
Option Greeks

BUSS386. Futures and Options

Professor Ji-Woong Chung

1 / 59



Lecture Outline

• The Greeks

• Applications
• Capital protection products
• Risk management

• Disclamer: the discussion is based on the BSM model. The empirical (actual)
values of the Greeks are usually different from what the BSM model predicts!
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“The Greeks”

• The sensitivity of option value to various factors

• They are known as “The Greeks.”

1 Delta
2 Gamma
3 Theta
4 Vega
5 Rho

• They are used for risk management as well as trading.

• For options that can be priced using BSM, they often take a simple form.
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Delta, ∆

1 Delta: Sensitivity of option to changes in the underlying price.

∆ =
∂V

∂S
= N(d1) for Calls

• For dividend paying underlyings: e−q(T−t)N(d1)
• For put: N(d1)− 1. With dividends: e−q(T−t)(N(d1)− 1)

• It tells how many units of the underlying asset one should trade in order to
hedge the market risk exposure of the option.

• For example, if ∆ = 0.50 for a given call option, the position that is long one
call and short 0.50 shares of stock will be hedged against a (small) change in
the stock price up or down (Delta neutral hedge)

• Delta measures market risk.

• Approximately the probability that an option finishes in the money (in a risk
neutral world).

• Prob (ST ≥ K) = N(d2) = N(d1 − σ
√
T ) ∝ N(d1)
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Delta, ∆ (cont’d)

• Consider a call option on a non-dividend paying stock, where
S0 = 49,K = 50, r = 0.05, σ = 0.20,T = 0.3846.

d1 =
ln(49/50) + (0.05 + 0.22/2)0.3846

0.2×
√
0.3846

= 0.0542

• Delta is N(d1) = 0.522. When the stock price changes by ∆S , the option
price changes by 0.522∆S .
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Delta, ∆ (cont’d)

• The delta of is positive for calls and negative for puts.

• The delta is close to ±1 for deep in the money options.

• The delta of far out of the money option is close to 0.

• At the money option has delta of about ±0.50.
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Delta, ∆ (cont’d)
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Delta, ∆ (cont’d)

Same shape for call and put: the put-call parity!
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Gamma, Γ

2 Gamma: Sensitivity of Delta to changes in the underlying price.

Γ =
∂∆

∂S
=

N ′(d1)

Sσ
√
T

where N ′(x) = e−x2/2
√
2π

, a PDF for a standard normal distribution.

• Identical for both calls and puts. For dividend paying underlyings?

• Gamma measures risk for a delta neutral hedge.

• Gamma is related to the curvature of the option value function.
• For a long position, always positive.
• Gamma is the largest at the money.
• Gamma is small in the deep in or out of the money.
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Gamma, Γ (cont’d)
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Gamma, Γ (cont’d)
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Gamma, Γ (cont’d)

Variation of gamma with time to maturity for a stock option (S = 50, r = 0, σ = 25%).

For an at-the-money option, gamma increases as the time to maturity decreases. Short-life at-the-money

options have very high gammas, which means that the value of the option holder’s position is highly sensitive

to jumps in the stock price.
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Gamma, Γ (cont’d)

• Consider a call option on a non-dividend paying stock, where
S0 = 49,K = 50, r = 0.05, σ = 0.20,T = 0.3846.

N ′(d1)

Sσ
√
T

= 0.066

• When the stock price changes by ∆S , the delta of the option changes by
0.066∆S .
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Gamma, Γ (cont’d)

• A call has a Delta of 0.54 and Gamma of 0.04.
• Stock goes up $1: Delta will become more positive by the Gamma amount.
• New Delta value: 0.58

• Another call has a Delta of 0.75 and Gamma of 0.03
• Stock is down $1: Delta will become less positive by Gamma amount.
• New Delta value: 0.72

• XYZ: S = $50,K = $50,C = $2,∆ = 0.50, Γ = 0.06
• Should XYZ go up to $51, the 50 strike call will be worth around $2.50 when

using delta only.
• Using gamma as well: c(51)− c(50) = ∆(51− 50) + 1

2
Γ(51− 50)2

• Delta ≈ (Dollar) duration, Gamma ≈ (Dollar) convexity
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Theta (Θ)

• Theta measures “time decay.” As time passes, the option’s extrinsic value
melts away.

• Call and put thetas are usually negative. Options lose value as time
passes (holding all else constant).
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Theta, Θ

3 Theta: Sensitivity of option to passage of time, t.

Θ =
∂V

∂t
=

{
−S0N

′(d1)σ

2
√
T

− rKe−rTN(d2) for Calls

−S0N
′(d1)σ

2
√
T

+ rKe−rTN(−d2) for Puts

where N ′(x) = e−x2/2
√
2π

, a PDF for a standard normal distribution.

• Theta measures Time Decay.

• Theta decreases (more negative) when the option closer to expiration and at
the money.

• Deep ITM or deep OTM options have low theta because little time value
remains.
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Theta, Θ (cont’d)

European call option K = 50, r = 0, σ = 25%,T = 2
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Theta, Θ (cont’d)

European call option S0 = 50,K = 50, r = 0, σ = 25%
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Theta (Θ) (Cont’d)

(Assume long option positions throughout.)

• Call on a non-dividend-paying stock: Θ < 0
• As time passes (with S fixed), the variance of ST shrinks. A narrower

distribution reduces the value of optionality.
• The strike price K is like a debt due at maturity. As time passes, the

discount factor e−r(T−t) becomes smaller � the present value of the “debt”
rises. This hurts a long call holder.

• Call on a dividend-paying stock: Θ can be positive
• A call holder does not receive dividends. If a dividend is paid soon, the stock

price drops on ex-div date � bad for the call.
• As time passes and the dividend is avoided (or gets closer to being avoided),

the call’s relative value can increase, making Θ > 0 possible.
• Deep OTM calls have very low sensitivity to this effect � Theta remains near

zero.
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Theta (Θ) (Cont’d)

(Assume long option positions throughout.)

• Put options: Θ can be positive or negative
• When S is high (put is OTM): payoff at maturity is likely zero but the put

currently has time value. As time passes (with S fixed), this time value decays
� Θ < 0.

• When S is very low (deep ITM): payoff is approximately K with probability
near 1. The present value of K is Ke−r(T−t), which increases as t increases
(less discounting). Hence Θ > 0.

• American options: Θ is typically negative
• Early exercise rights add value, but this value also declines as time passes.
• The option still loses time value overall � Theta is almost always negative.
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Theta, Θ (cont’d)
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Theta, Θ (cont’d)
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Theta, Θ (cont’d)

• Consider a call option on a non-dividend paying stock, where
S0 = 49,K = 50, r = 0.05, σ = 0.20,T = 0.3846.

−S0N
′(d1)σ

2
√
T

− rKe−rTN(d2) = −4.31

• The theta is −4.31/365 = −0.0118 per calendar day, or
−4.31/252 = −0.0171 per trading day.
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Vega, ν

4 Vega: Sensitivity of option to a change in volatility σ.

ν =
∂V

∂σ
= S

√
TN ′(d1) > 0

where N ′(x) = e−x2/2
√
2π

, a PDF for a standard normal distribution.

• Vega measures exposure to Volatility Risk

• The vega of European and American calls and puts is positive.

• For very deep OTM or ITM options, the vega is close to zero.

• The vega of a call or put peaks near the money.

• Buying a portfolio with positive vega is “buying volatility”. Typically we do
this by buying a call and a put — a straddle.
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Vega, ν (cont’d)
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Vega, ν (cont’d)

Variation of vega with stock price for an option K = 50, r = 0, σ = 25%,T = 2
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Vega, ν (cont’d)

• Consider a call option on a non-dividend paying stock, where
S0 = 49,K = 50, r = 0.05, σ = 0.20,T = 0.3846.

S
√
TN ′(d1) = 12.1

• Thus a 1% (0.01) increase in the implied volatility from (20% to 21%)
increases the value of the option by approximately 0.01× 12.1 = 0.121.
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Rho, ρ

5 Rho: Sensitivity of option to a change in the interest rate.

ρ =
∂V

∂r
=

{
KTe−rTN(d2) > 0 for Calls

−KTe−rTN(−d2) < 0 for Puts

• Rho measures exposure to Interest Rate Risk.

• It depends on whether the option holder will pay K (call) or receive K (put).
The PV of K declines as r increases, making the payment made smaller for
the long call and payment received smaller for the long put.
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Rho, ρ (cont’d)

• Consider a call option on a non-dividend paying stock, where
S0 = 49,K = 50, r = 0.05, σ = 0.20,T = 0.3846.

KTe−rTN(d2) = 8.91

• This means that a 1% (0.01) increase in the risk-free rate (from 5% to 6%)
increases the value of the option by approximately 0.01× 8.91 = 0.0891.
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Summary
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Exercise

• Here are the current market prices for XYZ stock and two XYZ options. The
Greek letter risk exposures come from the Black-Scholes model. The interest
rate is 8% and the implied volatility is 0.25.

• You are long 105-strike calls on 100,000 shares. (That is, you have 100,000
call options, each covering one share.)

1 How would you set up a delta hedge for this position?
2 What would the overall hedged position be worth? (What is the net cost to

set it up?)
3 What are the Greek letter exposures for the overall position?
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Exercise (cont’d)

1 Position delta is 100, 000× 0.29 = 29, 000. Hedge by shorting 29, 000 shares.

2

Calls = 100, 000× 1.25 = 125, 000

Stocks = −29, 000× 100 = −2, 900, 000

Total = −2, 775, 000

3

Delta = 100, 000× 0.29 + (−29, 000)× 1 = 0

Gamma = 100, 000× 0.047 + (−29, 000)× 0 = 4, 700

Vega = 100, 000× 0.099 + (−29, 000)× 0 = 9, 900

Theta = 100, 000×−.044 + (−29, 000)× 0 = −4, 400
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Exercise (cont’d)

• Tomorrow, XYZ stock opens at 95. Here is the new set of option prices and
Greek letters.

4 If you liquidate right now, what would the profit or loss on the hedged
position be?

5 If you don’t liquidate, what stock trade will you need to do to become delta
neutral again?
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Exercise (cont’d)

4 If you unwind at the new prices your profit is:

Calls = 100, 000× (0.30− 1.25) = −95, 000

Stocks = −29, 000× (95− 100) = +145, 000

Total = +50, 000

5 If you wanted to rehedge, with the new delta, you should only be short

100, 000× 0.10 = 10, 000.

You have to buy back 19, 000 of the shares you shorted.
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Who cares about the Greeks?

• They are very important for market makers (MM).

• When a MM trades an option, s/he immediately trades stocks to cover delta
risk.

• MM is not betting on direction, but volatility.

• MM has a portfolio of different options, strikes, maturities and constantly
monitoring the overall Delta, Gamma, Vega, and Theta portfolio risk.
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Protected Principal Note

• Remember that this is an investment strategy where investors do not lose any
of principal (initial investment) and sometimes earn additional profits. Also
called “capital protected note”.

• Investment banks often offer such securities, and hedge the short position
with options or dynamic trading strategies.
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Protected Principal Note: Example

• On Feb 22, 2008, you as an MM sold a Capital Protected Note with:
• Maturity: February 20, 2015
• Issue price: $10
• Principal: $10
• Interest: 0%
• Principal protection: 100%
• Payoff at maturity = principal + Supplemental Redemption Amount (SRA) if

positive

SRA = $10× 116%× Final Index Value − Initial Index Value

Initial Index Value

• Index is S&P 500 normalized to have Initial Index Value = $10

• You want to protect your short position against increases in the stock price
index.

37 / 59



Protected Principal Note: Example (cont’d)

Payoff on Capital Protected Note
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Protected Principal Note: Example (cont’d)

• The payoff on the note can be decomposed into:
• A zero coupon bond with principal $10 and maturity T = 7.
• 1.16 at-the-money call options on the normalized S&P 500 with maturity

T = 7.
• The reference index is normalized so that S0 = β × S&P500 = $10
• On 2/28/08, S&P500 = 1353.1 → β = 10/1353.1

• Other data on 2/28/08
• Interest rate, r = 3.23% (continuously compounded)
• Dividend yield on S&P 500, q = 2%
• Forecast of market volatility over the 7 years, σ = 15%

• The value of the security using BSM for dividend-paying stock is:

e−rT ($10) + (1.16)Call(S0,K , r , δ, σ,T )

= $7.9764 + (1.16)$1.7 = $9.9483

• Investors give up interest on principal in exchange for a call option.
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Protected Principal Note: Example (cont’d)

• At t = 0, the MM has a short position in the Capital Protected Note

• Hedge with an offsetting long position:
• Buy a zero coupon bond for $7.9764 to hedge the bond component.
• Buy 1.16 units of the replicating portfolio for the embedded call option.

• Setting up the replicating portfolio for each call:
• We can calculate the call’s ∆ = e−qTN(d1) = 0.5747.
• Then the bond position

= Call(S0,K , r , δ, σ,T )−∆× S0 = 1.7− 0.5747× 10 = −4.047
• In sum, for each call option, invest 0.5747× $10 = $5.747 in the S&P 500 and

borrow $4.047

• Value of replicating portfolio = $5.747− $4.047 = 1.7

• Multiply both positions by 1.16 to scale up to the replicating portfolio for the
Capital Protected Bond
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Dynamic Delta Hedging

• Theoretically we need to frequently rebalance the portfolio as the ∆ changes.
• It will change with the stock price.
• It will also change the passage of time, and any changes in r and σ.

• Recalculate ∆ and new value of call.

• Adjust holdings of stocks and bonds in replicating portfolio to match new
option value.

• The effectiveness of dynamic hedging depends on:
• Frequency of rebalancing
• Stability and accuracy of parameters (e.g., volatility)
• Whether jumps in stock prices
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How well does dynamic replication work in practice?

Replicating a put option on S&P 500 index, T = 1, σ = std.dev in 1999.
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Portfolio Insurance (LOR Method)

• In 1981, UC Berkeley Professors Hayne Leland and Mark Rubinstein
partnered with John O’Brien to form Leland, O’Brien, Rubinstein
Associates (LOR).

• Business Idea: Provide downside protection for portfolios using dynamic
replication based on option pricing theory.

• The goal was to replicate a protective put on a portfolio—without trading
listed options— by dynamically adjusting stock and cash positions.

• A fully invested equity portfolio (e.g., a pension fund) could obtain
“insurance” guaranteeing a minimum floor value for the portfolio.

• LOR did not sell insurance directly. Instead, they advised clients on dynamic
asset allocation: when the market fell, increase short positions or reduce
equity exposure; when the market rose, increase equity exposure—mimicking
option delta-hedging.

• Their product was attractive to pension funds, endowments, and mutual
funds seeking capital preservation with equity exposure.

• Adoption accelerated dramatically: although initially slow, demand grew
rapidly during 1984–1986. By 1987, an estimated $100 billion in assets were
using portfolio insurance strategies.
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Portfolio Insurance: Example (cont’d)

• A portfolio is worth $90 million. To protect against market downturns:

1 Give the following data

S0 = $90,K = $87, r = 0.09, q = 0.03, σ = 0.25,T = 0.5

d1 =
ln(90/87) + (0.09− 0.03 + 0.252/2)0.5

0.25
√
0.5

= 0.4499

2 Create the put option synthetically, where the delta is
e−qT (N(d1)− 1) = −0.3215.

• This shows that 32.15% of the portfolio should be sold initially and invested in
risk-free assets.

• If the value of the original portfolio reduces to $88 million after 1 day, the
delta of the required option changes to 0.3679 and a further 4.64% of the
original portfolio should be sold and invested in risk-free assets.
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Portfolio Insurance (cont’d)
• A variety of portfolio insurance structures emerged during the 1980s, all

attempting to replicate some form of downside protection using dynamic
trading.

• The most important innovation was “perpetual” portfolio insurance.
• Traditional insurance products had a fixed horizon (e.g., 3 years). Protection

lasted only for a predetermined period.
• But institutional investors—especially pension funds and endowments—have

very long-term liabilities. Short-term insurance is of limited use to investors
managing decades-long obligations.

• Perpetual insurance was designed to replicate a perpetual American put on the
portfolio: the investor could “exercise” (lock in the floor value) at any time,
indefinitely into the future.

• This flexibility made perpetual insurance far more attractive, since the
portfolio was always insured against large declines while still participating in
the upside of the market.

• By the mid-1980s, perpetual insurance became the dominant form and drove
explosive growth in demand— setting the stage for its massive influence on
equity market dynamics.

• But then came the 1987 crash . . .
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How well does dynamic replication work in practice?

This example is for put options around the time of the 1987 market crash.
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How Well Does Dynamic Replication Work in Practice?

• In theory, delta-hedging perfectly replicates an option only in a world where
prices move continuously and trading can occur at infinitely high frequency
(Black–Scholes assumptions).

• In practice, stock prices move in discrete steps and often experience large,
sudden jumps. When this happens, the hedge cannot be adjusted quickly
enough, and replication errors accumulate.

• Dynamic replication works reasonably well when:
• price paths are smooth,
• volatility changes gradually, and
• markets are liquid enough to execute trades without moving prices.

• But when markets are volatile or discontinuous, the strategy breaks down:
• hedging becomes costly,
• slippage creates large tracking errors,
• and replication fails to provide the promised downside protection.

• The 1987 crash is the classic example: the large one-day drop made
continuous rebalancing impossible, revealing the limits of portfolio insurance
strategies built on delta-hedging.
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Delta–Gamma Hedging

• We have seen that pure delta hedging has important limitations:
• The hedge must be rebalanced continuously, which is costly in the presence of

transaction costs.
• Large, discrete jumps in the stock price cause the hedge to fail because delta

hedging assumes smooth (continuous) price paths.

• One way to improve hedge performance is delta–gamma hedging, which
attempts to hedge not only the first-order sensitivity (delta) but also the
second-order sensitivity (gamma).

• The idea is to add to the hedge portfolio a security with positive
gamma—typically a short-term traded option. Positive gamma offsets the
negative gamma of a long-dated short option position.
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Delta–Gamma Hedging (cont’d
• Consider a portfolio:

Π = −Call(S ,T ) + N × S + NC × Call(S ,T1)

where:
• We are short a long-dated call (similar to the embedded call in a

capital-protected note).
• We hold N shares of stock.
• We hold NC units of a short-maturity call option with expiry T1 < T .

• We choose N and NC so that:

∂Π

∂S
= 0 and

∂2Π

∂S2
= 0.

• This means:
• Delta-neutrality: small moves in S do not affect the portfolio value.
• Gamma-neutrality: the portfolio’s delta does not change when S moves.

• With gamma hedged, the portfolio becomes much more robust to large price
moves, reducing the frequency and cost of rebalancing—even though perfect
replication is still impossible in practice.
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Delta hedging: Capital Protected Note
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Delta–Gamma Hedging (cont’d)
• To eliminate both first- and second-order price risk, we impose:

∂Π

∂S
= 0 and

∂2Π

∂S2
= 0.

• Applying these to

Π = −C (S ,T ) + NS + NCC1(S ,T1),

we obtain:

∂Π

∂S
= −∆(S ,T ) + N + NC∆(S ,T1) = 0, (Delta hedge)

∂2Π

∂S2
= −Γ(S ,T ) + NCΓ(S ,T1) = 0, (Gamma hedge)

• Solving the system yields:

NC =
Γ(S ,T )

Γ(S ,T1)
, N = ∆(S ,T )− NC∆(S ,T1).

• Since the short-term option has positive gamma, we take a long position in
it. This reduces the stock position relative to pure delta-hedging because we
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Delta–Gamma Hedging (cont’d)
• Example: Hedge a long-dated call (the embedded option in a Capital

Protected Note) using a one-year traded option.

C (S ,T ) = 1.7000, Γ(S ,T ) = 0.0801, ∆(S ,T ) = 0.5747
C (S ,T1) = 0.6443, Γ(S ,T1) = 0.2575, ∆(S ,T1) = 0.5512

• Compute hedge ratios:

NC =
Γ(S ,T )

Γ(S ,T1)
=

0.0801

0.2575
= 0.3113

N = ∆(S ,T )− NC∆(S ,T1) = 0.5747− (0.3113)(0.5512) = 0.4031

• The bond position is then:

Bonds = C (S ,T )− NS − NCC (S ,T1) = −2.5315

• Interpretation:
• We hold a smaller stock position (0.4031 instead of 0.5747 under delta-only

hedging).
• We hold a small long position in a short-dated call to neutralize gamma.
• The negative bond position reflects the financing required to support the

hedge.
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Delta-gamma hedging (cont’d)
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Delta-gamma hedging (cont’d)

• The Delta-Gamma hedging allows for larger swings in the stock price before
calling for rebalancing.

• Less frequent rebalancing implies lower transaction costs.
• But we have more transaction costs from rebalancing T1-dated options.
• We need to use very liquid, exchange-traded options to minimize transaction

costs.

• Additional benefit is that large sudden changes in stock prices are now better
hedged.
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Why Gamma Hedges Reduce Rebalancing Frequency
• A pure delta hedge removes only first-order price sensitivity:

∂Π

∂S
= 0.

But as soon as S moves, delta changes:

∆ → ∆+ Γ∆S .

• A portfolio with large gamma experiences large changes in delta even for
small moves in S :

|∆new −∆old| = |Γ∆S |.

Hence, delta hedges break down quickly � frequent rebalancing required.

• By adding a traded option with offsetting gamma, we create:

ΓΠ ≈ 0.

• With gamma neutralized:
• Delta becomes almost constant in a neighborhood of S .
• Small price movements no longer force immediate rebalancing.
• Hedge remains effective over a wider range of underlying prices.

55 / 59



Why Delta–Gamma Hedging Still Fails in Practice

• Even though delta–gamma hedging improves replication, it still relies on key
assumptions that often fail in real markets.

• Volatility shocks
• Gamma hedging does not address volatility risk (vega).
• When implied volatility changes, option values shift dramatically.

• Liquidity constraints
• Adjusting stock or option positions may move the market price.
• In stressed markets, liquidity disappears and hedging becomes impossible.

• Model risk
• Hedging relies on Black–Scholes Greeks.
• If volatility smile, jumps, or stochastic volatility are present, the Greeks are

wrong.

• Bottom line: Delta–gamma hedging reduces risk but can never fully
eliminate it in real markets.
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Vega Hedging

• Consider again the portfolio

Π = −C (S ,T ) + NS + NCC1(S ,T1),

where we are short a long-dated call C (S ,T ), long N shares, and long NC

units of a traded short-dated call C1(S ,T1).

• Previously, we used C1 to hedge gamma. But options also carry vega risk:

ν =
∂C

∂σ
,

so we can also consider the sensitivity of Π to volatility.

• To make the portfolio vega-neutral:

∂Π

∂σ
= −ν(S ,T ) + NCν(S ,T1) = 0.
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Vega-hedging (cont’d)

• Solving for the hedge ratio:

NC =
ν(S ,T )

ν(S ,T1)
.

• Interpretation:
• If the long-dated option has larger vega than the short-dated option (typical),

we must take a larger position in C1.
• The stock position N does not affect vega (stock has zero vega).
• Vega neutrality eliminates exposure to implied-volatility shocks.
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Vega–Gamma Hedging

• To hedge both gamma and vega simultaneously, one traded option is not
enough. We need at least two options with different maturities (or strikes).

Π = −C (S ,T ) + NS + NC
1 C1(S ,T1) + NC

2 C2(S ,T2).

• The hedging conditions are:

Vega neutrality:
∂Π

∂σ
= −ν + NC

1 ν1 + NC
2 ν2 = 0,

Gamma neutrality:
∂2Π

∂S2
= −Γ + NC

1 Γ1 + NC
2 Γ2 = 0.
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Vega-Gamma hedging (cont’d)

• Solving the two-equation system:

NC
2 =

ν Γ1 − ν1 Γ

ν2 Γ1 − ν1 Γ2
, NC

1 =
ν − NC

2 ν2
ν1

=
Γ− NC

2 Γ2
Γ1

.

• Economic intuition:
• Using two options allows us to cancel both curvature risk (Γ) and volatility risk

(ν).
• Options with different maturities have different gamma/vega ratios, giving us

two degrees of freedom.
• After choosing NC

1 and NC
2 , the stock position N is set to hedge delta.
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Example

• Consider a portfolio that is delta neutral, with a gamma of −5, 000 and a
vega of −8, 000.

• The options shown in the following table can be traded.

• Unlike the formula we derived where we hedge short call, here assume that
we try to hedge long calls.
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Example (cont’d)

• To make the portfolio gamma and vega neutral, both Option 1 and Option 2
can be used. If w1 and w2 are the quantities of Option 1 and Option 2 that
are added to the portfolio, we require that

−5, 000 + 0.5w1 + 0.8w2 = 0

−8, 000 + 2.0w1 + 1.2w2 = 0

• The solution to these equations is w1 = 400,w2 = 6, 000.

• The portfolio can therefore be made gamma and vega neutral by including
400 of Option 1 and 6, 000 of Option 2.

• The delta of the portfolio, after the addition of the positions in the two
traded options, is 400× 0.6 + 6, 000× 0.5 = 3, 240. Hence, 3, 240 units of
the asset would have to be sold to maintain delta neutrality. This doesn’t
affect Gamma and Vega.
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Mispricing When Greeks Are Wrong (Model Risk)
• Greek-based hedging relies on model-derived sensitivities:

∆model, Γmodel, νmodel, . . .

• But the Greeks are only as good as the model behind them (e.g.,
Black–Scholes, local volatility, stochastic volatility).

• When the model is wrong, the Greeks are wrong:

∆true ̸= ∆model, Γtrue ̸= Γmodel, . . .

• Sources of model risk:
• Volatility smile/skew not captured by Black–Scholes.
• Stochastic volatility, jumps, or fat tails.
• Incorrect interest rates, dividend assumptions, or correlations.
• Calibration errors (market data noise, sparse data).

• When Greeks are mismeasured:
• Delta hedges drift away � persistent P&L leaks.
• Gamma hedges fail to offset curvature � large convexity errors.
• Vega hedges miss volatility shocks � P&L explosions on event days.

• A seemingly small Greek error leads to: Wrong hedge ratios, systematic
under/over-hedging, drift in portfolio value, potential large losses during
stress.

63 / 59



General Approach to Risk Management
• Risk exposures add up linearly. For any portfolio, the Greek exposures are

the sum of the Greeks of its component instruments:

∆Π =
∑
i

∆i , ΓΠ =
∑
i

Γi , νΠ =
∑
i

νi , . . .

This linearity is what makes Greek-based hedging tractable.
• At least one hedging instrument is needed per type of risk.

• To hedge two independent risks (e.g., delta and gamma), we need at least two
traded instruments that react differently to those risks.

• One hedging instrument ⇒ can eliminate only one dimension of risk.

• Not every instrument can hedge every Greek.
• A bond has zero delta, zero gamma, zero vega � cannot hedge market or

volatility risk.
• A stock has delta but zero gamma and zero vega � hedges only delta.
• Two European options with the same strike and maturity have identical

gamma and vega � cannot be used to hedge gamma and vega separately.

• Effective hedging requires selecting instruments whose Greek exposures span
the risks you want to eliminate. This is a dimensionality problem � you need
enough instruments and they must be sufficiently different.
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General Approach to Risk Management (cont’d)

• When the number of hedge instruments exceeds the number of risks,
the hedge is not unique.

• Many different combinations of hedge ratios can deliver
∆ = 0, Γ = 0, ν = 0, . . ..

• This creates a family of hedges, all satisfying the constraints.

• This flexibility allows optimization along other dimensions:
• Minimize hedging cost: Cheaper combination of options and stock to achieve

the same Greek neutrality.
• Maximize expected profit: If some options appear mispriced, overweight

“cheap” ones and underweight “expensive” ones while still matching Greeks.
• Minimize future rebalancing: Choose hedge ratios that make the portfolio

less sensitive to drift in Greeks � reduces transaction costs.
• Minimize liquidity impact: Use more liquid instruments where possible to

reduce slippage and market impact.

• When there is more than one feasible hedge, traders choose the hedge that
best balances cost, robustness, liquidity, and views on mispricing—while still
neutralizing the targeted risks.
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Appendix: LTCM and Model Risk in Hedginga
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LTCM and Model Risk in Hedging

• Long-Term Capital Management (LTCM) was a hedge fund founded by
John Meriwether with Nobel laureates Merton and Scholes (Black–Scholes
co-author).

• Their strategy relied heavily on:
• relative-value arbitrage,
• convergence trades,
• extremely leveraged hedges based on model-derived Greeks.

• Primary vulnerability: Model Risk
• Pricing models assumed stable correlations and smooth markets.
• Greeks (especially delta, vega, rho) were computed assuming normal markets.
• They believed risks were hedged because the models said so.
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LTCM and Model Risk in Hedging (cont’d)

• What went wrong? (1998 crisis)
• Russia defaulted on its sovereign debt.

• Global flight to quality � massive spread widening and volatility spikes.

• Correlations broke down (moves became highly nonlinear).

• Liquidity evaporated � impossible to rebalance hedges.

• Outcome:
• Model-based hedges failed spectacularly.

• Small Greek errors became huge when volatility and spreads deviated from
model assumptions.

• Portfolio suffered massive losses; Fed-organized bailout followed.

• Lesson: Accurate hedging requires not just computing Greeks, but ensuring
the model generating those Greeks is valid under stress. Otherwise,
hedging creates leverage to model error.
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Appendix: Relation between Delta, Gamma, and Theta
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Relation Between Delta, Gamma, and Theta

• Black and Scholes derived a partial differential equation (PDE) that any
option price V (S , t) must satisfy in a world with continuous trading and no
arbitrage.

• The Black–Scholes PDE is:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
= rV .

• Using Greek notation:

Θ + rS∆+
1

2
σ2S2Γ = rV .

• For a delta-neutral portfolio (∆ = 0):

Θ +
1

2
σ2S2Γ = rV .

70 / 59



Relation Between Delta, Gamma, and Theta (cont’d)

• The PDE links time decay (Theta), curvature (Gamma), and the cost
of carry.

• Θ (time decay) and Γ (curvature) must jointly generate the risk-free return rV .
• High positive Theta (Gamma) typically requires strongly negative Gamma

(Theta).

• Economic meaning: the Theta–Gamma tradeoff
• Buying Gamma (e.g., long options) gives convexity but costs time decay

(negative Theta).
• Selling Gamma (e.g., short options) earns Theta but creates curvature risk

(large negative Gamma).
• In a delta-neutral portfolio, Theta is effectively the cost or payoff of

holding Gamma.

• In a delta-neutral setting, Theta and Gamma are mechanically linked by the
PDE. This is why traders often treat Theta as a proxy for Gamma
exposure— you “earn” Theta only by taking on negative Gamma risk.
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Appendix: Other Greeks

72 / 59



Other Higher-Order Greeks

• Volga = ∂2V
∂σ2 : Change in Vega due to volatility

• Vanna = ∂2V
∂σ∂S : Change in Vega due to price

• Charm = ∂2V
∂S∂t : Change in Delta due to time passing
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