises when prices fall
and (often) declines when prices rise — a pattern known as the leverage effect or
volatility–return asymmetry.
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Stylized Facts about Volatility (cont’d)

(Today we will focus on the following cross-sectional features of volatility:)

• Volatility smile/skew. Implied volatility exhibits a systematic pattern across
strikes — the “smile” or “skew” — indicating that options with different
moneyness levels embed different volatility expectations.

• Term structure of volatility. Implied volatility varies systematically with
maturity, reflecting how the market’s expectation of future uncertainty
changes over different horizons.
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Estimating/Forecasting Volatility
Historical Volatility

• Historical (or realized) volatility uses past price data to estimate how much
the asset typically moves.

• First compute log returns from past prices:

Rt−k = ln

(
St−k

St−k−1

)
, k = 1, . . . ,K

• The volatility estimate is the standard deviation of these returns, scaled
(annualized) by h:

σ̂hist =

√
h ·

∑K
k=1 R

2
t−k

K

where:
• h = 252 for daily data,

• h = 52 for weekly data.
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Estimating/Forecasting Volatility
Historical Volatility

• This method assumes:
• recent past behavior is informative about the near future,

• the volatility during the lookback window is roughly constant.
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Estimating/Forecasting Volatility
Exponentially Weighted Moving Average (EWMA)

• Historical volatility treats all past returns equally. EWMA improves this by
giving more weight to recent data and gradually downweighting older
observations.

• Compute log returns as before.

• Apply exponentially decreasing weights:

wk , where 0 < w < 1

For example, RiskMetrics (J.P. Morgan) uses:

w = 0.94 (daily).

• The volatility estimate is:

σ̂EWMA =

√√√√h ·
∑K

k=0 w
kR2

t−k∑K
k=0 w

k

9 / 53



Estimating/Forecasting Volatility
Exponentially Weighted Moving Average (EWMA)

• Intuition:
• recent shocks matter more for predicting tomorrow’s volatility,

• helps capture volatility clustering.
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Estimating/Forecasting Volatility
GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

• GARCH models capture a key empirical fact: volatility today depends on
volatility yesterday and recent shocks.

• The simplest model, GARCH(1,1), has two equations:
• Return equation:

rt = µ+ ϵt , ϵt ∼ (0, σ2
t )

• Variance equation:
σ2
t = ω + αϵ2t−1 + βσ2

t−1

where:
• α = reaction to new shocks (volatility jumps),

• β = persistence of past volatility,

• ω = long-run average level.

• Typical empirical values:

α ≈ 0.05–0.10, β ≈ 0.90–0.95

α+ β < 1 (ensures mean reversion)
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Estimating/Forecasting Volatility
GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

• Key intuition:
• A big return shock today raises tomorrow’s volatility.

• High volatility tends to persist (volatility clustering).

• Much more realistic than the “constant volatility” assumption of BSM.

ω = 0.495%, α = 0.05, and β = 0.9.
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Comparing Volatility Estimation Methods

Method Inputs Formula / Model Intuition Pros / Cons

Historical K past log returns
Rt

σ̂
2 =

1

K

K∑
k=1

R2
k Volatility is just the

sample variance of
past returns.

+ Very simple,
easy to compute
– Treats all days
equally; ignores
clustering and
changing volatility

EWMA K past log returns
Rt and decay factor
w

σ̂
2
EWMA =∑K
k=0 w

kR2
t−k∑K

k=0 w
k

Recent returns get
more weight; old
data gradually “for-
gotten.”

+ Captures volatil-
ity clustering
+ Still easy to im-
plement
– Choice of w is
somewhat ad hoc;
still not a full model

GARCH(1,1) Past shocks ϵt−1

and past variance
σ2
t−1

Return: rt = µ+ϵt
Variance: σ2

t =

ω+αϵ2t−1 +βσ2
t−1

Volatility today
depends on yes-
terday’s shock and
yesterday’s volatil-
ity.

+ Flexible; matches
clustering and
mean reversion
+ Widely used in
practice
– More complex;
parameters must
be estimated statis-
tically
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Practical Issues in Estimating Volatility from Past Prices

• In the Black–Scholes world, the underlying follows a lognormal diffusion with
a constant volatility.

If this were true:
• more data ⇒ better estimates,
• higher-frequency data ⇒ more precision.

• In reality, markets do not behave this cleanly. Several practical issues
arise:

• 1. Choice of observation interval (daily? weekly? intraday?).
• Higher frequency contains more information, but ultra-high frequency data

introduces noise: bid–ask bounce, microstructure effects, stale quotes on some
exchanges.

• In practice, daily data is a reasonable compromise for most asset classes.

• 2. Should we estimate the mean return?
• The sample mean is tiny relative to daily volatility. Using it adds noise without

improving accuracy.

• Standard practice: assume mean = 0.
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Practical Issues in Estimating Volatility from Past Prices

• 3. How much past data should we include?
• More data increases statistical precision. But markets change—volatility in 2008

or 2020 may not reflect volatility today.

• Use long enough windows to get stability, but avoid mixing very different
economic regimes.

• 4. What to do with outliers (e.g., 1987 crash, COVID-19 spike)?
• Outliers can dominate historical volatility calculations.

• No universally correct answer: remove them? downweight them? keep them to
capture tail risk?

• Best practice: examine sensitivity and use judgment.

15 / 53



Forecasting Volatility: Practical Suggestions

• Evaluate forecasting methods out-of-sample. The real test is not how
well a model fits history, but how it performs on future data.

• All volatility forecasting methods are noisy. Even the best approaches
produce large forecast errors, especially at short horizons.

• Use zero mean for returns. Subtracting the sample mean often makes
volatility estimates worse, as the sample mean is itself very imprecise.

• Simple models often work surprisingly well. Historical volatility over a
long window performs about as well as many complex alternatives, and is
more robust to structural change.
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Forecasting Volatility: Practical Suggestions

• Forecasts are more reliable for longer horizons. One-day-ahead volatility
is very difficult to predict, but 3–6 month volatility is typically easier due to
mean reversion.

• GARCH models are good for short horizons. They adapt quickly to new
information but require:

• a long data history for accurate parameter estimation,

• careful checking of model assumptions.
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How Practitioners Estimate Volatility

• Practitioners do not use historical or GARCH volatility to price
options.

• These methods are used mainly for risk management (VaR, ES, stress testing).

• Option markets use implied volatility (IV).

• The implied volatility surface is the key pricing input.

• Workflow on an options desk:

1 Observe liquid option prices → compute IVs.

2 Fit a smooth implied volatility surface.

3 Price and hedge exotic/illiquid options using the surface.

4 Use historical/EWMA/GARCH only for risk, not pricing.
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Implied Volatility

• Definition. Implied volatility (IV) is the value of σ that makes an option
pricing model (e.g., Black–Scholes–Merton) match the option price observed
in the market:

Cmodel(S0,K ,T , r , σimpl) = Cmkt.

• IV is often considered the best estimate of volatility available, because it
incorporates all information and beliefs reflected in market prices (including
expectations, risk premia, and supply–demand effects).

• There is a one-to-one mapping between price and IV: higher uncertainty ⇒
higher option price ⇒ higher implied volatility.

• In many markets (FX, equity index options), traders quote volatility, not option
prices. The volatility surface is the central object used in pricing and hedging.
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Implied Volatility

• IV is the same for European calls and puts with the same S0, K , T .
• In the market, put–call parity must also hold (ignoring small arbitrage bounds):

Cmkt − Pmkt = S0 − e−rTK .

• The BSM option prices should satisfy the parity.

CBS − PBS = S0 − e−rTK .

Subtract:
CBS − Cmkt = PBS − Pmkt.

• Suppose the IV for the put is 20%. I.e., PBS = Pmkt when IV=20%. Hence,
CBS − Cmkt should be zero as well when IV=20% is used.

• Therefore: One implied volatility per strike–maturity pair, not one per option.
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The VIX Index
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Trading Volatility

• The CBOE publishes indices of implied volatility. The most important is the
VIX, which measures the market’s expectation of annualized 30-day S&P
500 volatility, extracted from a broad set of SPX options.

• VIX Futures (introduced in 2004)
• Contract size: 1,000× VIX index level

• Minimum tick: 0.01 (1 volatility basis point)

• Futures allow investors to trade expected future volatility, not the VIX today.

• VIX Options (introduced in 2006)
• European-style settlement in cash.

• Call payoff:
100×max(VIXT − K , 0)

• Note: VIX options are options on VIX futures, not on the spot VIX.
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Trading Volatility

• The VIX is like a “temperature gauge”: you can observe it at each moment,
but you cannot store it or carry it forward. Therefore, no cost-of-carry
pricing model (like for commodities). VIX derivatives are priced based on
expectations and the implied volatility surface.

• Example: VIX futures: Buy April VIX futures at 18.5, sell at 19.3:

Profit = (19.3− 18.5)× 1, 000 = $800.
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Variance Swaps and Volatility Swapsx
• Variance swaps: A forward contract on the realized variance of returns over

a future period.
• Strike is quoted as a variance (e.g. 0.202 = 0.04).

• Realized variance =annualized average of R2
t , assuming mean return = 0.

• Payoff = Notional× (Realized Var− Strike Var).

• Traders who expect higher future volatility buy variance.

• Example: Expect high volatility through Dec. 31, strike = 20% vol = 0.04
variance. If realized variance ends at 0.06, the payoff = notional Ö (0.06 –
0.04).

• Volatility swaps: Similar idea, but payoff is based on realized volatility
instead of variance.

• More intuitive (investors think in vol), but harder to value.

• Cannot be perfectly hedged using options � less commonly traded.

• Variance swaps are preferred because realized variance can be replicated
exactly using a strip of OTM options.
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BSM option price = Market option price?

• Let’s compare BSM options prices to market prices at a point in time

• The data is from May 3, 2007

• The S&P 500 index was at S = 1502.39

• The one-month risk-free rate was at r = 4.713%(c.c.)

• The dividend yield on the S&P 500 was about q = 1.91%

• Using the previous 3 months of returns:

σ =
√

1
63

∑63
i=1(rt−i − r̄)×

√
252 = 12.35%
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Comparing BSM predictions to market prices

When K/S is low (OTM Puts & ITM Calls), IV is greater.
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Volatility Smirk/Skew

• Note that the BSM assumes that volatility is constant.

• Volatility Smirk/Skew: The volatility used to price a low-strike-price option
(i.e., a OTM put or a ITM call) is significantly higher than that used to price
a high-strike-price option (i.e., a ITM put or a OTM call).
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Volatility Skew/Smirk: Why?

• 1. Negative correlation between equity prices and volatility (the
leverage effect). When stock prices fall, volatility tends to rise � OTM
puts become more valuable � higher IV. When prices rise, volatility tends to
fall � OTM calls become less valuable � lower IV.

• 2. Market crash of 1987 fundamentally changed option pricing. Before
1987, equity options showed little smile or skew. After Black Monday (a 22%
one-day drop), traders demanded:

• more protection against extreme downside risk,

• more compensation for selling crash insurance.

This permanently steepened the volatility skew.

• 3. Why don’t ITM calls show similar high volatility? ITM calls are often
used as low-capital substitutes for stock holdings:

• ∆ ≈ 1 � behaves like stock,

• lower cash outlay � leveraged exposure.
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Volatility Smile

• FX options typically exhibit a symmetric volatility smile rather than the
steep downside skew seen in equity options.

• Why a smile in FX markets?
• FX rates do not have a natural “crash direction.” Equity indices have a

built-in downside risk (stocks can collapse). Currency pairs can move sharply
in either direction.
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Volatility Prediction: Implied Volatility

• The volatility smile reveals a limitation of the Black–Scholes model. If
BSM were correct, all options would share the same volatility. In reality,
implied volatility varies by strike and maturity.

• This means implied volatility contains market information about future
uncertainty, but it is not an unbiased forecast of future realized volatility.

• IV reflects both expectations and risk premia demanded by investors.

• More sophisticated models can generate a smile. Examples include:
stochastic volatility models (Heston), local volatility models (Dupire), models
with jumps or stochastic interest rates (see Appendix for discussion).

• In practice: market makers use “practitioner Black–Scholes.”
• They keep the BSM formula but replace the constant volatility assumption.

• Each option gets its own volatility input taken from the implied volatility
surface.

• This ensures that model prices match observable market prices.
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A Simple Practitioners’ Approach to Pricing with the Smile

1 Record the implied volatility smile. Traders observe recent IVs across
strikes and construct the current implied volatility curve (smile or skew).

2 Assume the smile shape will persist.

3 Estimate the at-the-money (ATM) IV. ATM implied volatility is typically
the most reliable and liquidly observed.

4 Adjust IV for each strike using the smile. For a given moneyness K/S0,
use the smile curve to obtain an appropriate IV instead of using a single
“constant” volatility.

5 Plug this adjusted IV into the Black–Scholes formula. This is known as
“practitioner Black–Scholes”: BSM model + strike-specific IV.

31 / 53



Example: Practitioner Smile-Based Pricing
• Current stock price: S0 = 100

• Time to maturity: T = 0.25 years (3 months)

• Risk-free rate: r = 2%

• ATM implied volatility observed from the market: σATM = 20%

• Recent smile shows:

• IV for 90 strike = 25%

• IV for 100 strike = 20%

• IV for 110 strike = 23%

Goal: Price a 110-strike call.

1 ATM IV is 20%, but smile shows OTM calls use IV = 23%.

2 Use σ = 0.23 in Black–Scholes:

C110 = 2.02 (using IV = 23%, not 20%)

3 BSM with constant volatility (20%) would give:

CBSM
110 = 1.40 (underpricing the call)
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A Simple Practitioners’ Approach to Pricing with the Smile

• Use the adjusted IV surface to compute Greeks (∆, Γ, Θ, vega, etc.)
that match market pricing behavior.

• Market making: fit a smooth curve through the smile.
• Often fit a quadratic, spline, or exponential curve to IV vs. strike.

• Options with IV above (below) the curve � overpriced (underpriced).

• Market makers quote tighter or wider spreads based on this deviation.
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A More Sophisticated Practitioners’ Approach

• Goal: Compare the relative value of many options at once (different strikes
and maturities).

• Problem: Raw option prices cannot be compared directly.
• Different strikes � different intrinsic values.

• Different maturities � different time value, interest rates, and uncertainty.

• Price differences alone do not indicate whether one option is “expensive” or
“cheap.”

• Solution: Convert all option prices into implied volatilities. IV normalizes
price differences by expressing everything in volatility units:

IV = “how much volatility is the market implying?”

This allows apples-to-apples comparison across all strikes and maturities.
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A More Sophisticated Practitioners’ Approach
Volatility Surface

• Once IVs are computed across all strikes and maturities, practitioners arrange
them into a volatility surface:

σ = σ

(
K

S0
,T

)
• This surface summarizes:

• the skew/smile (variation across strike), and

• the term structure (variation across maturity).

• The volatility surface becomes the central tool for:
• pricing OTC and exotic options,

• computing Greeks,

• fitting models (local vol, stochastic vol),

• relative value trading (identifying cheap/expensive options).
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A More Sophisticated Practitioners’ Approach
Volatility Surface
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A More Sophisticated Practitioners’ Approach
Examples

• To value a new option, locate its position on the volatility surface.

σ∗ = σ

(
K

S0
,T

)
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A More Sophisticated Practitioners’ Approach
Examples

• Example 1: 9-month, K/S0 = 1.05 (OTM call).
• Table gives IVs: 13.4% (0.5 year) and 14.0% (1.0 year).

• Interpolate along maturity to get: σ∗ ≈ 13.7%

• Use σ∗ in BSM or a binomial tree to compute the option value.

• Example 2: 1.5-year, K/S0 = 0.925 (ITM put).
• Strike dimension � interpolate across K/S0.

• Maturity dimension � interpolate across T .

• Apply bilinear interpolation (2D). Result:σ∗ ≈ 14.525%

• Use this IV to price the option.

• Alternative approach: fit a regression-based IV surface.
• Estimate:

σ̂ = a+ b

(
K

S0

)
+ cT + d

(
K

S0

)2

+ e

(
K

S0
T

)
+ fT 2.

• Smooths noisy market IVs and avoids jumps in the surface.
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Summary

• Despite its inaccuracies BSM serves as a useful benchmark.
• Gives decent approximation to prices close to the money.

• It also works reasonably well to hedge options positions against changes in
stock prices using delta or delta-gamma hedging.

• Models have been proposed to correct some of the shortcomings.
• Stochastic volatility
• Jumps
• Fat tails

• All of these models are consistent with the idea that OTM puts are expensive
relative to BSM prices because investors seeking protection from large losses
(e.g., jumps down) must pay a higher (insurance) premium
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Appendix: Volatility Estimation
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Numerical Example: Prices and Log Returns

Suppose we observe the following daily closing prices for a stock:

Day 0 1 2 3 4 5

St 100 102 101 105 103 106

Daily log returns are

Rt = ln

(
St

St−1

)
t 1 2 3 4 5

Rt 0.01980 −0.00985 0.03884 −0.01923 0.02871
R2
t 0.000392 0.000097 0.001509 0.000370 0.000824
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Numerical Example: Historical Volatility

Using the 5 daily log returns
R1, . . . ,R5,

the (daily) historical variance estimator is

σ̂2
daily =

1

K

K∑
t=1

R2
t , K = 5.

5∑
t=1

R2
t ≈ 0.003192 ⇒ σ̂2

daily =
0.003192

5
≈ 0.000638

Daily historical volatility:

σ̂daily =
√
0.000638 ≈ 0.02527 (2.53% per day)

Annualizing with h = 252 trading days:

σ̂annual =
√
252 σ̂daily ≈ 0.4011 (40.1% per year)
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Numerical Example: EWMA Volatility
EWMA gives more weight to recent returns. Let w = 0.94 and use the same 5 returns.

Index the returns from most recent to oldest:

k 0 1 2 3 4

return R5 R4 R3 R2 R1

value 0.02871 −0.01923 0.03884 −0.00985 0.01980

Weights:

w 0 = 1.0000, w 1 = 0.94, w 2 ≈ 0.8836, w 3 ≈ 0.8306, w 4 ≈ 0.7807

4∑
k=0

w k ≈ 4.4349

EWMA daily variance:

σ̂2
daily, EWMA =

∑4
k=0 w

kR2
t−k∑4

k=0 w
k

≈ 0.002892

4.4349
≈ 0.000652

Daily EWMA volatility:

σ̂daily, EWMA =
√
0.000652 ≈ 0.02553 (2.55% per day)

Annualized:

σ̂annual, EWMA =
√
252 σ̂daily, EWMA ≈ 0.4053 (40.5% per year)
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Numerical Example: GARCH(1,1) Volatility

Consider a simple GARCH(1,1) model:

rt = µ+ ϵt , ϵt ∼ (0, σ2
t ),

σ2
t = ω + αϵ2t−1 + βσ2

t−1.

For this example, set:

µ = 0, α = 0.05, β = 0.94, α+ β = 0.99 < 1.

We choose ω so that the long-run (unconditional) variance matches our historical
estimate σ̂2

daily ≈ 0.000638:

σ2
∞ =

ω

1− α− β
⇒ ω ≈ (1− 0.99)× 0.000638 ≈ 6.38× 10−6.
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Numerical Example: GARCH(1,1) Volatility (cont’d)

Start with the long-run variance as the initial value:

σ2
1 = σ2

∞ ≈ 0.000638.

Shocks are just returns (since µ = 0):

ϵt = Rt .

Step 1: Compute σ2
2

ϵ1 = R1 = 0.01980, ϵ21 ≈ 0.000392

σ2
2 = ω + αϵ21 + βσ2

1 ≈ 0.00000638 + 0.05(0.000392) + 0.94(0.000638) ≈ 0.000626

σ2 =
√
0.000626 ≈ 0.02502 (2.50% per day)
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Numerical Example: GARCH(1,1) Volatility (cont’d)

Step 2: Compute σ2
3

ϵ2 = R2 = −0.00985, ϵ22 ≈ 0.000097

σ2
3 = ω + αϵ22 + βσ2

2 ≈ 0.00000638 + 0.05(0.000097) + 0.94(0.000626) ≈ 0.000600

σ3 =
√
0.000600 ≈ 0.02449 (2.45% per day)

Interpretation:

• A large shock today (ϵ2t big) raises tomorrow’s variance σ2
t+1.

• In the absence of large shocks, σ2
t slowly drifts back toward the long-run level.
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Appendix: Volatility Models
(Chapter 27)
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Local Volatility Models

• Idea: The Black–Scholes model assumes volatility is constant. Local volatility
models relax this by allowing volatility to depend on the current stock price and
time:

dSt = µStdt + σ(St , t) StdWt .

• One popular example is the Constant Elasticity of Variance (CEV) model:

dSt = µStdt + (σSγ−1
t )StdWt .

• Interpretation of γ:

• γ = 1: reduces to the Black–Scholes model (constant volatility).
• γ < 1:

• When St falls, Sγ
t increases relative to St ,

• ⇒ volatility rises at low prices,
• ⇒ OTM puts become more valuable,
• ⇒ volatility smirk (equity skew) appears.

• γ > 1: volatility rises with price (sometimes seen in futures/options on
commodities).

• Takeaway: Local volatility models can generate a smile or smirk because volatility
changes depending on where the stock price is.
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Stochastic Volatility Models
• Idea: Volatility itself moves randomly over time, rather than being constant. This

helps explain why options imply different volatilities at different strikes.

• The Heston Model is a leading example:

dSt = µStdt +
√
vt StdWt ,

dvt = θ(ω − vt)dt + ξ
√
vt dBt .

• Meaning of parameters:
• ω: long-run average variance.

• θ: speed of mean reversion (how fast variance returns to ω).

• ξ: “vol of vol” – how much variance itself fluctuates.

• ρ: correlation between stock returns (dWt) and volatility shocks (dBt).
• Why Heston explains the smirk:

• If ρ < 0 (empirically true for equities): bad market moves � higher volatility.

• Higher volatility � higher crash probability.

• This makes OTM put options relatively expensive.

• ⇒ downward-sloping volatility skew.
• Intuition: A drop in price increases volatility, which increases the chance of an even

bigger drop.
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Jumps in Stock Prices
• Idea: Stock prices occasionally experience sudden large jumps (e.g., 1987 crash,

2020 COVID crash). The Black–Scholes model cannot capture this.

• A jump–diffusion model adds a jump component to price movements:

dSt = µStdt + σStdWt + J(Q) St dPt .

• Interpretation:

• dPt is usually 0, but equals 1 with a small probability � a jump occurs.

• J(Q) is the jump size (can be random or fixed).

• If J(Q) < 0, the jump is downward � a crash.

• Impact on options:

• If downward jumps are possible, tail risk increases.

• OTM puts become much more valuable.

• ⇒ steeper volatility smirk.

• Downside jump risk = expensive insurance.

• Pricing jumps is harder, because Black–Scholes cannot be used directly. More
advanced numerical methods are required (Monte Carlo, Fourier transforms, etc).
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Implied Tree Models

• Idea: Normally, we start with a model (e.g., binomial tree) � compute option
prices. With implied trees, we reverse the process:

Use observed option prices ⇒ infer the stock price tree.

• Once calibrated, the implied tree:

• matches market option prices exactly,

• produces a local volatility surface implicitly,

• can be used to price other options consistently.
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Implied Tree Models

• Example: Given:

S0 = 1502.39, K = 1500, σ = 12.36%, r = 4.713%, δ = 1.91%, T = 0.12.

Compute initial binomial parameters:

• u = eσ
√
T = 1.0437, d = 1/u = 0.9581.

• Risk-neutral p =
e(r−δ)T − d

u − d
= 0.5286.

• BSM/binomial price: c = 28.394.

• Market price: cmkt = 20.35 (model overprices).

• Implied-tree step: Adjust σ (and therefore u and d) until model = market:

σ = 8.24% (new p = 0.5446)

Now the tree is calibrated � can be used to price other options.
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Other Modern Volatility Models

• Beyond local volatility, stochastic volatility, and jump models, modern
quantitative finance uses several advanced models to better match the observed
volatility smile and surface.

• SABR Model (Hagan, Kumar, Lesniewski, Woodward, 2002)

• Widely used in interest-rate and FX markets.
• Models both the asset price and its volatility as stochastic processes.
• Flexible enough to generate smiles, skews, and term structure effects.
• Provides simple formulas that traders can implement quickly.

• Rough Volatility Models (Gatheral, Jaisson, Rosenbaum, 2018)

• Based on the empirical finding that volatility moves “roughly,” showing long
memory and very jagged paths.

• Captures the fine structure of volatility better than classical models.
• Produces realistic short-term smiles and accurate VIX dynamics.

• Why these models matter in practice:

• They fit market implied volatility surfaces more accurately.
• They improve pricing of exotic options and risk management.
• They help traders understand how the smile evolves over time.
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