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BSM Model
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Binomial Model vs. Black–Scholes–Merton (BSM) Model

• Binomial model: assumes the underlying asset price moves in discrete
time-steps (up or down at each step).

• BSM model: built on continuous-time dynamics, modelling the asset price
as evolving continuously.

• Although their approaches differ, they are closely connected: as the binomial
time-steps shrink toward zero, the discrete model converges to the BSM
formula for European-style options.

• When to use which:
• Use the binomial model for flexibility (e.g., American options, early exercise,

variable volatility).
• Use the BSM model when assumptions (continuous trading, no early exercise,

constant volatility) are reasonable and a closed-form solution is desired.
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Black-Scholes-Merton Model

• The prices of European call and put options on non-dividend-paying stock are

c0 = S0N(d1)− Ke−rTN(d2)

p0 = Ke−rTN(−d2)− S0N(−d1)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T ,

and N(x) is the cumulative probability distribution function for a standard normal random

variable.
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BSM Model – Distribution of Future Stock Price
• A core assumption of the Black–Scholes–Merton model (BSM) is that the

underlying stock price follows a log-normal distribution, i.e.

lnST ∼ N(m, s2)

where N(m, s2) denotes a normal distribution with mean m and variance s2.1

• We can also derive this log-normal result via the discrete-time binomial
model:

• As the time-step size tends to zero and the number of steps tends to infinity,
the binomial distribution of stock-price paths converges to the continuous
GBM model and hence to log-normal terminal distribution.

• Next, we will prove the log-normality of ST .
1Equivalently, ST is log-normally distributed, which ensures ST > 0 and aligns with modelling

via Geometric Brownian Motion (GBM):

dSt = µSt dt + σSt dWt

and thus
lnST = ln S0 +

(
µ− 1

2
σ2
)
T + σWT .
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Log-Normal Property of Stock Prices – Setup

• Consider a binomial tree for the stock price with n steps each of length

∆t =
T

n
.

• At each step the stock either moves up by factor u or down by factor d .

• If there are j upward moves and n − j downward moves, then at expiry

ST (j) = S0 u
j d n−j .

(This sets the discrete-time framework from which we will pass to a continuous-time

limit.)
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Distribution of Terminal Moves

• What will happen if n becomes infinitely large? (This would be equivalent to
making each step infinitesimally small).

• To see this, let’s increase the number of steps n.

Distribution of j when n = 10 and p = 0.5
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Illustration of Convergence

Distribution of j when n = 30 and p = 0.5 Distribution of j when n = 100 and p = 0.5
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• As n grows large, the bar/histogram of j becomes more like a smooth bell curve. →
The Central Limit Theorem

• Hence, as n approaches infinity, the number of upward movement will be normally
distributed

j ∼ N(np,
√

np(1− p).

9 / 88



From Terminal Moves to Log Stock Price

• We now know the distribution of j . Next, let’s find the distribution of ST (j).

• Using u = eσ
√
∆t and d = e−σ

√
∆t ,

ST (j) = S0u
jdn−j

= S0e
(σ

√
∆t)je(−σ

√
∆t)(n−j)

= S0e
(2σ

√
∆t)j−nσ

√
∆t

• The log of stock price is

lnST (j) = ln S0 + (2σ
√
∆t)j − nσ

√
∆t

• As j is normally distributed, ln ST is also normally distributed. Hence, ST (j)
is log-normally distributed.
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Mean and Variance of ln ST (in limit)

• To further identify the distribution, let’s find the mean and the standard
deviation of lnST .

• The mean of lnST is

E (lnST ) = lnS0 + 2σ
√
∆tE (j)− nσ

√
∆t

= lnS0 + 2σ
√
∆t(np)− nσ

√
∆t
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Mean and Variance of ln ST (in limit)

• To proceed, we use p = er∆t−e−σ
√

∆t

eσ
√

∆t−e−σ
√

∆t
(i.e., risk-neutral probability). Here we

use the Tylor series of ex and also the fact ∆t → 0 as n → ∞.2

p ≈ 1 + r∆t − (1− σ
√
∆t + σ2∆t/2)

(1 + σ
√
∆t + σ2∆t/2)− (1− σ

√
∆t + σ2∆t/2)

=

(
1

2
+

(r − σ2/2)
√
∆t

2σ

)

• Plugging this p into E (lnST ) in the previous page, the mean becomes

E (lnST ) = lnS0 +

(
r − σ2

2

)
T

where we use the fact ∆t = T
n .

2er∆t ≈ 1 + r∆t + 1
2
r2∆t2 (set ∆t as x), e−σ

√
∆t ≈ 1− σ

√
∆t + 1

2
σ2∆t (set

√
∆t as x).
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Mean and Variance of ln ST (in limit)

• The standard deviation of ln ST is

Std.Dev.(lnST ) = 2σ
√
∆t ×

√
np(1− p)

= 2σ
√
Tp(1− p).

• Next, let’s simplify the standard deviation. We find

p(1− p) =

(
1

2
+

(r − σ2/2)
√
∆t

2σ

)(
1

2
− (r − σ2/2)

√
∆t

2σ

)

=
1

4
−
(
r − σ2/2

)2
4σ2

∆t ≈ 1

4

• Thus, the standard deviation of lnST becomes

Std.Dev.(lnST ) = σ
√
T .
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Log-Normal Property of Stock Prices

• Combining the mean and the standard deviation, we conclude

lnST ∼ ϕ

(
lnS0 +

(
r − σ2

2

)
T , σ

√
T

)
in the risk-neutral world.
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Log-Normal Property of Stock Prices - Real probability

• Consider the real world where investors require the return α per annum on
stock. Then, we can use the real probability p∗ instead of p.

p∗ =
eα∆t − d

u − d

• Following the same logic as in the risk-neutral world, the real world
distribution of stock price is

lnST ∼ ϕ

(
lnS0 +

(
α− σ2

2

)
T , σ

√
T

)
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Log-Normal Property of Stock Prices - Example

• Suppose that S0 = 10, r = 0.09, σ = 0.4, and T = 1. Below are the
probability density functions of ST and rT (= ln(ST/S0)).

ST rT

S
T

0 5 10 15 20 25 30 35 40 45 50

r
T

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

log-normal distribution normal distribution
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Probability of Option Exercise

• Using the distribution of future stock price under the risk-neutral measure,
we can determine the probability of option exercise.

• Consider a European call with strike price K and expiration date T .

• What is the probability of option exercise,

Prob (ST ≥ K )

when ST is log-normally distributed?
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Probability of Option Exercise

• The probability is ...

Prob (ST ≥ K) = Prob (ln ST ≥ lnK)

=Prob

(
lnST − ln S0 − (r − σ2/2)T

σ
√
T

≥
lnK − ln S0 − (r − σ2/2)T

σ
√
T

)

=1− Prob

 lnST − lnS0 − (r − σ2/2)T

σ
√
T︸ ︷︷ ︸

∼ϕ(0,1)

<
lnK − lnS0 − (r − σ2/2)T

σ
√
T


=1− N

(
lnK − lnS0 − (r − σ2/2)T

σ
√
T

)
=N

(
− lnK + ln S0 + (r − σ2/2)T

σ
√
T

)
≡ N(d2)

where ϕ(0, 1) is a standard normal random variable, and N(x) is the cumulative distribution

function of the standard normal.
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Next

• Using the log-normal distribution of stock price, we can calculate the
expected payoff of an option. This will lead us to the Black-Scholes-Merton
formula.

• The exercise probability, N(d2), will be a part of the BSM result.
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Math Review
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Derivation of the BSM formula - Math Review

• In the derivation of the BSM formula, we need to compute the expected
value of a function of random variable.

• This requires the understanding of a normal random variable and its
probability density function.

• In addition, the calculation requires us to change variable in integration. This
technique will be reviewed in the next slide.
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Math Review - Normal Distribution

• Recall that to define N(x), we consider a standard normal random variable Z .

• For a certain value x , N(x) is the probability that Z is lower than or equal to
x .

N(x) ≡ Prob(Z ≤ x) =

∫ x

−∞

1√
2π

e−
z2

2 dz .

• Graphically, N(x) is the shadowed area in the below figure.

• In Excel, we can use the function“norm.s.dist(x, TRUE)” to compute N(x).
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Math Review - Change of variable in integration

• Suppose that we integrate function f (y) with respect to y :∫
f (y)dy .

• In addition, y is a function of another variable x , y = g(x).

• Then, we can rewrite the above integration with respect to x∫
f (y)dy =

∫
f (g(x))g ′(x)dx .

• Intuitively, we change dy to g ′(x)dx based on the derivative

dy

dx
= g ′(x)
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Math Review - Change of variable in integration

e.g. Y is a normal random variable with mean m and the standard deviation w . f (Y ) is
a function of the variable. Then, the expectation of f (Y ) is

E [f (Y )] =

∫ ∞

−∞
f (y)

1√
2πw 2

e
− (y−m)2

2w2 dy

• Consider a new variable z = y−m
w

. Then, y = m + wz and (dy) = w(dz). We can
rewrite the above integration in terms of z :∫ ∞

−∞
f (y)

1√
2πw 2

e
− (y−m)2

2w2 dy =

∫ ∞

−∞
f (m + wz)

1√
2πw 2

e−
z2

2 w(dz)

=

∫ ∞

−∞
f (m + wz)

1√
2π

e−
z2

2 dz
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Derivation of Black-Scholes-Merton Model
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Black-Scholes-Merton Model - Assumptions

• The derivation of BSM option price is based on following assumptions.

• The stock price follows a log-normal distribution.

• The risk-free rate, r , is constant and the same for all maturities.

• There are no dividends during the life of the derivative.

• There are no transaction costs or taxes.

• There are no arbitrage opportunities.
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Black-Scholes-Merton Model - Derivation

• Using the present-value approach, the call price is

c0 = e−rTE [max(ST − K , 0)] .

when we compute the expected payoff under the risk-neutral probability ⇒
Risk-neutral valuation

• Utilizing the log-normal distribution of ST , we can compute the expected
option payoff. Then, by discounting as above, we obtain the option price.
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Black-Scholes-Merton Model - Derivation

• First, let’s calculate E [max(ST − K , 0)]

• Note that ST is log-normally distributed in the risk-neutral world.

lnST ∼ ϕ

lnS0 +

(
r − σ2

2

)
T︸ ︷︷ ︸

≡m

, σ
√
T︸ ︷︷ ︸

≡w


• To simplify the notation, let V denote ln ST . So, V ∼ ϕ(m,w). Then, the

probability density function of V is

g(V ) =
1√
2πw2

e−
(V−m)2

2w2

• Let’s use g(V ) to compute the expected payoff of the call.
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Black-Scholes-Merton Model - Derivation

• The expected payoff is

E [max(ST − K , 0)] = E
[
max(eV − K , 0)

]
=

∫ ∞

−∞
max(eV − K , 0)g(V )dV

=

∫ ln K

−∞
max(eV − K , 0)︸ ︷︷ ︸

=0

g(V )dV +

∫ ∞

ln K

max(eV − K , 0)︸ ︷︷ ︸
=eV −K

g(V )dV

=

∫ ∞

ln K

(eV − K)g(V )dV

=

∫ ∞

ln K

eV · g(V )dV︸ ︷︷ ︸
≡A

−
∫ ∞

ln K

K · g(V )dV︸ ︷︷ ︸
≡B

• Let’s calculate A and B separately and combine later.
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Black-Scholes-Merton Model - Derivation

• Let’s find B first.

B =

∫ ∞

lnK

K · g(V )dV

= K

∫ ∞

lnK

g(V )dV

= K · Prob (V ≥ lnK )

= K · Prob

 eV︸︷︷︸
=ST

≥ e lnK︸︷︷︸
=K


= K · N(d2)

where d2 =
ln(S0/K)+(r−σ2/2)T

σ
√
T

.
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Black-Scholes-Merton Model - Derivation

• Next, let’s find A.

A =

∫ ∞

lnK

eV · g(V )dV =

∫ ∞

lnK

eV · 1√
2πw2

e−
(V−m)2

2w2 dV

• To simplify the calculation, define a new variable Q = V−m
w . Then,

V = m + wQ, and (dV ) = w(dQ) in the change of variable in the
integration.

A =

∫ ∞

ln K−m
w

em+wQ 1√
2πw2

e−
Q2

2 w × dQ

=

∫ ∞

ln K−m
w

em+wQ 1√
2π

e−
Q2

2 dQ

=

∫ ∞

ln K−m
w

1√
2π

e−
Q2

2 +wQ+mdQ

= . . .

31 / 88



Black-Scholes-Merton Model - Derivation

A =

∫ ∞

ln K−m
w

1√
2π

e−
Q2

2 +wQ− w2

2 + w2

2 +mdQ

= em+ w2

2

∫ ∞

ln K−m
w

1√
2π

e−
Q2

2 +wQ− w2

2 dQ

= em+ w2

2

∫ ∞

ln K−m
w

1√
2π

e−
(Q−w)2

2 dQ

• To simplify, define a new variable Y = Q − w . Then, Q = Y + w and
(dQ) = (dY ) in the change of variable in the integration.

A = em+ w2

2

∫ ∞

ln K−m−w2

w

1√
2π

e−
Y 2

2 dY

= em+ w2

2 × Prob

(
Y ≥ lnK −m − w2

w

)
= . . .
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Black-Scholes-Merton Model - Derivation

A = em+ w2

2 ×
[
1− Prob

(
Y <

lnK −m − w2

w

)]
= em+ w2

2 ×
[
1− N

(
lnK −m − w2

w

)]
= em+ w2

2 × N

(
− lnK +m + w2

w

)

33 / 88



Black-Scholes-Merton Model - Derivation

• In A,

m +
w2

2
= ln S0 +

(
r −

σ2

2

)
T +

σ2T

2
= ln S0 + rT

− lnK +m + w2

w
=

ln S0 − lnK +
(
r + σ2

2

)
T

σ
√
T

• Thus,

A = em+ w2

2 × N

(
− lnK +m + w2

w

)

= S0e
rT × N


lnS0 − lnK +

(
r + σ2

2

)
T

σ
√
T︸ ︷︷ ︸

≡d1


= S0e

rT × N(d1)
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Black-Scholes-Merton Model - Derivation

• Now, let’s combine A and B.

E [max(ST − K , 0)] = A− B
= S0e

rT × N(d1)− K × N(d2)

• The current price of the call is

c0 = e−rTE [max(ST − K , 0)]

= e−rT
[
S0e

rT × N(d1)− K × N(d2)
]

= S0N(d1)− Ke−rTN(d2)
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Black-Scholes-Merton Model - Derivation

• Once the call option is obtained, we can easily drive the put price using the
put-call parity.

p0 = c0 + Ke−rT − S0

= S0N(d1)− Ke−rTN(d2) + Ke−rT − S0

= −S0 [1− N(d1)] + Ke−rT [1− N(d2)]

= −S0N(−d1) + Ke−rTN(−d2)
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Black-Scholes-Merton Model

• The BSM model provides an analytic form that determines the option price
as a function of the followings:

• Current stock price S0

• Strike price K

• Time to expiration T

• Risk-free interest rate r

• Volatility of underlying asset σ

• Through the BSM model, we can find the option price by simply inputting
numbers into the option-pricing formula.
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Black-Scholes-Merton Model - Result

• The prices of European call and put options on non-dividend-paying stock are

c0 = S0N(d1)− Ke−rTN(d2)

p0 = Ke−rTN(−d2)− S0N(−d1)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T ,

and N(x) is the cumulative probability distribution function for a standard normal random

variable.
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Black-Scholes-Merton Model - Example

Q. There is a 6-month European call option on a stock whose current price is
$42. The strike price is $40, and the risk-free interest rate is 10% per annum.
The stock volatility is 20% per annum. What is the price of the option?

Answer:

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

=
ln(42/40) + (0.1 + 0.22/2)(0.5)

0.2
√
0.5

= 0.7693

d2 = d1 − σ
√
T = 0.6278

c = S0N(d1)− Ke−rTN(d2)

= 42× N(0.7693)− 40e−0.1×0.5 × N(0.6278)

= 42× norm.s.dist(0.7693,TRUE)− 40e−0.1×0.5 × norm.s.dist(0.6278,TRUE)

= $4.759.
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Black-Scholes-Merton Model - Example

• What if we use the binomial model for the previous question?

• Let’s start with 10-step binomial model and increases the number of steps.

number of steps option price
10 4.800
20 4.768
50 4.762
...

...
500 4.759

BSM price 4.759

• As the number of steps increases, the binomial price converges to the BSM
price.
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Black-Scholes-Merton Model – Example

Q. A European put option on a non-dividend-paying stock:

S0 = $60, K = $65, T = 1 year, r = 5% p.a., σ = 30% p.a.

What is the theoretical price of this put option under the BSM model?
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Black-Scholes-Merton Model - Another Example

Q. Consider a derivative on a stock with the time to expiration T and the
following payoff: 

0 if ST < K1

K1 if K1 ≤ ST < K2

0 if K2 ≤ ST

where K2 > K1. What is the present value of the derivative? Provide an
analytic expression of the price using N(·), the cumulative probability
distribution function of a standard normal random variable.
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Black-Scholes-Merton Model - Another Example

Answer: Let V denote ln ST . Then, V is normally distributed, i.e., V ∼ ϕ(m,w). Let g(V )
denote the probability density function of V . To find the present value of the derivative, we first
compute the expected option payoff:

E [Payoff] =

∫ ∞

−∞
Payoff · g(V )dV

=

∫ lnK1

−∞
Payoff · g(V )dV +

∫ lnK2

lnK1

Payoff · g(V )dV

+

∫ ∞

lnK2

Payoff · g(V )dV

=

∫ lnK1

−∞
0 · g(V )dV +

∫ lnK2

lnK1

K1 · g(V )dV +

∫ ∞

lnK2

0 · g(V )dV

= K1

∫ lnK2

lnK1

g(V )dV

= K1 · Prob (lnK1 ≤ V ≤ lnK2)

= K1 · Prob (K1 ≤ ST ≤ K2)

= K1 · [Prob (K1 ≤ ST )− Prob (K2 ≤ ST )]
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Black-Scholes-Merton Model - Another Example

Answer (cont’d):

= K1 ·

N
 ln(S0/K1) +

(
r − σ2

2

)
T

σ
√
T

− N

 ln(S0/K2) +
(
r − σ2

2

)
T

σ
√
T

 .

Next, multiplying by the discount factor, we obtain the present value as follows:

f0 = e−rTK1 ·

N
 ln(S0/K1) +

(
r − σ2

2

)
T

σ
√
T

− N

 ln(S0/K2) +
(
r − σ2

2

)
T

σ
√
T

 .
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BSM Formula: Interpretation
• Under the Black–Scholes–Merton model, a call option can be viewed as being

replicated by a portfolio of the underlying stock and a risk-free bond.

• In particular:

∆c =
∂C

∂S
= N(d1) > 0,

meaning that N(d1) is the number of shares of stock held in the replicating
portfolio for the call.

∆p =
∂P

∂S
= −N(−d1) < 0,

meaning for a put the equivalent position is short stock.

• The term K e−rT N(d2) represents the present-value of the amount borrowed
(or short-bond position) in the replicating portfolio for a call.

• Hence the call price is simply the cost of the replicating portfolio at time 0:

c0 = ∆c S0 − B = S0 N(d1) − K e−rT N(d2).
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Extending the BSM model
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The BSM for dividend payout

• Suppose the underlying pays continuous dividend q .
• Dividend should, for the purposes of option valuation, be defined as the

reduction in the stock price.

• Replace the stock price S in the formula by Se−qT 3

c = S0e
−qTN(d1)− Ke−rTN(d2)

, where d1 =
ln(S0/K)+(r−q+σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T . (called Merton

model)

• Delta = e−qTN(d1)

• Put-Call parity: p + S0e
−qT = c + Ke−rT

• Given the price of puts and calls, we can solve this for the “implied dividend
yield q”.

3For sketch of proof, go to the slide, “The BSM for dividend payout: Derivation”.
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Options on Futures – Call and Put Payoffs

• Call on a futures contract:
• Right to enter a long futures position at the strike price K .
• On exercise, the payoff = max(FT − K , 0), where FT is the futures price at

expiry.

• Put on a futures contract:
• Right to enter a short futures position at strike K .
• Payoff = max(K − FT , 0).

• These payoffs are analogous to vanilla options on assets, but the underlying is
a futures contract instead of owning the asset.
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Option on Futures – Example
• On August 15, a trader holds a September futures-call option on copper.

• Strike price K = 320 cents per pound.
• One futures contract represents 25,000 pounds of copper.
• The current (most recent settlement) futures price for September delivery is

F = 330 cents/pound.
• The quoted “spot” (closing) price just before exercise is 331 cents/pound.

• If the option is exercised today, then:
• The payoff from the option part is

25, 000× (330− 320) = 250, 000 cents = $2,500

• Immediately after exercise the trader receives the long futures contract (i.e.,
obligation to buy 25,000 pounds at 330).

• If the trader decides to close out the futures position immediately (i.e., offset
it), there is an additional gain equal to

25, 000× (331− 330) = 25, 000 cents = $250.

• Therefore the total payoff on exercise = $2,500 + $250 = $2,750, which
equals

25,000× (F − K) = 25,000× (331− 320) cents = $2,750.
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Options on Futures – Key Features & Advantages

• Advantages of futures-based options
• Futures contracts often trade on highly liquid exchanges, making the

underlying option more liquid and easier to hedge.
• Exercise of a futures option does not require physical delivery of the underlying

asset — instead the holder enters a futures position and may immediately
offset it.

• The option and the futures contract typically trade on the same exchange,
which can reduce margin/clearing costs and simplify operational logistics.

• Equivalence for European style: If the option expires when the futures
contract matures (i.e., FT = ST ), then a European futures option is
equivalent to a European spot option.

• Market scope
• Common underlying futures for these options include: agricultural commodities

(e.g., wheat, corn), energy (e.g., crude oil, natural gas), precious metals (e.g.,
gold, silver), interest-rate futures, and volatility indexes (e.g., VIX futures).

• Many listed futures options are American style, allowing exercise at any time
before expiry, especially in commodity markets.

50 / 88



Options on Futures: Black-76 (BSM Variant)

• The underlying is a futures contract, so S in the equation is the futures price,
call it F .

• Remember F0 = S0e
rT . As time passes, erT shrinks at the rate of r like

dividend yield q. (assume Futures = Forward here).

• Replace the stock price S in the formula by the discounted value of the
futures price F : Fe−rT

c = Fe−rTN(d1)− Ke−rTN(d2) = e−rT [FN(d1)− KN(d2)]

, where d1 =
ln(F/K)+(σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T

• Delta = e−rTN(d1)

• Put-Call parity: p + Fe−rT = c + Ke−rT

51 / 88



Options on Futures – The Black ’76 Model
• The model originates from Fischer Black’s 1976 paper, “The Pricing of

Commodity Contracts”, where he extended the Black–Scholes–Merton model
to options written on futures/forwards.

• Key features of the model:
• You avoid separate modelling of convenience yields, storage costs or

asset-income flows, because these are embedded in the forward/futures price.
• The underlying is a forward/futures price (rather than owning the physical

asset), which simplifies the replication and hedging.
• Provided interest rates are deterministic (and hence forwards ≈ futures), this

substitution is valid.
• The forward/futures price is assumed to follow a log-normal distribution,

similar to the BSM setup.
• The model has wide applicability beyond commodity futures—e.g.,

interest-rate caps/floors, bond options, swaptions.

• Caveats:
• The formula produces a European-style option value. For American-style

options on futures, one must use alternative methods (e.g., binomial tree,
finite difference).

• If interest rates or cost-of-carry vary stochastically, the equivalence between
forwards & futures may break, and more complex models are needed.
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The BSM for currency option

• The price of the underlying is the exchange rate (in $ per unit of FX). The
underlying pays interest at the foreign riskless rate, so set q = rF . The
riskless rate r is the domestic rate (Garman-Kohlhagen Model).

• Replace the stock price S in the formula by Se−rFT

c = S0e
−rFTN(d1)− Ke−rTN(d2)

, where d1 =
ln(S0/K)+(r−rF+σ2/2)T

σ
√
T

and d2 = d1 − σ
√
T

• Delta = e−rFTN(d1)

• Put-Call parity: p + S0e
−rFT = c + Ke−rT

• Using the Black’s model: c = e−rT [FN(d1)− KN(d2)], where F is the
futures price on currency.
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Alternative Derivation I
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Review

• This derivation is also based on the Binomal Tree model in the risk-neutral
world.

• The final stock price: S0u
jdn−j .

• The payoff from a European call option: max(S0u
jdn−j − K , 0)

• The probability of j upward and n − j downward steps: n!
j!(n−j)!

pj(1− p)n−j

• The expected payoff:
∑n

j=0
n!

j!(n−j)!
pj(1− p)n−j max(S0u

jdn−j − K , 0)

• The option value: c = e−rT ∑n
j=0

n!
j!(n−j)!

pj(1− p)n−j max(S0u
jdn−j − K , 0)
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Review: Binomial Tree Derivation
• We begin from the multi-step binomial model in the risk-neutral world.

• Final stock price after n steps:

ST (j) = S0 u
j d n−j

• Payoff of a European call:

max
(
S0 u

j d n−j − K , 0
)

• Probability of exactly j upward moves (and n − j downward):

Pr(j) =
n!

j! (n − j)!
pj (1− p) n−j

• Expected (risk-neutral) payoff:

n∑
j=0

n!

j! (n − j)!
pj (1− p) n−j max

(
S0 u

j d n−j − K , 0
)

• Present value (call price):

c = e−rT
n∑

j=0

n!

j! (n − j)!
pj (1− p) n−j max

(
S0 u

j d n−j − K , 0
)
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Alternative Formulation of Call Price

Payoff positive if S0 u
j d n−j > K ⇒ ln

( S0
K

)
> −j ln(u) − (n − j) ln(d)

With u = eσ
√

T/n, d = e−σ
√

T/n

⇒ ln
( S0
K

)
> n σ

√
T
n

+ 2 j σ
√

T
n

⇒ j >
n

2
−

ln(S0/K)

2σ
√

T/n

Thus: c = e−rT
∑
j>α

n!

j!(n − j)!
pj (1− p)n−j max

(
S0 u

j d n−j − K , 0
)
,

where α =
n

2
−

ln(S0/K)

2σ
√

T/n

Write c = e−rT (S0 U1 − K U2),

with U1 =
∑
j>α

n!

j!(n − j)!
pj (1− p)n−j uj d n−j ,

U2 =
∑
j>α

n!

j!(n − j)!
pj (1− p)n−j
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Increasing the Number of Steps: Convergence to BSM

As n → ∞, j ∼ B(n, p) −→ ϕ
(
np,

√
np(1− p)

)
.

Since U2 = Pr(j > α), U2 = Pr

(
j − np√
np(1− p)

>
α− np√
np(1− p)

)
= N

(
np − α√
np(1− p)

)

⇒ U2 = N

(
ln(S0/K)

2σ
√

T p(1− p)
+

√
n(p − 1

2
)√

p(1− p)

)

Recall p =
er T/n − e−σ

√
T/n

eσ
√

T/n − e−σ
√

T/n
,

and by Taylor expansion: er T/n ≈ 1 + r (T/n), e±σ
√

T/n ≈ 1± σ
√

T
n
+ 1

2
σ2 (T/n).

Hence p(1− p) → 1
4
and

√
n(p − 1

2
) →

(r − 1
2
σ2)

√
T

2σ
.

⇒ U2 = N

(
ln(S0/K) + (r − 1

2
σ2)T

σ
√
T

)
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Final Step: From Binomial to Black–Scholes

U1 =
∑
j>α

n!

j!(n − j)!
(u p)j (d (1− p)) n−j .

Let p∗ =
p u

p u + (1− p) d
, 1− p∗ =

(1− p) d

p u + (1− p) d
.

⇒ U1 = (p u + (1− p) d) n
∑
j>α

n!

j!(n − j)!
(p∗)j (1− p∗) n−j .

Because p u + (1− p) d = erT , ⇒ U1 = erT
∑
j>α

n!

j!(n − j)!
(p∗)j (1− p∗) n−j .

So in the limit as n → ∞, U1 = erT N

(
ln(S0/K) + (r + 1

2
σ2)T

σ
√
T

)
.

⇒ c = S0 N(d1)− K e−rT N(d2).
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Alternative Derivation II
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Overview of Option-Pricing Derivations

• The previous binomial-tree derivation sets up a discrete framework:
• The underlying asset and a risk-free bond are combined to build a portfolio

that exactly replicates the option payoff at each node.
• By enforcing no-arbitrage (the replicating portfolio must earn the risk-free

rate), we derive the fair option price.

• In contrast, the Black–Scholes–Merton model (BSM) uses a continuous-time
framework:

• The option and the underlying asset are dynamically hedged to create a
riskless position.

• Since this hedged position must grow at the risk-free rate, we obtain a partial
differential equation whose solution gives the option price.

• Key point: Although the approaches differ (discrete vs. continuous), both
rely on the same principle of constructing a riskless arbitrage-free portfolio
and enforcing that it returns the risk-free rate.
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Underlying Assumptions of the BSM Model

• Options are European

• “Perfect” markets – no transactions costs, no taxes, no constraints on short
selling with full use of the proceeds, no indivisibilities, etc.

• No limits on borrowing or lending at a known risk free rate of interest

• The price of the underlying asset follows a “lognormal diffusion” process

• The return volatility of the underlying asset is known

• No dividends or cash payouts from the underlying asset prior to option
maturity
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Asset Price Process in Continuous Time

• The model assumes the underlying asset price St follows a geometric
Brownian motion:

dSt = µSt dt + σ St dzt =⇒ dSt
St

= µ dt + σ dzt .

• Explanation of components:
• dSt : instantaneous change in the price at time t.
• µ: the drift (average continuously-compounded rate of return).
• dt: an infinitesimal increment of time.
• σ: volatility (annualised standard deviation of returns).
• dzt : increment of a standard Brownian motion (mean 0, variance dt).

• Key assumptions behind this model:
• µ and σ are constant over time.
• The process has independent increments (no memory, Markov property) and is

continuous in time.
• The asset can be traded continuously without transaction costs or liquidity

constraints.
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Key Definitions
• A process {z(t) : t ≥ 0} is called a Brownian motion (Wiener process) if:

1 z(0) = 0.
2 It has continuous paths and independent increments: for 0 ≤ s < t, the

increment z(t)− z(s) is independent of the past and distributed N(0, t − s).
3 Over a very small time interval ∆t, one can think informally:

dzt ≈ ϵ
√
∆t, ϵ ∼ N(0, 1).

For example, if ∆t = 0.01 and ϵ = 1.5, then dzt ≈ 1.5×
√
0.01 = 0.15.

• A Generalised Wiener process is of the form:

dSt = µ dt + σ dzt ,

where µ and σ are constants.
• Example: Suppose µ = 0.05, σ = 0.2. Over a small ∆t = 0.25 years, one

might approximate:

dSt ≈ 0.05× 0.25 + 0.2× dzt .

If dWt = 0.1, then dXt ≈ 0.0125 + 0.02 = 0.0325.
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Key Definitions (cont’d)

• An Itô process has the more general form:

dSt = µ(St , t) dt + σ(St , t) dzt ,

where the drift and volatility can depend on the current state and time.
• Example: Suppose an asset price satisfies:

dSt = µSt dt + σSt dzt

with µ = 0.08, σ = 0.25, S0 = 100. Then St follows a geometric Brownian
motion.
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The Process for a Stock Price

• dSt = µdt?
• There is no uncertainty.
• St = µt, i.e., stock price grows by µ. ⇒ Not realistic!

• dSt = µdt + σdz?
• There is uncertainty, dz .
• But stock price can take a negative value!

• dSt/St = µdt + σdz
• The most widely used model of stock price behavior.
• For a risk-free asset, µ = r and σ = 0. Hence, St = ert .
• Ito process, log-normal diffusion process, geometric Brownian motion
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Examples – Part 1
• Example 1: Arithmetic Brownian Motion (ABM)

dXt = µ dt + σ dzt

• Here µ and σ are constants.
• Suppose µ = 0.02, σ = 0.15, and time horizon T = 1 year. If X0 = 100, then

the expected value is E [XT ] = 100 + 0.02× 1 = 100.02.
• Variance is σ2T = 0.152 × 1 = 0.0225. So the standard deviation is about√

0.0225 ≈ 0.15.
• This process can go negative; it models absolute changes rather than

proportional changes.

• Example 2: Geometric Brownian Motion (GBM)

dSt = µ St dt + σ St dzt

• Suppose µ = 0.08, σ = 0.20, and S0 = 50. Then under the model, St remains
strictly positive.

• The log-return ln(St/S0) is normal. This is the model assumed in the
Black–Scholes–Merton model.

• If we look at expected value: E [St ] = S0e
µt = 50e0.08×1 ≈ 54.17 (for t = 1

year) assuming no discounting.
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Examples – Part 2
• Example 3: Mean-Reverting Ornstein-Uhlenbeck (OU) Process

dYt = κ
(
θ − Yt

)
dt + σ dzt

• Let κ = 1.5, θ = 100, σ = 10, starting value Y0 = 120.
• Interpretation: the process tends to revert toward long-term level θ = 100 with

speed κ.
• Over time the expected value moves:

E [Yt ] = θ + (Y0 − θ)e−κt = 100 + 20 e−1.5 t . For t = 1:
100 + 20e−1.5 ≈ 100 + 20× 0.223 = 104.46.

• Use case: modelling interest rates or commodity spreads which tend to bounce
back toward an equilibrium.

• Example 4: Geometric Mean-Reverting Process

dSt = κ
(
θ − lnSt

)
St dt + σ St dzt

• Here the drift term drives lnSt toward θ; volatility is proportional to St .
• Suppose κ = 0.8, θ = ln(80), σ = 0.25, S0 = 60.
• The process tends to revert to an equilibrium level around S ≈ 80. Useful in

modelling commodity prices with proportionate volatility and mean reversion.
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Examples – Part 3

• Example 5: Cox–Ingersoll–Ross (CIR) Interest Rate Process

drt = κ
(
θ − rt

)
dt + σ

√
rt dzt

• A canonical model for short-term interest rates (ensuring rt ≥ 0).
• Let κ = 0.5, θ = 0.04, σ = 0.1, r0 = 0.03.
• Over time the rate moves toward 0.04, and volatility is state-dependent:

√
rt .

• Use case: pricing interest rate derivatives under stochastic rate models.
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Ito’s Lemma

• Suppose x follows an Ito process: dx = a(x , t)dt + b(x , t)dz

• Kiyoshi Ito (1915-2008) shows that a function of x and t, G (x , t) (twice
continuously differentiable) follows another Ito process:

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2
)
dt +

∂G

∂x
bdz

• Apply a Taylor series expansion on G(x , t):

dG ≈ ∂G

∂x
dx +

∂G

∂t
dt +

1

2

∂2G

∂x2
dx2 +

1

2

∂2G

∂t2
dt2 +

∂2G

∂x∂t
dxdt

• dx2 ≈ b2dz2 = b2ϵ2dt4

• E(b2ϵ2dt) = b2dt and Var(ϵ2dt) = 2dt2 ≈ 0
(∵ Var(ϵ2) = E(ϵ4)− E(ϵ2)2 = 3− 1 = 2).

• Ignore higher order terms (e.g. dt1.5, dt2).

dG ≈ ∂G

∂x
dx +

∂G

∂t
dt +

1

2

∂2G

∂x2
b2dt

• Plug in dx = a(x , t)dt + b(x , t)dz .

4dtdz = 0 and (dz)2 = dt
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Ito’s Lemma (cont’d)

• Why this matters for option pricing:
• When we let G = option value V (St , t), and St follows a geometric Brownian

motion, applying Itô’s Lemma lets us derive the partial differential equation
that leads to the Black–Scholes Equation.

• Understanding this term is central to moving from discrete-time models
(binomial) to continuous time derivations.
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Applying Itô’s Lemma to St

• Apply Ito’s lemma on dSt = µStdt + σStdzt

dG =

(
∂G

∂S
µS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2

)
dt +

∂G

∂S
σSdz

• Now consier G = lnSt .

∂G

∂S
=

1

St
,

∂2G

∂S2
= − 1

S2
t

,
∂G

∂t
= 0

• Therefore,

dG =

(
µ− σ2

2

)
dt + σdz

• It follows a generalized Wiener process.

• GT − G0 = ln ST − lnS0 ∼ ϕ
((

µ− σ2

2

)
T , σ2T

)
• That is, lnST ∼ ϕ

(
lnS0 +

(
µ− σ2

2

)
T , σ2T

)
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Key Consequences of Itô’s Lemma for GBM

• Under this model dSt = µSt dt + σ St dzt :
• Continuously-compounded return dSt/St is normally distributed (infinitesimal

time).
• Future stock price ST has a log-normal distribution—implying ST > 0.

• The same Brownian increment dzt drives both the asset and any smooth
function of it—for example ln St .

• The log-normal assumption of ST underlies the analytic closed-form formula
for European option prices.
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Deriving the Black–Scholes PDE – Step 1
• Assume the underlying asset price follows

dSt = µSt dt + σ St dzt .

• Let V = V (St , t) be the price of a European call option (a function of the
asset price and time).

• Applying Itô’s Lemma gives:

dV =

(
∂V

∂S
µSt +

∂V

∂t
+ 1

2

∂2V

∂S2
σ2S2

t

)
dt +

∂V

∂S
σSt dzt .

• Long 1 unit of the call option and short ∂V
∂S number of shares. (Why?)

Π = V − ∂V

∂S
St

and compute its differential:

dΠ = dV − ∂V

∂S
dSt =

(
∂V

∂t
+ 1

2

∂2V

∂S2
σ2S2

t

)
dt

(The dzt term cancels by design.)
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Deriving the Black–Scholes PDE – Step 2

• Because this equation does not involve dz , the portfolio must be riskless
during time dt. Therefore,

Π = erdt

dΠ = rΠdt(
∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)
dt = r

(
V − ∂V

∂S
S

)
dt

⇒ ∂V

∂t
+ rS

∂V

∂S
+

1

2

∂2V

∂S2
σ2S2 = rV

• This is called the Black–Scholes–Merton differential equation.

• Solving the differential equation with the boundary conditions, e.g.,
V = max(S − K , 0) when = T , gives a formula for a European call option.

• Unfortunately, no exact analytic formula for the value of an American put
option on a non-dividend-paying stock has been produced.

NB There is no µ, the expected return!
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The BSM Differential Equation

∂V

∂t
+ rS

∂V

∂S
+

1

2

∂2V

∂S2
σ2S2 = rV

• If V (S ,T ) = ST , i.e., the stock itself, V (S , t) = St

• If V (S ,T ) = K , i.e., constant, then V (S , t) = Ke−r(T−t)

• If V (S ,T ) = ST − K , i.e., forward, then V (S , t) = St − Ke−r(T−t)

• Does V (S , 0) = S0N(d1)− Ke−rTN(d2) satisfy the equation?

• The PDE above is so general that it can solve (mostly numerially) for V
depending on the boundary conditions.
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The Black–Scholes PDE – Verification of Special Cases

∂V

∂t
+ r S

∂V

∂S
+ 1

2 σ
2 S2 ∂

2V

∂S2
= r V

• If V (S ,T ) = ST , i.e., the underlying stock itself → V (S , t) = St .

• Then ∂V
∂t

= 0, ∂V
∂S

= 1, ∂2V
∂S2 = 0.

• Substituting: 0 + r S · 1 + 1
2
σ2S2 · 0 = r S = r V .

• So the PDE holds.

• If V (S ,T ) = K , a constant payoff → V (S , t) = K e−r (T−t).

• Then ∂V
∂S

= 0, ∂2V
∂S2 = 0, and ∂V

∂t
= r K e−r (T−t) = r V .

• Substituting: r V + r S · 0 + 0 = r V .
• The PDE is satisfied.

• If V (S ,T ) = ST − K (a forward payoff) → V (S , t) = St − K e−r (T−t).

• Then ∂V
∂S

= 1, ∂2V
∂S2 = 0, ∂V

∂t
= −r K e−r (T−t).

• Left side: −r K e−r (T−t) + r S · 1 + 0 = r V .
• Again the PDE holds.

77 / 88



Verification that the Call Price Satisfies the PDE

• It also holds for a European option on a non-dividend-paying stock. It’s more
complicated to verify, though.

• The PDE is extremely general. What changes between contracts (stock,
bond, forward, option) is the terminal condition (and any boundary
conditions). Once you know the terminal condition, you pick the
corresponding solution that satisfies the PDE. Refer to standard derivations.
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Appendix 1: The BSM for dividend payout
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BSM with Continuous Dividend Yield: Derivation (1)
• Suppose the stock pays a continuous dividend yield q. Then, during dt, the

stockholder receives a dividend

dD = q S
∂V

∂S
dt.

• The change in the value of the hedged portfolio is the sum of the change in
portfolio value and the dividend income:

dWt = dΠ+ dD.

• Using Itô’s Lemma and the hedge ratio ∂V
∂S , we have:

dWt =
(
−∂V

∂t
− 1

2σ
2S2 ∂

2V

∂S2
+ qS

∂V

∂S

)
dt.

• Since the portfolio is instantaneously riskless, it must earn the risk-free rate r :

dWt = r Π dt = r
(
−V + S

∂V

∂S

)
dt.
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BSM with Continuous Dividend Yield: Derivation (2)

• Equating the two expressions for dWt and rearranging gives:

∂V

∂t
+ (r − q)S

∂V

∂S
+ 1

2σ
2S2 ∂

2V

∂S2
= rV .

• This is the Black–Scholes–Merton PDE with dividends. The dividend
yield q reduces the drift of the stock under the risk-neutral measure.

• The corresponding risk-neutral stock price process is:

dS = (r − q)S dt + σS dz .

• For a European call, solving the PDE gives the Black–Scholes formula with
dividends:

c = S0e
−qTN(d1)− Ke−rTN(d2),

where

d1,2 =
ln(S0/K ) + (r − q ± 1

2σ
2)T

σ
√
T

.
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Appendix 2: From BSM PDE to BSM equation

82 / 88



Step 1: The Black–Scholes PDE

• We start with the partial differential equation (PDE) for the option value
V (S , t):

∂V

∂t
+ r S

∂V

∂S
+ 1

2 σ
2 S2 ∂

2V

∂S2
= r V .

• Here:
• S = underlying stock price at time t.
• r = risk-free interest rate (continuous).
• σ = volatility of the stock’s returns.
• The terminal (boundary) condition is:

V (S ,T ) = max(S − K , 0),

for a European call option with strike K and maturity T .

• This PDE comes from hedging + Itô’s Lemma + no-arbitrage.
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Step 2: Change of Variables

• Solving the PDE directly is hard, so we perform a change of variables to
simplify it. Typical transformations include:

• τ = T − t (time to maturity).
• x = ln(S/K) (log-stock variable).
• Introduce a new function u(x , τ) = erτ V (S , t) so that the discount-term rV

disappears.

• Under these changes, the PDE is transformed into a “heat equation” form (a
simpler diffusion PDE), for which standard solutions are known.

• This step is therefore a mathematical trick to make the PDE solvable with
known methods.
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Step 3: Solve the Transformed PDE

• Once in the “heat-equation” form, one applies known solution methods (e.g.,
separation of variables, Green’s functions) to find u(x , τ).

• Then we revert the change of variables:

V (S , t) = e−r(T−t) u
(
ln(S/K ), T − t

)
.

• The result is an expression involving the normal cumulative distribution
function N(·).

• In returning to the original variables, we obtain the closed-form formula for a
European call option:

C = S N(d1) − K e−r(T−t) N(d2),

with

d1 =
ln(S/K ) + (r + 1

2 σ
2) (T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.
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Step 4: Interpretation & Key Insights

• Notice that the expected stock return µ does not appear in the final formula
— only the risk-free rate r and volatility σ.

• Why? Because of risk-neutral valuation: in a hedged portfolio the expected
return of the underlying becomes irrelevant.

• The formula therefore = discounted expected payoff under the “risk-neutral
measure”.
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