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Lecture Outline

® Black-Scholes-Merton Model

® Log-Normal Property of Stock Prices
® Derivation

® [terpretation
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BSM Model
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Binomial Model vs. Black—Scholes—Merton (BSM) Model

® Binomial model: assumes the underlying asset price moves in discrete
time-steps (up or down at each step).

® BSM model: built on continuous-time dynamics, modelling the asset price
as evolving continuously.

® Although their approaches differ, they are closely connected: as the binomial
time-steps shrink toward zero, the discrete model converges to the BSM
formula for European-style options.

® When to use which:
® Use the binomial model for flexibility (e.g., American options, early exercise,
variable volatility).
® Use the BSM model when assumptions (continuous trading, no early exercise,
constant volatility) are reasonable and a closed-form solution is desired.
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Black-Scholes-Merton Model

® The prices of European call and put options on non-dividend-paying stock are

Co = SoN(dl) — Ke_’TN(dz)

po = Ke " N(—d>) — SoN(—di)

where
In(So/K) + (r +02/2)T
VT
_In(So/K)+ (r—02/2)T Y
b = T =d —oVT,

d =

and N(x) is the cumulative probability distribution function for a standard normal random

variable.
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BSM Model — Distribution of Future Stock Price

® A core assumption of the Black—Scholes—Merton model (BSM) is that the
underlying stock price follows a log-normal distribution, i.e.

InS7 ~ N(m, s°)

where N(m, s?) denotes a normal distribution with mean m and variance s.1

® We can also derive this log-normal result via the discrete-time binomial
model:
® As the time-step size tends to zero and the number of steps tends to infinity,
the binomial distribution of stock-price paths converges to the continuous
GBM model and hence to log-normal terminal distribution.

® Next, we will prove the log-normality of St.

LEquivalently, St is log-normally distributed, which ensures St > 0 and aligns with modelling
via Geometric Brownian Motion (GBM):

ds: = ,uSt dt+0’5t th

and thus
InSt =InSp + (u — %0'2) T+ oWr.
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Log-Normal Property of Stock Prices — Setup

® Consider a binomial tree for the stock price with n steps each of length

T
At = —.
n

® At each step the stock either moves up by factor v or down by factor d.

® If there are j upward moves and n — j downward moves, then at expiry

St(j) =Sot/ d" .

(This sets the discrete-time framework from which we will pass to a continuous-time
limit.)
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Distribution of Terminal Moves

® What will happen if n becomes infinitely large? (This would be equivalent to
making each step infinitesimally small).

® To see this, let's increase the number of steps n.

Distribution of j when n = 10 and p = 0.5
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lllustration of Convergence

Distribution of j when n = 30 and p = 0.5

0.1
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e
8
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® As n grows large, the bar/histogram
The Central Limit Theorem

Distribution of j when n = 100 and p = 0.5

probability
°
a

25 30 35 40 45 50 55 60 65 70 75
number of ups

of j becomes more like a smooth bell curve. —

® Hence, as n approaches infinity, the number of upward movement will be normally

j ~ N(np,~/np(1— p).

distributed
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From Terminal Moves to Log Stock Price

We now know the distribution of j. Next, let's find the distribution of S7(J).

® Using u= e?VBt and d = e VAL,
St(j) = Sov/d"
- goe(vm)je(*am)(n*j)
_ Soe(20\/ﬂ)j7na'\/ﬂ

The log of stock price is

InS7(j) = In So + (20VAt)j — noVAt

® As j is normally distributed, In St is also normally distributed. Hence, St+(j)
is log-normally distributed.
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Mean and Variance of In St (in limit)

® To further identify the distribution, let's find the mean and the standard
deviation of In St.

® The mean of In St is

E(InSt) =1InSy + 20V ALE(j) — noV At
=InSy + 20V At(np) — novV At
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Mean and Variance of In St (in limit)

oDt _g—o VAT

® To proceed, we use p = —“o—=—r (i.e., risk-neutral probability). Here we

use the Tylor series of ¥ and also the fact At — 0 as n — 00.2

14 rAt — (1 — ov/At + 0%At/2)
(1+ oVAt 4 02At/)2) — (1 — oAt + 02At/2)
_ (1 . (r—o—Z/z)\/E>

P~

2 20

® Plugging this p into E(In St7) in the previous page, the mean becomes

2
E(InSt) =1InSp + (r— U2> T

where we use the fact At = L

"

2Bt o 1 4 rAt + %rZAt2 (set At as x), e VAt 1 — /At + %0’2At (set VAt as x).



Mean and Variance of In St (in limit)

® The standard deviation of In St is

Std.Dev.(In S7) = 20V At x /np(1 — p)
=20+/Tp(1 — p).

® Next, let’s simplify the standard deviation. We find

L (=)t
4 42 ~ 2

® Thus, the standard deviation of In S+ becomes

Std.Dev.(InS7) = oV T.
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Log-Normal Property of Stock Prices

® Combining the mean and the standard deviation, we conclude

InST~¢(InSO+ (r—U;) T,U\FT>

in the risk-neutral world.
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Log-Normal Property of Stock Prices - Real probability

® Consider the real world where investors require the return o per annum on
stock. Then, we can use the real probability p* instead of p.

eaAt__d
u—d

*

p:

® Following the same logic as in the risk-neutral world, the real world
distribution of stock price is

InST~¢(In50+(aJ22) T,Uﬁ)
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Log-Normal Property of Stock Prices - Example

® Suppose that S = 10, r = 0.09, 0 = 0.4, and T = 1. Below are the
probability density functions of St and rr (= In(S7/S0)).

St

0 5 10 15 20 25 30 35 40 45 50

ST

log-normal distribution

rr

3 25 -2 45 4 05 0 05 1
T

normal distribution

15

2
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Probability of Option Exercise

® Using the distribution of future stock price under the risk-neutral measure,
we can determine the probability of option exercise.

® Consider a European call with strike price K and expiration date T.

® What is the probability of option exercise,
Prob (S5t > K)

when St is log-normally distributed?
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Probability of Option Exercise

® The probability is ...

Prob (St > K) = Prob (In St > In K)

— —(r — g2 _ _(r— g2
—Prob (In St—1InSy—(r—0%/2)T > InK—InSg —(r—o /2)T)
oVT ovT

=1 — Prob

InSt —InSq — (r —0?/2)T < InK —InSy — (r —0%/2)T

AT VT
~¢(0,1)

1 _ InK—InSy — (r—02/2)T

=1 N( oT )

(I K+InS+ (r—0%/2)TY _

N ( 2 ) = N(d»)

where ¢(0, 1) is a standard normal random variable, and N(x) is the cumulative distribution

function of the standard normal.
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Next

® Using the log-normal distribution of stock price, we can calculate the
expected payoff of an option. This will lead us to the Black-Scholes-Merton

formula.

® The exercise probability, N(d>), will be a part of the BSM result.
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Math Review
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Derivation of the BSM formula - Math Review

® In the derivation of the BSM formula, we need to compute the expected

value of a function of random variable.

® This requires the understanding of a normal random variable and its
probability density function.

® |n addition, the calculation requires us to change variable in integration. This
technique will be reviewed in the next slide.
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Math Review - Normal Distribution

® Recall that to define N(x), we consider a standard normal random variable Z.

® For a certain value x, N(x) is the probability that Z is lower than or equal to
X. x 1
Z2
e 7dz.

N(x) = Prob(Z < x) = /

oo V2T

® Graphically, N(x) is the shadowed area in the below figure.

Figure 14.3  Shaded arca reprosents V(s

® In Excel, we can use the function “norm.s.dist(x, TRUE)" to compute N(x).
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Math Review - Change of variable in integration
® Suppose that we integrate function f(y) with respect to y:

/ f(y)dy.

® In addition, y is a function of another variable x, y = g(x).

® Then, we can rewrite the above integration with respect to x

/f(Y)dy:/f(g(X))g’(x)dx.

Intuitively, we change dy to g’(x)dx based on the derivative

dy
dx—g(X)
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Math Review - Change of variable in integration

e.g. Y is a normal random variable with mean m and the standard deviation w. f(Y) is
a function of the variable. Then, the expectation of f(Y) is

o0 1 _=m?
EF] = [ ) ome 5 dy

® Consider a new variable z = ™. Then, y = m+ wz and (dy) = w(dz). We can

w

rewrite the above integration in terms of z:

> 1 _e=m? > 1 2
f(y) e w2 dy = f(m+ wz) e 2 w(dz)
—o 2rw? —oo 2rw?

(e} 1 2
:/ f(m+ wz) e 2dz
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Derivation of Black-Scholes-Merton Model

25/88



Black-Scholes-Merton Model - Assumptions

® The derivation of BSM option price is based on following assumptions.

® The stock price follows a log-normal distribution.

The risk-free rate, r, is constant and the same for all maturities.

There are no dividends during the life of the derivative.

There are no transaction costs or taxes.

There are no arbitrage opportunities.
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Black-Scholes-Merton Model - Derivation

® Using the present-value approach, the call price is
co = e "TE[max(St — K,0)].

when we compute the expected payoff under the risk-neutral probability =
Risk-neutral valuation

® Utilizing the log-normal distribution of S, we can compute the expected
option payoff. Then, by discounting as above, we obtain the option price.
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Black-Scholes-Merton Model - Derivation

® First, let's calculate E [max(St — K, 0)]

® Note that St is log-normally distributed in the risk-neutral world.

2
InSr ~¢ | InSy+ (r—az) T,aiﬁ

=w

=m

® To simplify the notation, let V' denote InS7. So, V ~ ¢(m, w). Then, the
probability density function of V is

1 o
g(V)= e

® Let's use g(V) to compute the expected payoff of the call.
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Black-Scholes-Merton Model - Derivation

® The expected payoff is
E[max(St — K,0)] = E [max(ev —K, o)]

= /OC max(e” — K, 0)g(V)dV

In

In K oo
= / max(ev — K,0)g(V)dv +/ max(ev — K,0)g(V)dv
— 00 N——— K N——————

=0 =V —K

< v

=/ (ef —K)g(V)dv
In K

= eV g(V)dv — K- g(V)dV

In K In K

=A =B

® |et's calculate A and B separately and combine later.
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Black-Scholes-Merton Model - Derivation

® |et's find B first.

B:/ K - g(V)dV
In K

= K/IOO g(V)dv

nK
=K -Prob(V >InK)

= K - Prob ( e¥V > e'”K)
R
=5r =K

= K- N(db)

In(So/K)+(r—c?/2)T

where d» = v
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Black-Scholes-Merton Model - Derivation

® Next, let's find A.

<y <y 1 _v=m?
A= e’ - g(V)dV = / e’ - e~ w7 dV
|

nK 2w

® To simplify the calculation, define a new variable Q = % Then,

V =m+ wQ, and (dV) = w(dQ) in the change of variable in the
integration.

> 1 Q2
A = / emtwQ e 7w xdQ@
InK—m

1/ 2
*° 1 @
_ m+wQ__ - —
T Jukem € /2 ’ dQ
— 1 e QT Q+mdQ

nK—m /27
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Black-Scholes-Merton Model - Derivation

oo 2 2 2
I

nKW—m 27"-
w2 [ 1 Q> w?

= eMtT — e T tWRTT 4Q
InK—m 2
oo 2

o 1 _@w d

=e ——e Q
nK—m /27

® To simplify, define a new variable Y = @ — w. Then, @ = Y + w and
(dQ) = (dY) in the change of variable in the integration.

o2 [ 1 v
A=e"2 e —Tﬂe 7 dY

InKsz)

WZ
= ™% x Prob <Y >
w
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Black-Scholes-Merton Model - Derivation

w2
— et x[ —Prob( —an m W)]
w
_ "’+2><[ (InK m—wz)}
w

N( |nK—|—m—i—W>
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Black-Scholes-Merton Model - Derivation

® |n A,
2 2 2T
m+%:|n$o+(r—%)T+%:In50+rT
CK+mtw? MSo—hK+(r+%)T
w B VT
® Thus,
A:em+WT2><N(7_InK+m+W2)
w

= SoerT x N

InSo—InK+<r+%2> T

oV'T

=d;
_ rT
= Soe™” x N(dy)
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Black-Scholes-Merton Model - Derivation

® Now, let's combine A and B.

E[max(St — K,0)]=A—-B
= Spe’™ x N(dy) — K x N(db)

® The current price of the call is

co = e "TE[max(St — K,0)]
=e 7 [Soe”T x N(di) — K x N(d>)]
= SoN(dy) — Ke™""N(d»)
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Black-Scholes-Merton Model - Derivation

® Once the call option is obtained, we can easily drive the put price using the
put-call parity.

po=co+ Ke T — Sy
= SoN(dy) — Ke T N(dp) + Ke™'T — S,
= —So[1 - N(d1)] + Ke™"T [L — N(cb)]
= —SoN(—dy) + Ke™""N(—d»)
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Black-Scholes-Merton Model

® The BSM model provides an analytic form that determines the option price
as a function of the followings:

® Current stock price So

Strike price K

® Time to expiration T

Risk-free interest rate r

® \/olatility of underlying asset o

® Through the BSM model, we can find the option price by simply inputting
numbers into the option-pricing formula.
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Black-Scholes-Merton Model - Result

® The prices of European call and put options on non-dividend-paying stock are

Co = SoN(dl) — Ke_’TN(dz)

po = Ke " N(—d>) — SoN(—di)

where
In(So/K) + (r +02/2)T
VT
_In(So/K)+ (r—02/2)T Y
b = T =d —oVT,

d =

and N(x) is the cumulative probability distribution function for a standard normal random

variable.
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Black-Scholes-Merton Model - Example

Q. There is a 6-month European call option on a stock whose current price is
$42. The strike price is $40, and the risk-free interest rate is 10% per annum.
The stock volatility is 20% per annum. What is the price of the option?

Answer:

_In(So/K) + (r+02/2)T _ In(42/40) + (0.1 + 0.22/2)(0.5)
B VT B 0.2v/0.5

dy=d, — VT =0.6278

di = 0.7693

¢ = SoN(d1) — Ke™"T N(dh)
= 42 x N(0.7693) — 40e~%1%05 5 N(0.6278)

= 42 x norm.s.dist(0.7693, TRUE) — 40e~%1%05 % norm.s.dist(0.6278, TRUE)
= $4.759.
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Black-Scholes-Merton Model - Example

® What if we use the binomial model for the previous question?

® |et's start with 10-step binomial model and increases the number of steps.

number of steps option price

10 4.800
20 4.768
50 4.762
500 4.759
BSM price 4.759

® As the number of steps increases, the binomial price converges to the BSM
price.
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Black-Scholes-Merton Model — Example
Q. A European put option on a non-dividend-paying stock:
So=9%60, K=9%65 T =1year, r=5%p.a., c=230%p.a.

What is the theoretical price of this put option under the BSM model?
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Black-Scholes-Merton Model - Another Example

Q. Consider a derivative on a stock with the time to expiration T and the
following payoff:

0 if5T<K1
Ki ifK1§ST<K2
0 ifK,<Sr

where K> > K;. What is the present value of the derivative? Provide an
analytic expression of the price using N(-), the cumulative probability
distribution function of a standard normal random variable.
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Black-Scholes-Merton Model - Another Example

Answer: Let V denote InS7. Then, V is normally distributed, i.e., V ~ ¢(m, w). Let g(V)
denote the probability density function of V. To find the present value of the derivative, we first
compute the expected option payoff:

E [Payoff] = / Payoff - g(V)dV
In Ky In K2
= / Payoff - g(V)dV + / Payoff - g(V)dV
— o0 In K;
- 1
+ / Payoff - g(V)dV
In Ky

InK1 In K3
_/ V)aV + Ki - g(V)dV+/ 0. g(V)dv
In Ky

In K3
= Kl/l g(V)dv

n Ky
=K1 -Prob(InKiy <V <InK3)
= K1 - Prob (K1 < ST < K3)
= K1 . [Prob (K1 S ST) — PrOb(K2 S ST)]
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Black-Scholes-Merton Model - Another Example

Answer (cont’d):

=K - |:N (In(SO/K1)+ (r— 072> T) N (In(So/K2)+ (r— 072> T>:| |

oV T o /T

Next, multiplying by the discount factor, we obtain the present value as follows:

f— e TH, . [N (In(SO/Kl) +(r-%) T) . (In(SO/K2) +(r-9) T)] |

0'\/? 0_\/?
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BSM Formula: Interpretation

® Under the Black—Scholes—Merton model, a call option can be viewed as being
replicated by a portfolio of the underlying stock and a risk-free bond.

® |n particular:

oC
ES
meaning that N(d;) is the number of shares of stock held in the replicating
portfolio for the call.

Ac= == = N(dy) > 0,

oP
Bp = 5g =~ N(=d1) <0,

meaning for a put the equivalent position is short stock.

® The term K e~"T N(d,) represents the present-value of the amount borrowed
(or short-bond position) in the replicating portfolio for a call.

® Hence the call price is simply the cost of the replicating portfolio at time 0:
= AcSo — B = SyN(di) — Ke "™ N(db).
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Extending the BSM model
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The BSM for dividend payout

® Suppose the underlying pays continuous dividend g .

® Dividend should, for the purposes of option valuation, be defined as the
reduction in the stock price.

Replace the stock price S in the formula by Se=97 3

c=Soe 7T N(d) — Ke " N(dy)

, where dy = "SS9t 2T and o = dy — /T (called Merton

model)

® Delta = e 97 N(d;)

Put-Call parity: p+ Spe= 97 = c 4+ Ke™'T
® Given the price of puts and calls, we can solve this for the “implied dividend
yield q".

3For sketch of proof, go to the slide, “The BSM for dividend payout: Derivation”.
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Options on Futures — Call and Put Payoffs

e Call on a futures contract:

® Right to enter a long futures position at the strike price K.
® On exercise, the payoff = max(Fr — K, 0), where Fr is the futures price at
expiry.

® Put on a futures contract:

® Right to enter a short futures position at strike K.
® Payoff = max(K — Fr, 0).

® These payoffs are analogous to vanilla options on assets, but the underlying is
a futures contract instead of owning the asset.
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Option on Futures — Example

® On August 15, a trader holds a September futures-call option on copper.
® Strike price K = 320 cents per pound.
® One futures contract represents 25,000 pounds of copper.
® The current (most recent settlement) futures price for September delivery is
F = 330 cents/pound.
® The quoted “spot” (closing) price just before exercise is 331 cents/pound.

® |f the option is exercised today, then:
® The payoff from the option part is

25,000 x (330 — 320) = 250, 000 cents = $2,500

® Immediately after exercise the trader receives the long futures contract (i.e.,
obligation to buy 25,000 pounds at 330).

® |f the trader decides to close out the futures position immediately (i.e., offset
it), there is an additional gain equal to

25,000 x (331 — 330) = 25,000 cents = $250.

® Therefore the total payoff on exercise = $2,500 + $250 = $2,750, which
equals

25,000 x (F — K) = 25,000 x (331 — 320) cents = $2,750.
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Options on Futures — Key Features & Advantages

® Advantages of futures-based options

® Futures contracts often trade on highly liquid exchanges, making the
underlying option more liquid and easier to hedge.

® Exercise of a futures option does not require physical delivery of the underlying
asset — instead the holder enters a futures position and may immediately
offset it.

® The option and the futures contract typically trade on the same exchange,
which can reduce margin/clearing costs and simplify operational logistics.

® Equivalence for European style: If the option expires when the futures
contract matures (i.e., FT = St), then a European futures option is
equivalent to a European spot option.

® Market scope
® Common underlying futures for these options include: agricultural commodities
(e.g.. wheat, corn), energy (e.g., crude oil, natural gas), precious metals (e.g.,
gold, silver), interest-rate futures, and volatility indexes (e.g., VIX futures).
® Many listed futures options are American style, allowing exercise at any time
before expiry, especially in commodity markets.
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Options on Futures: Black-76 (BSM Variant)

® The underlying is a futures contract, so S in the equation is the futures price,
call it F.

® Remember Fy = Spe’". As time passes, e’ shrinks at the rate of r like
dividend yield g. (assume Futures = Forward here).

® Replace the stock price S in the formula by the discounted value of the
futures price F: Fe~"7T

c=Fe ""N(d) — Ke " N(dy) = e "T[FN(dy) — KN(d»)]

. where dy = W and dp = dy — o/ T

® Delta = e~ N(dy)

e Pyt-Call parity: p+ Fe " =c+ Ke™'T
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Options on Futures — The Black '76 Model

® The model originates from Fischer Black's 1976 paper, “The Pricing of
Commodity Contracts”, where he extended the Black—Scholes—Merton model
to options written on futures/forwards.

® Key features of the model:
® You avoid separate modelling of convenience yields, storage costs or
asset-income flows, because these are embedded in the forward /futures price.
® The underlying is a forward/futures price (rather than owning the physical
asset), which simplifies the replication and hedging.
® Provided interest rates are deterministic (and hence forwards & futures), this
substitution is valid.
® The forward/futures price is assumed to follow a log-normal distribution,
similar to the BSM setup.
® The model has wide applicability beyond commodity futures—e.g.,
interest-rate caps/floors, bond options, swaptions.

® Caveats:
® The formula produces a European-style option value. For American-style
options on futures, one must use alternative methods (e.g., binomial tree,
finite difference).
® |f interest rates or cost-of-carry vary stochastically, the equivalence between

forwards & futures may break, and more complex models are needed.
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The BSM for currency option

® The price of the underlying is the exchange rate (in $ per unit of FX). The
underlying pays interest at the foreign riskless rate, so set ¢ = rg. The
riskless rate r is the domestic rate (Garman-Kohlhagen Model).

® Replace the stock price S in the formula by Se="F7

c=Soe FTN(dy) — Ke " N(dy)

. where d; = (50/K) ((Tr\/?r”a /AT and do = dy — o/ T

® Delta = e """ N(d;)
e Put-Call parity: p+ Spe T =c+ Ke™"T

® Using the Black’s model: ¢ = e~"T[FN(d;) — KN(d,)], where F is the
futures price on currency.
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Alternative Derivation |
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Review
® This derivation is also based on the Binomal Tree model in the risk-neutral
world.
® The final stock price: Sou/d" ™.

® The payoff from a European call option: max(Spe/d" ™ — K, 0)

The probability of j upward and n — j downward steps: Jl(n"%ﬂ,p’(l —p)"

® The expected payoff: > 7, J,(H”%J),p’(l — p)" I max(Soild" — K, 0)

The option value: ¢ = e~ "7 im0 J,(H”%J),p’(l —p)" I max(Soifd" — K, 0)
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Review: Binomial Tree Derivation

® We begin from the multi-step binomial model in the risk-neutral world.

® Final stock price after n steps:

Sr(j)=Sou/ d"

Payoff of a European call:
max(So v/ d"7 — K, 0)
® Probability of exactly j upward moves (and n — j downward):
. n! i i
Pr(J):mP/(lfp) !
Expected (risk-neutral) payoff:

Z%p’(l—p)" - max(Sou’d" - _ K, 0)
j=0

Present value (call price):

= —rT Z J)I p’(]_—p)n —J max(Sou’d —J K, 0)

56 /88



Alternative Formulation of Call Price

Payoff positive if S/ d" 7 > K = In(fo) —j In(u) — (n—j) In(d)
With u = eV T/" d = e oVT/n

= In(WO) > naﬁ + 2j0ﬁ

._n In(So/K)
= j>- - =27
7o 20T
Thus: c=e""T Z p’(l— p)" max(Soufd"_J K,0),
j>a
n In(SO/K)

where a = — — ——=
2 204/T/n

Write c = e~ (Sp U1 — K Uo),
with Uy = pP—p)" dn,
ZJ t(n J)'

j>a

Uz:ZJ( J)'#( P

j>a
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Increasing the Number of Steps: Convergence to BSM

Asn— oo, j~ B(n,p) — ¢(np, v/np(1— p)).
. . j—np a—np np — «
Since U =P/ = ). 2= Pr(x/np(l -p) g V/np(1 — P)) - N< np(1 — p))
In(So/K) v/l - ;)>
20/Tp(1—p) /pP(1—-p)
erT/n_e—c\/ﬁ
e VT/n _ g=o/T/n’
and by Taylor expansion: e" 7/" ~ 14 r (T /n), et VT4 :taﬁ—&- %02 (T/n).
(-~ 3t VT
20

:>U2—N<

Recall p =

Hence p(1—p) — 1 and V/n(p — 3) —

n r— 152
¢U2N<l (SO/K):\(H 3 )T>

58/88



Final Step: From Binomial to Black—Scholes

=3 G J),( upy (d(1—p))".

J>C¥
pu % _ (1-p)d

letp* = ———— 1-p"=———2 |
P T but(1-p)d P T put+(1-p)d

:>Ulz(pqu(lfp)d)"Z.l(nnii.)!(P*)j(lfp*)n7j~

j>a
Because pu+(1—p)d:e'T7 éUl—erTZ j(l—P*)nij-
”_J
j>a
In(So/K) + (r+36®) T
So in the limit as n — oo, U=eTN (So/K) + 2 ) .
oVT

= c=SyN(d) — Ke T N(db).
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Alternative Derivation |l
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Overview of Option-Pricing Derivations

® The previous binomial-tree derivation sets up a discrete framework:
® The underlying asset and a risk-free bond are combined to build a portfolio
that exactly replicates the option payoff at each node.
® By enforcing no-arbitrage (the replicating portfolio must earn the risk-free
rate), we derive the fair option price.

® In contrast, the Black—Scholes—Merton model (BSM) uses a continuous-time
framework:
® The option and the underlying asset are dynamically hedged to create a
riskless position.
® Since this hedged position must grow at the risk-free rate, we obtain a partial
differential equation whose solution gives the option price.

® Key point: Although the approaches differ (discrete vs. continuous), both

rely on the same principle of constructing a riskless arbitrage-free portfolio
and enforcing that it returns the risk-free rate.
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Underlying Assumptions of the BSM Model

® QOptions are European

® “Perfect” markets — no transactions costs, no taxes, no constraints on short
selling with full use of the proceeds, no indivisibilities, etc.

® No limits on borrowing or lending at a known risk free rate of interest
® The price of the underlying asset follows a “lognormal diffusion” process
® The return volatility of the underlying asset is known

® No dividends or cash payouts from the underlying asset prior to option
maturity
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Asset Price Process in Continuous Time

® The model assumes the underlying asset price S; follows a geometric
Brownian motion:
St

d
dSt:/LStdt+UStdzt — ?:‘Lbdt‘i’a'dzt
t

® Explanation of components:
® dS;: instantaneous change in the price at time t.
® . the drift (average continuously-compounded rate of return).
dt: an infinitesimal increment of time.
o: volatility (annualised standard deviation of returns).
dz;: increment of a standard Brownian motion (mean 0, variance dt).

® Key assumptions behind this model:
® 4 and o are constant over time.
® The process has independent increments (no memory, Markov property) and is
continuous in time.
® The asset can be traded continuously without transaction costs or liquidity
constraints.
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Key Definitions

® A process {z(t) : t > 0} is called a Brownian motion (Wiener process) if:
@ z(0)=0.

® It has continuous paths and independent increments: for 0 < s < t, the
increment z(t) — z(s) is independent of the past and distributed N(0, t — s).
© Over a very small time interval At, one can think informally:

dz: = e VAt, €~ N(0,1).
For example, if At = 0.01 and € = 1.5, then dz; ~ 1.5 x +/0.01 = 0.15.
® A Generalised Wiener process is of the form:
dS; = pdt + o dz,

where 1 and o are constants.

® Example: Suppose p = 0.05, 0 = 0.2. Over a small At = 0.25 years, one
might approximate:

dS: ~ 0.05 x 0.25 4 0.2 X dz.

If dW; = 0.1, then dX; ~ 0.0125 4 0.02 = 0.0325.
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Key Definitions (cont'd)

® An Itd process has the more general form:
dst = /,L(St, t) dt + (7'(51'7 t) dzt,

where the drift and volatility can depend on the current state and time.

® Example: Suppose an asset price satisfies:
dSt = ‘LLSt dt -+ O'St dzt

with 1 = 0.08, 0 = 0.25, So = 100. Then S; follows a geometric Brownian
motion.
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The Process for a Stock Price

® There is no uncertainty.
® S; = ut, i.e., stock price grows by p. = Not realistic!

® dS; = udt + odz?
® There is uncertainty, dz.
® But stock price can take a negative value!
L4 dSt/St = /Jdt + odz
® The most widely used model of stock price behavior.

® For a risk-free asset, = r and ¢ = 0. Hence, S; = e".
® |to process, log-normal diffusion process, geometric Brownian motion
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Examples — Part 1
® Example 1: Arithmetic Brownian Motion (ABM)
dXt = lLLdt-‘rO'dZt

® Here y and o are constants.

® Suppose = 0.02, 0 = 0.15, and time horizon T =1 year. If Xo = 100, then
the expected value is E[X7] = 100 + 0.02 x 1 = 100.02.

® Variance is 0°T = 0.15? x 1 = 0.0225. So the standard deviation is about
1/0.0225 =~ 0.15.

® This process can go negative; it models absolute changes rather than
proportional changes.

® Example 2: Geometric Brownian Motion (GBM)

dSt :/.Lstdt+05tdzt

® Suppose p = 0.08, 0 = 0.20, and Sg = 50. Then under the model, S; remains
strictly positive.

® The log-return In(S;/So) is normal. This is the model assumed in the
Black—Scholes—Merton model.

® If we look at expected value: E[S:] = Spe"! = 50%%®*! x 54.17 (for t = 1
year) assuming no discounting.
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Examples — Part 2

® Example 3: Mean-Reverting Ornstein-Uhlenbeck (OU) Process
dYt = 5(9 — Yt) dt-‘r Udzt

® Let k = 1.5, 6 =100, o = 10, starting value Yp = 120.

® [nterpretation: the process tends to revert toward long-term level 6 = 100 with
speed k.

® Qver time the expected value moves:
E[Y] =0+ (Yo —0)e " =100 +20e " For t = 1:
100 + 20e™"® & 100 + 20 x 0.223 = 104.46.

® Use case: modelling interest rates or commodity spreads which tend to bounce
back toward an equilibrium.

® Example 4: Geometric Mean-Reverting Process

CISt = Fi(g —In St)St df-‘rO’St dZt

® Here the drift term drives In S; toward 8; volatility is proportional to S;.

® Suppose k = 0.8, # = In(80), o = 0.25, Sp = 60.

® The process tends to revert to an equilibrium level around S =~ 80. Useful in
modelling commodity prices with proportionate volatility and mean reversion.
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Examples — Part 3

e Example 5: Cox—Ingersoll-Ross (CIR) Interest Rate Process

drt = H(@ — I’t) dt+a\/ﬁdzt

® A canonical model for short-term interest rates (ensuring r: > 0).

® let k=0.56=0.04, 0 =0.1, nb =0.03.

® Over time the rate moves toward 0.04, and volatility is state-dependent: /.
® Use case: pricing interest rate derivatives under stochastic rate models.
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[to's Lemma

® Suppose x follows an Ito process: dx = a(x, t)dt + b(x, t)dz

® Kiyoshi lto (1915-2008) shows that a function of x and t, G(x, t) (twice
continuously differentiable) follows another Ito process:

96  9G 10%G , 9G
dG = (a at ol T e b)d+abdz

® Apply a Taylor series expansion on G(x, t):

8G 0G 82G 10°G 0°G

dxd t

® dx? ~ b?dz? = b?e2dt*

® E(b?2dt) = b2dt and Var(e?dt) = 2dt? ~ 0
(. Var(e?) = E(¢*) — E(2)? =3 -1 =2).

® Ignore higher order terms (e.g. dt!:>, dt?).

96, 9G 186G,
dG ~ Zdx + Sl dt 4 5 o bt

® Plug in dx = a(x, t)dt + b(x, t)dz.
4dtdz = 0 and (dz)? = dt
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lto’s Lemma (cont'd)

® Why this matters for option pricing:

® When we let G = option value V(S;, t), and S; follows a geometric Brownian
motion, applying It6’s Lemma lets us derive the partial differential equation
that leads to the Black—Scholes Equation.

® Understanding this term is central to moving from discrete-time models
(binomial) to continuous time derivations.
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Applying It6's Lemma to S;

® Apply Ito’s lemma on dS; = puS;dt + 05;dz;

oG 0G 10°G 22 oG
® Now consier G = In S;.
aG_i 62G_ 1 GG_O

9SS 9s2 ST ot

® Therefore, ,

dG = (,u— 02) dt + odz
® |t follows a generalized Wiener process.
® Gr—Go=InSr—InSp ~ ¢((M— 0;) T,a2T)
® Thatis, InSr ~ ¢ (lns0 T (u— “;) T,UZT)
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Key Consequences of 1t6's Lemma for GBM

® Under this model dS; = u S; dt + o S; dz;:
® Continuously-compounded return dS;/S; is normally distributed (infinitesimal
time).
® Future stock price St has a log-normal distribution—implying St > 0.

® The same Brownian increment dz; drives both the asset and any smooth
function of it—for example In 5.

® The log-normal assumption of St underlies the analytic closed-form formula
for European option prices.
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Deriving the Black—Scholes PDE — Step 1

® Assume the underlying asset price follows

dSt = /Lst dt+05t dzt.

® Let V = V(S;,t) be the price of a European call option (a function of the
asset price and time).

® Applying It6's Lemma gives:
2
dV — <8V ov o°V 2

0
2
85ﬂ5t+6 +§W 5)dt+a O'Stdzt

® Long 1 unit of the call option and short % number of shares. (Why?)
ov

n:\/fgst

and compute its differential:

oV oV PV L,
dﬂ—dV—anSt—(at—&- 3 552 0 5)

(The dz; term cancels by design.)
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Deriving the Black—Scholes PDE — Step 2

® Because this equation does not involve dz, the portfolio must be riskless
during time dt. Therefore,

n:erdt
dln = rMdt
ov 1PV , ., oV
(8t+28520'5>dt—r<v—855)dt
2
:8—V+r5g+lavazszzrv

ot dS ' 20S2
® This is called the Black—Scholes—Merton differential equation.
® Solving the differential equation with the boundary conditions, e.g.,

V = max(S — K,0) when = T, gives a formula for a European call option.

® Unfortunately, no exact analytic formula for the value of an American put
option on a non-dividend-paying stock has been produced.

NB There is no u, the expected return!

75/88



The BSM Differential Equation

ov oV 1PV ,,
o Fras ot =V

If V(S,T)=Sr, i.e., the stock itself, V(S,t) = S;

If V(S,T) =K, i.e., constant, then V(S,t) = Ke~ (T~

If V(S,T) =St — K, i.e, forward, then V(S,t) = S; — Ke="(T—1)

® Does V/(S,0) = SoN(dy) — Ke™"" N(d») satisfy the equation?

The PDE above is so general that it can solve (mostly numerially) for V
depending on the boundary conditions.
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The Black—Scholes PDE — Verification of Special Cases

87\/_;'_,«567\/

2
ot as+%0252ﬂ=fv

05?2

® If V(S, T) = Sr, i.e, the underlying stock itself — V(S,t) = 5;.

® Then 2 =0, 2% —1, 2% — o,
® Substituting: O+r5~1+%a252-0: rS=rV.

® So the PDE holds.

e If V(S,T) = K, a constant payoff — V(S,t) = Ke "(T—1),

® Then 24 =0, Y =0,and 2 =rKe (T =r V.
® Substituting: rV+rS-0+0=rV.

® The PDE is satisfied.

® If V(S,T)= St — K (a forward payoff) — V(S,t) =S, — Ke "(T-1).
® Then 24 =1, &Y =0, & = _rKe"(T70,
o Leftside: —rKe "T™ 94 rS.140=rV.
® Again the PDE holds.
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Verification that the Call Price Satisfies the PDE

® |t also holds for a European option on a non-dividend-paying stock. It's more
complicated to verify, though.

® The PDE is extremely general. What changes between contracts (stock,
bond, forward, option) is the terminal condition (and any boundary
conditions). Once you know the terminal condition, you pick the
corresponding solution that satisfies the PDE. Refer to standard derivations.
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Appendix 1: The BSM for dividend payout
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BSM with Continuous Dividend Yield: Derivation (1)

® Suppose the stock pays a continuous dividend yield g. Then, during dt, the
stockholder receives a dividend

oV
D=gqS % dt.
dD =q5S 5= dt

® The change in the value of the hedged portfolio is the sum of the change in
portfolio value and the dividend income:

dW; = dIN + dD.
® Using Itd’s Lemma and the hedge ratio ‘Z—g, we have:

ov

awe = (~ ¢

1 _2¢2
EUS

Y% ov
952 S—)dt.

TS

® Since the portfolio is instantaneously riskless, it must earn the risk-free rate r:

dW, = rNdt = r(—v+s%)dt.

80/88



BSM with Continuous Dividend Yield: Derivation (2)

Equating the two expressions for dW; and rearranging gives:
2

67\/ 287\/ —rV.

oS 052

This is the Black—Scholes—Merton PDE with dividends. The dividend
yield g reduces the drift of the stock under the risk-neutral measure.

(r—q)S—=z + %0°S

ot

The corresponding risk-neutral stock price process is:
dS=(r—q)Sdt+ oS dz.

For a European call, solving the PDE gives the Black—Scholes formula with
dividends:
c = Soe 9T N(dy) — Ke="T N(db),
where
In(So/K)+ (r—q+30*)T
' oV'T '
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Appendix 2: From BSM PDE to BSM equation
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Step 1: The Black—Scholes PDE

® We start with the partial differential equation (PDE) for the option value
V(S,t):
aVv oV 0?Vv
— S—+4+10°52— = rV.
ot "5 727 > s T T

® Here:

® S = underlying stock price at time t.
® r = risk-free interest rate (continuous).
® 5 = volatility of the stock’s returns.

® The terminal (boundary) condition is:

V(S, T) = max(S — K, 0),

for a European call option with strike K and maturity T.

® This PDE comes from hedging + It6's Lemma + no-arbitrage.
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Step 2: Change of Variables

® Solving the PDE directly is hard, so we perform a change of variables to
simplify it. Typical transformations include:
® 7 =T —t (time to maturity).
® x =In(5/K) (log-stock variable).
® Introduce a new function u(x,7) = €™ V(S, t) so that the discount-term rV
disappears.
® Under these changes, the PDE is transformed into a “heat equation” form (a
simpler diffusion PDE), for which standard solutions are known.

® This step is therefore a mathematical trick to make the PDE solvable with
known methods.
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Step 3: Solve the Transformed PDE

® Once in the “heat-equation” form, one applies known solution methods (e.g.,
separation of variables, Green's functions) to find u(x, 7).

® Then we revert the change of variables:
V(S t) = e T 9 u(In(S/K), T —t).

® The result is an expression involving the normal cumulative distribution
function N(-).

® In returning to the original variables, we obtain the closed-form formula for a
European call option:

C=SN(d) — Ke T~ N(dy),

with

n r+ 102 —
d1_|(S/K)+U(\/%)(T t), db=d —ovT—t.
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Step 4: Interpretation & Key Insights

® Notice that the expected stock return p does not appear in the final formula
— only the risk-free rate r and volatility o.

® Why? Because of risk-neutral valuation: in a hedged portfolio the expected
return of the underlying becomes irrelevant.

® The formula therefore = discounted expected payoff under the “risk-neutral
measure” .
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