

# Black-Scholes-Merton Model

BUSS386. Futures and Options

Professor Ji-Woong Chung

# Lecture Outline

- Black-Scholes-Merton Model
  - Log-Normal Property of Stock Prices
  - Derivation
  - Interpretation

# BSM Model

# Binomial Model vs. Black–Scholes–Merton (BSM) Model

- **Binomial model:** assumes the underlying asset price moves in discrete time-steps (up or down at each step).
- **BSM model:** built on continuous-time dynamics, modelling the asset price as evolving continuously.
- Although their approaches differ, they are closely connected: as the binomial time-steps shrink toward zero, the discrete model *converges* to the BSM formula for European-style options.
- When to use which:
  - Use the binomial model for flexibility (e.g., American options, early exercise, variable volatility).
  - Use the BSM model when assumptions (continuous trading, no early exercise, constant volatility) are reasonable and a closed-form solution is desired.

## Black-Scholes-Merton Model

- The prices of European call and put options on non-dividend-paying stock are

$$c_0 = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p_0 = K e^{-rT} N(-d_2) - S_0 N(-d_1)$$

where

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T},$$

and  $N(x)$  is the cumulative probability distribution function for a standard normal random variable.

## BSM Model – Distribution of Future Stock Price

- A core assumption of the Black–Scholes–Merton model (BSM) is that the underlying stock price follows a log-normal distribution, i.e.

$$\ln S_T \sim N(m, s^2)$$

where  $N(m, s^2)$  denotes a normal distribution with mean  $m$  and variance  $s^2$ .<sup>1</sup>

- We can also derive this log-normal result via the discrete-time binomial model:
  - As the time-step size tends to zero and the number of steps tends to infinity, the binomial distribution of stock-price paths converges to the continuous GBM model and hence to log-normal terminal distribution.
- Next, we will prove the log-normality of  $S_T$ .

<sup>1</sup>Equivalently,  $S_T$  is log-normally distributed, which ensures  $S_T > 0$  and aligns with modelling via Geometric Brownian Motion (GBM):

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

and thus

$$\ln S_T = \ln S_0 + \left(\mu - \frac{1}{2}\sigma^2\right) T + \sigma W_T.$$

## Log-Normal Property of Stock Prices – Setup

- Consider a binomial tree for the stock price with  $n$  steps each of length  $\Delta t = \frac{T}{n}$ .
- At each step the stock either moves up by factor  $u$  or down by factor  $d$ .
- If there are  $j$  upward moves and  $n - j$  downward moves, then at expiry

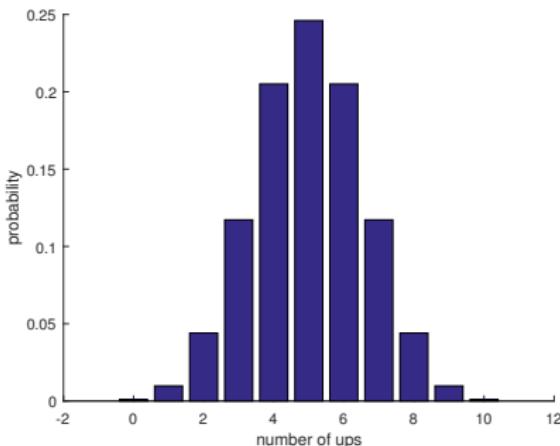
$$S_T(j) = S_0 u^j d^{n-j}.$$

(This sets the discrete-time framework from which we will pass to a continuous-time limit.)

# Distribution of Terminal Moves

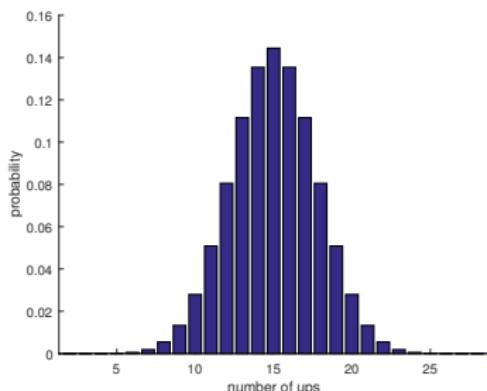
- What will happen if  $n$  becomes infinitely large? (This would be equivalent to making each step infinitesimally small).
- To see this, let's increase the number of steps  $n$ .

Distribution of  $j$  when  $n = 10$  and  $p = 0.5$

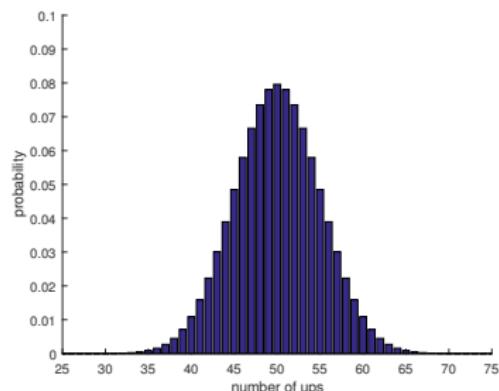


# Illustration of Convergence

Distribution of  $j$  when  $n = 30$  and  $p = 0.5$



Distribution of  $j$  when  $n = 100$  and  $p = 0.5$



- As  $n$  grows large, the bar/histogram of  $j$  becomes more like a smooth bell curve. → The Central Limit Theorem
- Hence, as  $n$  approaches infinity, the number of upward movement will be normally distributed

$$j \sim N(np, \sqrt{np(1-p)}).$$

## From Terminal Moves to Log Stock Price

- We now know the distribution of  $j$ . Next, let's find the distribution of  $S_T(j)$ .
- Using  $u = e^{\sigma\sqrt{\Delta t}}$  and  $d = e^{-\sigma\sqrt{\Delta t}}$ ,

$$\begin{aligned}S_T(j) &= S_0 u^j d^{n-j} \\&= S_0 e^{(\sigma\sqrt{\Delta t})j} e^{(-\sigma\sqrt{\Delta t})(n-j)} \\&= S_0 e^{(2\sigma\sqrt{\Delta t})j - n\sigma\sqrt{\Delta t}}\end{aligned}$$

- The log of stock price is

$$\ln S_T(j) = \ln S_0 + (2\sigma\sqrt{\Delta t})j - n\sigma\sqrt{\Delta t}$$

- As  $j$  is normally distributed,  $\ln S_T$  is also normally distributed. Hence,  $S_T(j)$  is log-normally distributed.

## Mean and Variance of $\ln S_T$ (in limit)

- To further identify the distribution, let's find the mean and the standard deviation of  $\ln S_T$ .
- The mean of  $\ln S_T$  is

$$\begin{aligned}E(\ln S_T) &= \ln S_0 + 2\sigma\sqrt{\Delta t}E(j) - n\sigma\sqrt{\Delta t} \\&= \ln S_0 + 2\sigma\sqrt{\Delta t}(np) - n\sigma\sqrt{\Delta t}\end{aligned}$$

## Mean and Variance of $\ln S_T$ (in limit)

- To proceed, we use  $p = \frac{e^{r\Delta t} - e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}} - e^{-\sigma\sqrt{\Delta t}}}$  (i.e., risk-neutral probability). Here we use the Taylor series of  $e^x$  and also the fact  $\Delta t \rightarrow 0$  as  $n \rightarrow \infty$ .<sup>2</sup>

$$\begin{aligned} p &\approx \frac{1 + r\Delta t - (1 - \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2)}{(1 + \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2) - (1 - \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2)} \\ &= \left( \frac{1}{2} + \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma} \right) \end{aligned}$$

- Plugging this  $p$  into  $E(\ln S_T)$  in the previous page, the mean becomes

$$E(\ln S_T) = \ln S_0 + \left( r - \frac{\sigma^2}{2} \right) T$$

where we use the fact  $\Delta t = \frac{T}{n}$ .

---

<sup>2</sup> $e^{r\Delta t} \approx 1 + r\Delta t + \frac{1}{2}r^2\Delta t^2$  (set  $\Delta t$  as  $x$ ),  $e^{-\sigma\sqrt{\Delta t}} \approx 1 - \sigma\sqrt{\Delta t} + \frac{1}{2}\sigma^2\Delta t$  (set  $\sqrt{\Delta t}$  as  $x$ ).

## Mean and Variance of $\ln S_T$ (in limit)

- The standard deviation of  $\ln S_T$  is

$$\begin{aligned}\text{Std.Dev.}(\ln S_T) &= 2\sigma\sqrt{\Delta t} \times \sqrt{np(1-p)} \\ &= 2\sigma\sqrt{Tp(1-p)}.\end{aligned}$$

- Next, let's simplify the standard deviation. We find

$$\begin{aligned}p(1-p) &= \left(\frac{1}{2} + \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right) \left(\frac{1}{2} - \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right) \\ &= \frac{1}{4} - \frac{(r - \sigma^2/2)^2}{4\sigma^2} \Delta t \approx \frac{1}{4}\end{aligned}$$

- Thus, the standard deviation of  $\ln S_T$  becomes

$$\text{Std.Dev.}(\ln S_T) = \sigma\sqrt{T}.$$

## Log-Normal Property of Stock Prices

- Combining the mean and the standard deviation, we conclude

$$\ln S_T \sim \phi \left( \ln S_0 + \left( r - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right)$$

in the risk-neutral world.

## Log-Normal Property of Stock Prices - Real probability

- Consider the real world where investors require the return  $\alpha$  per annum on stock. Then, we can use the real probability  $p^*$  instead of  $p$ .

$$p^* = \frac{e^{\alpha\Delta t} - d}{u - d}$$

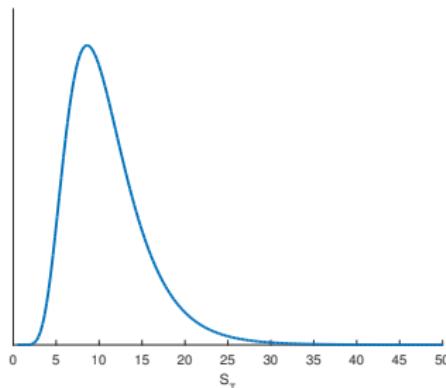
- Following the same logic as in the risk-neutral world, the real world distribution of stock price is

$$\ln S_T \sim \phi \left( \ln S_0 + \left( \alpha - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right)$$

## Log-Normal Property of Stock Prices - Example

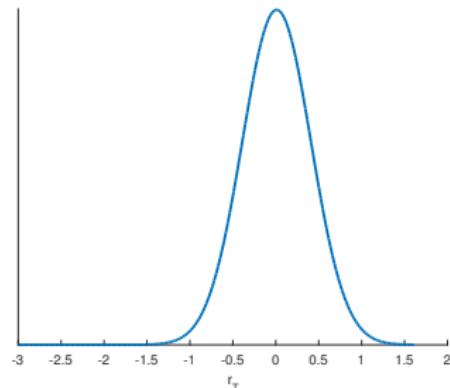
- Suppose that  $S_0 = 10$ ,  $r = 0.09$ ,  $\sigma = 0.4$ , and  $T = 1$ . Below are the probability density functions of  $S_T$  and  $r_T$  ( $= \ln(S_T/S_0)$ ).

$S_T$



log-normal distribution

$r_T$



normal distribution

## Probability of Option Exercise

- Using the distribution of future stock price under the risk-neutral measure, we can determine the probability of option exercise.
- Consider a European call with strike price  $K$  and expiration date  $T$ .
- What is the probability of option exercise,

$$\text{Prob}(S_T \geq K)$$

when  $S_T$  is log-normally distributed?

# Probability of Option Exercise

- The probability is ...

$$\begin{aligned} \text{Prob}(S_T \geq K) &= \text{Prob}(\ln S_T \geq \ln K) \\ &= \text{Prob}\left(\frac{\ln S_T - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}} \geq \frac{\ln K - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \\ &= 1 - \text{Prob}\left(\frac{\ln S_T - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}} < \frac{\ln K - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \\ &\quad \underbrace{\left(\frac{\ln S_T - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right)}_{\sim \phi(0,1)} \\ &= 1 - N\left(\frac{\ln K - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \\ &= N\left(\frac{-\ln K + \ln S_0 + (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \equiv N(d_2) \end{aligned}$$

where  $\phi(0, 1)$  is a standard normal random variable, and  $N(x)$  is the cumulative distribution function of the standard normal.

## Next

- Using the log-normal distribution of stock price, we can calculate the expected payoff of an option. This will lead us to the Black-Scholes-Merton formula.
- The exercise probability,  $N(d_2)$ , will be a part of the BSM result.

# Math Review

## Derivation of the BSM formula - Math Review

- In the derivation of the BSM formula, we need to compute the expected value of a function of random variable.
- This requires the understanding of a normal random variable and its probability density function.
- In addition, the calculation requires us to change variable in integration. This technique will be reviewed in the next slide.

## Math Review - Normal Distribution

- Recall that to define  $N(x)$ , we consider a standard normal random variable  $Z$ .
- For a certain value  $x$ ,  $N(x)$  is the probability that  $Z$  is lower than or equal to  $x$ .

$$N(x) \equiv \text{Prob}(Z \leq x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

- Graphically,  $N(x)$  is the shaded area in the below figure.

Figure 14.3 Shaded area represents  $N(x)$ .



- In Excel, we can use the function “norm.s.dist(x, TRUE)” to compute  $N(x)$ .

## Math Review - Change of variable in integration

- Suppose that we integrate function  $f(y)$  with respect to  $y$ :

$$\int f(y)dy.$$

- In addition,  $y$  is a function of another variable  $x$ ,  $y = g(x)$ .
- Then, we can rewrite the above integration with respect to  $x$

$$\int f(y)dy = \int f(g(x))g'(x)dx.$$

- Intuitively, we change  $dy$  to  $g'(x)dx$  based on the derivative

$$\frac{dy}{dx} = g'(x)$$

## Math Review - Change of variable in integration

e.g.  $Y$  is a normal random variable with mean  $m$  and the standard deviation  $w$ .  $f(Y)$  is a function of the variable. Then, the expectation of  $f(Y)$  is

$$E[f(Y)] = \int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(y-m)^2}{2w^2}} dy$$

- Consider a new variable  $z = \frac{y-m}{w}$ . Then,  $y = m + wz$  and  $(dy) = w(dz)$ . We can rewrite the above integration in terms of  $z$ :

$$\begin{aligned} \int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(y-m)^2}{2w^2}} dy &= \int_{-\infty}^{\infty} f(m + wz) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{z^2}{2}} w(dz) \\ &= \int_{-\infty}^{\infty} f(m + wz) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \end{aligned}$$

## Derivation of Black-Scholes-Merton Model

## Black-Scholes-Merton Model - Assumptions

- The derivation of BSM option price is based on following assumptions.
  - The stock price follows a log-normal distribution.
  - The risk-free rate,  $r$ , is constant and the same for all maturities.
  - There are no dividends during the life of the derivative.
  - There are no transaction costs or taxes.
  - There are no arbitrage opportunities.

## Black-Scholes-Merton Model - Derivation

- Using the present-value approach, the call price is

$$c_0 = e^{-rT} E [\max(S_T - K, 0)] .$$

when we compute the expected payoff under the risk-neutral probability  $\Rightarrow$   
Risk-neutral valuation

- Utilizing the log-normal distribution of  $S_T$ , we can compute the expected option payoff. Then, by discounting as above, we obtain the option price.

## Black-Scholes-Merton Model - Derivation

- First, let's calculate  $E[\max(S_T - K, 0)]$
- Note that  $S_T$  is log-normally distributed in the risk-neutral world.

$$\ln S_T \sim \phi \left( \underbrace{\ln S_0 + \left( r - \frac{\sigma^2}{2} \right) T}_{\equiv m}, \underbrace{\sigma \sqrt{T}}_{\equiv w} \right)$$

- To simplify the notation, let  $V$  denote  $\ln S_T$ . So,  $V \sim \phi(m, w)$ . Then, the probability density function of  $V$  is

$$g(V) = \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(V-m)^2}{2w^2}}$$

- Let's use  $g(V)$  to compute the expected payoff of the call.

# Black-Scholes-Merton Model - Derivation

- The expected payoff is

$$\begin{aligned} E[\max(S_T - K, 0)] &= E[\max(e^V - K, 0)] \\ &= \int_{-\infty}^{\infty} \max(e^V - K, 0) g(V) dV \\ &= \int_{-\infty}^{\ln K} \underbrace{\max(e^V - K, 0)}_{=0} g(V) dV + \int_{\ln K}^{\infty} \underbrace{\max(e^V - K, 0)}_{=e^V - K} g(V) dV \\ &= \int_{\ln K}^{\infty} (e^V - K) g(V) dV \\ &= \underbrace{\int_{\ln K}^{\infty} e^V \cdot g(V) dV}_{\equiv A} - \underbrace{\int_{\ln K}^{\infty} K \cdot g(V) dV}_{\equiv B} \end{aligned}$$

- Let's calculate  $\mathbb{A}$  and  $\mathbb{B}$  separately and combine later.

# Black-Scholes-Merton Model - Derivation

- Let's find  $\mathbb{B}$  first.

$$\begin{aligned}\mathbb{B} &= \int_{\ln K}^{\infty} K \cdot g(V) dV \\ &= K \int_{\ln K}^{\infty} g(V) dV \\ &= K \cdot \text{Prob}(V \geq \ln K) \\ &= K \cdot \text{Prob}\left(\underbrace{e^V}_{=S_T} \geq \underbrace{e^{\ln K}}_{=K}\right) \\ &= K \cdot N(d_2)\end{aligned}$$

where  $d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}}$ .

## Black-Scholes-Merton Model - Derivation

- Next, let's find  $\mathbb{A}$ .

$$\mathbb{A} = \int_{\ln K}^{\infty} e^V \cdot g(V) dV = \int_{\ln K}^{\infty} e^V \cdot \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(V-m)^2}{2w^2}} dV$$

- To simplify the calculation, define a new variable  $Q = \frac{V-m}{w}$ . Then,  $V = m + wQ$ , and  $(dV) = w(dQ)$  in the change of variable in the integration.

$$\begin{aligned}\mathbb{A} &= \int_{\frac{\ln K - m}{w}}^{\infty} e^{m+wQ} \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{Q^2}{2}} w \times dQ \\ &= \int_{\frac{\ln K - m}{w}}^{\infty} e^{m+wQ} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2}} dQ \\ &= \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ + m} dQ \\ &= \dots\end{aligned}$$

## Black-Scholes-Merton Model - Derivation

$$\begin{aligned}\mathbb{A} &= \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ - \frac{w^2}{2} + \frac{w^2}{2} + m} dQ \\ &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ - \frac{w^2}{2}} dQ \\ &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(Q-w)^2}{2}} dQ\end{aligned}$$

- To simplify, define a new variable  $Y = Q - w$ . Then,  $Q = Y + w$  and  $(dQ) = (dY)$  in the change of variable in the integration.

$$\begin{aligned}\mathbb{A} &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m - w^2}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Y^2}{2}} dY \\ &= e^{m + \frac{w^2}{2}} \times \text{Prob} \left( Y \geq \frac{\ln K - m - w^2}{w} \right) \\ &= \dots\end{aligned}$$

## Black-Scholes-Merton Model - Derivation

$$\begin{aligned}\mathbb{A} &= e^{m+\frac{w^2}{2}} \times \left[ 1 - \text{Prob} \left( Y < \frac{\ln K - m - w^2}{w} \right) \right] \\ &= e^{m+\frac{w^2}{2}} \times \left[ 1 - N \left( \frac{\ln K - m - w^2}{w} \right) \right] \\ &= e^{m+\frac{w^2}{2}} \times N \left( \frac{-\ln K + m + w^2}{w} \right)\end{aligned}$$

# Black-Scholes-Merton Model - Derivation

- $\ln \mathbb{A}$ ,

$$m + \frac{w^2}{2} = \ln S_0 + \left( r - \frac{\sigma^2}{2} \right) T + \frac{\sigma^2 T}{2} = \ln S_0 + rT$$
$$\frac{-\ln K + m + w^2}{w} = \frac{\ln S_0 - \ln K + \left( r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}$$

- Thus,

$$\begin{aligned}\mathbb{A} &= e^{m + \frac{w^2}{2}} \times N \left( \frac{-\ln K + m + w^2}{w} \right) \\ &= S_0 e^{rT} \times N \left( \underbrace{\frac{\ln S_0 - \ln K + \left( r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}}_{\equiv d_1} \right) \\ &= S_0 e^{rT} \times N(d_1)\end{aligned}$$

## Black-Scholes-Merton Model - Derivation

- Now, let's combine  $\mathbb{A}$  and  $\mathbb{B}$ .

$$\begin{aligned} E[\max(S_T - K, 0)] &= \mathbb{A} - \mathbb{B} \\ &= S_0 e^{rT} \times N(d_1) - K \times N(d_2) \end{aligned}$$

- The current price of the call is

$$\begin{aligned} c_0 &= e^{-rT} E[\max(S_T - K, 0)] \\ &= e^{-rT} [S_0 e^{rT} \times N(d_1) - K \times N(d_2)] \\ &= S_0 N(d_1) - K e^{-rT} N(d_2) \end{aligned}$$

## Black-Scholes-Merton Model - Derivation

- Once the call option is obtained, we can easily drive the put price using the put-call parity.

$$\begin{aligned}p_0 &= c_0 + Ke^{-rT} - S_0 \\&= S_0 N(d_1) - Ke^{-rT} N(d_2) + Ke^{-rT} - S_0 \\&= -S_0 [1 - N(d_1)] + Ke^{-rT} [1 - N(d_2)] \\&= -S_0 N(-d_1) + Ke^{-rT} N(-d_2)\end{aligned}$$

## Black-Scholes-Merton Model

- The BSM model provides an analytic form that determines the option price as a function of the followings:
  - Current stock price  $S_0$
  - Strike price  $K$
  - Time to expiration  $T$
  - Risk-free interest rate  $r$
  - Volatility of underlying asset  $\sigma$
- Through the BSM model, we can find the option price by simply inputting numbers into the option-pricing formula.

## Black-Scholes-Merton Model - Result

- The prices of European call and put options on non-dividend-paying stock are

$$c_0 = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p_0 = K e^{-rT} N(-d_2) - S_0 N(-d_1)$$

where

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T},$$

and  $N(x)$  is the cumulative probability distribution function for a standard normal random variable.

## Black-Scholes-Merton Model - Example

- Q. There is a 6-month European call option on a stock whose current price is \$42. The strike price is \$40, and the risk-free interest rate is 10% per annum. The stock volatility is 20% per annum. What is the price of the option?

**Answer:**

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} = \frac{\ln(42/40) + (0.1 + 0.2^2/2)(0.5)}{0.2\sqrt{0.5}} = 0.7693$$

$$d_2 = d_1 - \sigma\sqrt{T} = 0.6278$$

$$\begin{aligned} c &= S_0 N(d_1) - K e^{-rT} N(d_2) \\ &= 42 \times N(0.7693) - 40 e^{-0.1 \times 0.5} \times N(0.6278) \\ &= 42 \times \text{norm.s.dist}(0.7693, \text{TRUE}) - 40 e^{-0.1 \times 0.5} \times \text{norm.s.dist}(0.6278, \text{TRUE}) \\ &= \$4.759. \end{aligned}$$

## Black-Scholes-Merton Model - Example

- What if we use the binomial model for the previous question?
- Let's start with 10-step binomial model and increases the number of steps.

| number of steps | option price |
|-----------------|--------------|
| 10              | 4.800        |
| 20              | 4.768        |
| 50              | 4.762        |
| ⋮               | ⋮            |
| 500             | 4.759        |
| BSM price       | 4.759        |

- As the number of steps increases, the binomial price converges to the BSM price.

## Black-Scholes-Merton Model – Example

Q. A European put option on a non-dividend-paying stock:

$$S_0 = \$60, \quad K = \$65, \quad T = 1 \text{ year}, \quad r = 5\% \text{ p.a.}, \quad \sigma = 30\% \text{ p.a.}$$

What is the theoretical price of this put option under the BSM model?

## Black-Scholes-Merton Model - Another Example

- Q. Consider a derivative on a stock with the time to expiration  $T$  and the following payoff:

$$\begin{cases} 0 & \text{if } S_T < K_1 \\ K_1 & \text{if } K_1 \leq S_T < K_2 \\ 0 & \text{if } K_2 \leq S_T \end{cases}$$

where  $K_2 > K_1$ . What is the present value of the derivative? Provide an analytic expression of the price using  $N(\cdot)$ , the cumulative probability distribution function of a standard normal random variable.

## Black-Scholes-Merton Model - Another Example

**Answer:** Let  $V$  denote  $\ln S_T$ . Then,  $V$  is normally distributed, i.e.,  $V \sim \phi(m, w)$ . Let  $g(V)$  denote the probability density function of  $V$ . To find the present value of the derivative, we first compute the expected option payoff:

$$\begin{aligned} E[\text{Payoff}] &= \int_{-\infty}^{\infty} \text{Payoff} \cdot g(V) dV \\ &= \int_{-\infty}^{\ln K_1} \text{Payoff} \cdot g(V) dV + \int_{\ln K_1}^{\ln K_2} \text{Payoff} \cdot g(V) dV \\ &\quad + \int_{\ln K_2}^{\infty} \text{Payoff} \cdot g(V) dV \\ &= \int_{-\infty}^{\ln K_1} 0 \cdot g(V) dV + \int_{\ln K_1}^{\ln K_2} K_1 \cdot g(V) dV + \int_{\ln K_2}^{\infty} 0 \cdot g(V) dV \\ &= K_1 \int_{\ln K_1}^{\ln K_2} g(V) dV \\ &= K_1 \cdot \text{Prob}(\ln K_1 \leq V \leq \ln K_2) \\ &= K_1 \cdot \text{Prob}(K_1 \leq S_T \leq K_2) \\ &= K_1 \cdot [\text{Prob}(K_1 \leq S_T) - \text{Prob}(K_2 \leq S_T)] \end{aligned}$$

## Black-Scholes-Merton Model - Another Example

**Answer (cont'd):**

$$= K_1 \cdot \left[ N \left( \frac{\ln(S_0/K_1) + \left( r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) - N \left( \frac{\ln(S_0/K_2) + \left( r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) \right].$$

Next, multiplying by the discount factor, we obtain the present value as follows:

$$f_0 = e^{-rT} K_1 \cdot \left[ N \left( \frac{\ln(S_0/K_1) + \left( r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) - N \left( \frac{\ln(S_0/K_2) + \left( r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) \right].$$

## BSM Formula: Interpretation

- Under the Black–Scholes–Merton model, a call option can be viewed as being replicated by a portfolio of the underlying stock and a risk-free bond.
- In particular:

$$\Delta_c = \frac{\partial C}{\partial S} = N(d_1) > 0,$$

meaning that  $N(d_1)$  is the number of shares of stock held in the replicating portfolio for the call.

$$\Delta_p = \frac{\partial P}{\partial S} = -N(-d_1) < 0,$$

meaning for a put the equivalent position is short stock.

- The term  $K e^{-rT} N(d_2)$  represents the present-value of the amount borrowed (or short-bond position) in the replicating portfolio for a call.
- Hence the call price is simply the cost of the replicating portfolio at time 0:

$$c_0 = \Delta_c S_0 - B = S_0 N(d_1) - K e^{-rT} N(d_2).$$

## Extending the BSM model

## The BSM for dividend payout

- Suppose the underlying pays continuous dividend  $q$  .
  - Dividend should, for the purposes of option valuation, be defined as the reduction in the stock price.
- Replace the stock price  $S$  in the formula by  $Se^{-qT}$  <sup>3</sup>

$$c = S_0 e^{-qT} N(d_1) - K e^{-rT} N(d_2)$$

, where  $d_1 = \frac{\ln(S_0/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}$  and  $d_2 = d_1 - \sigma\sqrt{T}$ . (called Merton model)

- Delta =  $e^{-qT} N(d_1)$
- Put-Call parity:  $p + S_0 e^{-qT} = c + K e^{-rT}$ 
  - Given the price of puts and calls, we can solve this for the “implied dividend yield  $q$ ”.

---

<sup>3</sup>For sketch of proof, go to the slide, “The BSM for dividend payout: Derivation” .

# Options on Futures – Call and Put Payoffs

- **Call on a futures contract:**
  - Right to enter a long futures position at the strike price  $K$ .
  - On exercise, the payoff =  $\max(F_T - K, 0)$ , where  $F_T$  is the futures price at expiry.
- **Put on a futures contract:**
  - Right to enter a short futures position at strike  $K$ .
  - Payoff =  $\max(K - F_T, 0)$ .
- These payoffs are analogous to vanilla options on assets, but the underlying is a futures contract instead of owning the asset.

## Option on Futures – Example

- On August 15, a trader holds a September futures-call option on copper.
  - Strike price  $K = 320$  cents per pound.
  - One futures contract represents 25,000 pounds of copper.
  - The current (most recent settlement) futures price for September delivery is  $F = 330$  cents/pound.
  - The quoted “spot” (closing) price just before exercise is 331 cents/pound.
- If the option is exercised today, then:
  - The payoff from the option part is

$$25,000 \times (330 - 320) = 250,000 \text{ cents} = \$2,500$$

- Immediately after exercise the trader receives the long futures contract (i.e., obligation to buy 25,000 pounds at 330).
- If the trader decides to close out the futures position immediately (i.e., offset it), there is an additional gain equal to

$$25,000 \times (331 - 330) = 25,000 \text{ cents} = \$250.$$

- Therefore the total payoff on exercise =  $\$2,500 + \$250 = \$2,750$ , which equals

$$25,000 \times (F - K) = 25,000 \times (331 - 320) \text{ cents} = \$2,750.$$

# Options on Futures – Key Features & Advantages

- Advantages of futures-based options
  - Futures contracts often trade on highly liquid exchanges, making the underlying option more liquid and easier to hedge.
  - Exercise of a futures option does not require physical delivery of the underlying asset — instead the holder enters a futures position and may immediately offset it.
  - The option and the futures contract typically trade on the same exchange, which can reduce margin/clearing costs and simplify operational logistics.
- Equivalence for European style: If the option expires when the futures contract matures (i.e.,  $F_T = S_T$ ), then a European futures option is equivalent to a European spot option.
- Market scope
  - Common underlying futures for these options include: agricultural commodities (e.g., wheat, corn), energy (e.g., crude oil, natural gas), precious metals (e.g., gold, silver), interest-rate futures, and volatility indexes (e.g., VIX futures).
  - Many listed futures options are American style, allowing exercise at any time before expiry, especially in commodity markets.

## Options on Futures: Black-76 (BSM Variant)

- The underlying is a futures contract, so  $S$  in the equation is the futures price, call it  $F$ .
  - Remember  $F_0 = S_0 e^{rT}$ . As time passes,  $e^{rT}$  shrinks at the rate of  $r$  like dividend yield  $q$ . (assume Futures = Forward here).
- Replace the stock price  $S$  in the formula by the discounted value of the futures price  $F$ :  $Fe^{-rT}$

$$c = Fe^{-rT} N(d_1) - Ke^{-rT} N(d_2) = e^{-rT} [FN(d_1) - KN(d_2)]$$

$$\text{, where } d_1 = \frac{\ln(F/K) + (\sigma^2/2)T}{\sigma\sqrt{T}} \text{ and } d_2 = d_1 - \sigma\sqrt{T}$$

- Delta =  $e^{-rT} N(d_1)$
- Put-Call parity:  $p + Fe^{-rT} = c + Ke^{-rT}$

## Options on Futures – The Black '76 Model

- The model originates from Fischer Black's 1976 paper, "The Pricing of Commodity Contracts", where he extended the Black–Scholes–Merton model to options written on futures/forwards.
- Key features of the model:
  - You avoid separate modelling of convenience yields, storage costs or asset-income flows, because these are embedded in the forward/futures price.
  - The underlying is a forward/futures price (rather than owning the physical asset), which simplifies the replication and hedging.
    - Provided interest rates are deterministic (and hence forwards  $\approx$  futures), this substitution is valid.
  - The forward/futures price is assumed to follow a log-normal distribution, similar to the BSM setup.
  - The model has wide applicability beyond commodity futures—e.g., interest-rate caps/floors, bond options, swaptions.
- Caveats:
  - The formula produces a European-style option value. For American-style options on futures, one must use alternative methods (e.g., binomial tree, finite difference).
  - If interest rates or cost-of-carry vary stochastically, the equivalence between forwards & futures may break, and more complex models are needed.

## The BSM for currency option

- The price of the underlying is the exchange rate (in \$ per unit of FX). The underlying pays interest at the foreign riskless rate, so set  $q = r_F$ . The riskless rate  $r$  is the domestic rate (Garman-Kohlhagen Model).
- Replace the stock price  $S$  in the formula by  $Se^{-r_F T}$

$$c = S_0 e^{-r_F T} N(d_1) - Ke^{-rT} N(d_2)$$

$$, \text{ where } d_1 = \frac{\ln(S_0/K) + (r - r_F + \sigma^2/2)T}{\sigma\sqrt{T}} \text{ and } d_2 = d_1 - \sigma\sqrt{T}$$

- Delta =  $e^{-r_F T} N(d_1)$
- Put-Call parity:  $p + S_0 e^{-r_F T} = c + Ke^{-rT}$
- Using the Black's model:  $c = e^{-rT} [FN(d_1) - KN(d_2)]$ , where  $F$  is the futures price on currency.

## Alternative Derivation I

# Review

- This derivation is also based on the Binomial Tree model in the risk-neutral world.
  - The final stock price:  $S_0 u^j d^{n-j}$ .
  - The payoff from a European call option:  $\max(S_0 u^j d^{n-j} - K, 0)$
  - The probability of  $j$  upward and  $n - j$  downward steps:  $\frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}$
  - The expected payoff:  $\sum_{j=0}^n \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$
  - The option value:  $c = e^{-rT} \sum_{j=0}^n \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$

## Review: Binomial Tree Derivation

- We begin from the multi-step binomial model in the risk-neutral world.
  - Final stock price after  $n$  steps:

$$S_T(j) = S_0 u^j d^{n-j}$$

- Payoff of a European call:

$$\max(S_0 u^j d^{n-j} - K, 0)$$

- Probability of exactly  $j$  upward moves (and  $n - j$  downward):

$$\Pr(j) = \frac{n!}{j! (n-j)!} p^j (1-p)^{n-j}$$

- Expected (risk-neutral) payoff:

$$\sum_{j=0}^n \frac{n!}{j! (n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$$

- Present value (call price):

$$c = e^{-rT} \sum_{j=0}^n \frac{n!}{j! (n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$$

## Alternative Formulation of Call Price

Payoff positive if  $S_0 u^j d^{n-j} > K \Rightarrow \ln\left(\frac{S_0}{K}\right) > -j \ln(u) - (n-j) \ln(d)$

With  $u = e^{\sigma\sqrt{T/n}}$ ,  $d = e^{-\sigma\sqrt{T/n}}$

$$\Rightarrow \ln\left(\frac{S_0}{K}\right) > n\sigma\sqrt{\frac{T}{n}} + 2j\sigma\sqrt{\frac{T}{n}}$$

$$\Rightarrow j > \frac{n}{2} - \frac{\ln(S_0/K)}{2\sigma\sqrt{T/n}}$$

Thus:  $c = e^{-rT} \sum_{j>\alpha} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$ ,

$$\text{where } \alpha = \frac{n}{2} - \frac{\ln(S_0/K)}{2\sigma\sqrt{T/n}}$$

Write  $c = e^{-rT} (S_0 U_1 - K U_2)$ ,

$$\text{with } U_1 = \sum_{j>\alpha} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} u^j d^{n-j},$$

$$U_2 = \sum_{j>\alpha} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}$$

## Increasing the Number of Steps: Convergence to BSM

As  $n \rightarrow \infty$ ,  $j \sim B(n, p) \rightarrow \phi(np, \sqrt{np(1-p)})$ .

$$\text{Since } U_2 = \Pr(j > \alpha), \quad U_2 = \Pr\left(\frac{j - np}{\sqrt{np(1-p)}} > \frac{\alpha - np}{\sqrt{np(1-p)}}\right) = N\left(\frac{np - \alpha}{\sqrt{np(1-p)}}\right)$$

$$\Rightarrow U_2 = N\left(\frac{\ln(S_0/K)}{2\sigma\sqrt{T}p(1-p)} + \frac{\sqrt{n}(p - \frac{1}{2})}{\sqrt{p(1-p)}}\right)$$

$$\text{Recall } p = \frac{e^{rT/n} - e^{-\sigma\sqrt{T/n}}}{e^{\sigma\sqrt{T/n}} - e^{-\sigma\sqrt{T/n}}},$$

and by Taylor expansion:  $e^{rT/n} \approx 1 + r(T/n)$ ,  $e^{\pm\sigma\sqrt{T/n}} \approx 1 \pm \sigma\sqrt{\frac{T}{n}} + \frac{1}{2}\sigma^2(T/n)$ .

$$\text{Hence } p(1-p) \rightarrow \frac{1}{4} \text{ and } \sqrt{n}(p - \frac{1}{2}) \rightarrow \frac{(r - \frac{1}{2}\sigma^2)\sqrt{T}}{2\sigma}.$$

$$\Rightarrow U_2 = N\left(\frac{\ln(S_0/K) + (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right)$$

## Final Step: From Binomial to Black–Scholes

$$U_1 = \sum_{j>\alpha} \frac{n!}{j!(n-j)!} (u p)^j (d(1-p))^{n-j}.$$

$$\text{Let } p^* = \frac{p u}{p u + (1-p) d}, \quad 1 - p^* = \frac{(1-p) d}{p u + (1-p) d}.$$

$$\Rightarrow U_1 = (p u + (1-p) d)^n \sum_{j>\alpha} \frac{n!}{j!(n-j)!} (p^*)^j (1-p^*)^{n-j}.$$

$$\text{Because } p u + (1-p) d = e^{rT}, \Rightarrow U_1 = e^{rT} \sum_{j>\alpha} \frac{n!}{j!(n-j)!} (p^*)^j (1-p^*)^{n-j}.$$

$$\text{So in the limit as } n \rightarrow \infty, \quad U_1 = e^{rT} N\left( \frac{\ln(S_0/K) + (r + \frac{1}{2}\sigma^2) T}{\sigma \sqrt{T}} \right).$$

$$\Rightarrow c = S_0 N(d_1) - K e^{-rT} N(d_2).$$

## Alternative Derivation II

# Overview of Option-Pricing Derivations

- The previous binomial-tree derivation sets up a discrete framework:
  - The underlying asset and a risk-free bond are combined to build a portfolio that exactly replicates the option payoff at each node.
  - By enforcing no-arbitrage (the replicating portfolio must earn the risk-free rate), we derive the fair option price.
- In contrast, the Black–Scholes–Merton model (BSM) uses a continuous-time framework:
  - The option and the underlying asset are dynamically hedged to create a riskless position.
  - Since this hedged position must grow at the risk-free rate, we obtain a partial differential equation whose solution gives the option price.
- Key point: Although the approaches differ (discrete vs. continuous), both rely on the same principle of constructing a riskless arbitrage-free portfolio and enforcing that it returns the risk-free rate.

## Underlying Assumptions of the BSM Model

- Options are European
- “Perfect” markets – no transactions costs, no taxes, no constraints on short selling with full use of the proceeds, no indivisibilities, etc.
- No limits on borrowing or lending at a known risk free rate of interest
- The price of the underlying asset follows a “lognormal diffusion” process
- The return volatility of the underlying asset is known
- No dividends or cash payouts from the underlying asset prior to option maturity

# Asset Price Process in Continuous Time

- The model assumes the underlying asset price  $S_t$  follows a *geometric Brownian motion*:

$$dS_t = \mu S_t dt + \sigma S_t dz_t \implies \frac{dS_t}{S_t} = \mu dt + \sigma dz_t.$$

- Explanation of components:
  - $dS_t$ : instantaneous change in the price at time  $t$ .
  - $\mu$ : the drift (average continuously-compounded rate of return).
  - $dt$ : an infinitesimal increment of time.
  - $\sigma$ : volatility (annualised standard deviation of returns).
  - $dz_t$ : increment of a standard Brownian motion (mean 0, variance  $dt$ ).
- Key assumptions behind this model:
  - $\mu$  and  $\sigma$  are constant over time.
  - The process has independent increments (no memory, Markov property) and is continuous in time.
  - The asset can be traded continuously without transaction costs or liquidity constraints.

## Key Definitions

- A process  $\{z(t) : t \geq 0\}$  is called a Brownian motion (Wiener process) if:
  - ①  $z(0) = 0$ .
  - ② It has continuous paths and independent increments: for  $0 \leq s < t$ , the increment  $z(t) - z(s)$  is independent of the past and distributed  $N(0, t - s)$ .
  - ③ Over a very small time interval  $\Delta t$ , one can think informally:

$$dz_t \approx \epsilon \sqrt{\Delta t}, \quad \epsilon \sim N(0, 1).$$

For example, if  $\Delta t = 0.01$  and  $\epsilon = 1.5$ , then  $dz_t \approx 1.5 \times \sqrt{0.01} = 0.15$ .

- A Generalised Wiener process is of the form:

$$dS_t = \mu dt + \sigma dz_t,$$

where  $\mu$  and  $\sigma$  are constants.

- Example: Suppose  $\mu = 0.05$ ,  $\sigma = 0.2$ . Over a small  $\Delta t = 0.25$  years, one might approximate:

$$dS_t \approx 0.05 \times 0.25 + 0.2 \times dz_t.$$

If  $dW_t = 0.1$ , then  $dX_t \approx 0.0125 + 0.02 = 0.0325$ .

## Key Definitions (cont'd)

- An Itô process has the more general form:

$$dS_t = \mu(S_t, t) dt + \sigma(S_t, t) dz_t,$$

where the drift and volatility can depend on the current state and time.

- Example: Suppose an asset price satisfies:

$$dS_t = \mu S_t dt + \sigma S_t dz_t$$

with  $\mu = 0.08$ ,  $\sigma = 0.25$ ,  $S_0 = 100$ . Then  $S_t$  follows a geometric Brownian motion.

# The Process for a Stock Price

- $dS_t = \mu dt$ ?
  - There is no uncertainty.
  - $S_t = \mu t$ , i.e., stock price grows by  $\mu$ .  $\Rightarrow$  Not realistic!
- $dS_t = \mu dt + \sigma dz$ ?
  - There is uncertainty,  $dz$ .
  - But stock price can take a negative value!
- $dS_t/S_t = \mu dt + \sigma dz$ 
  - The most widely used model of stock price behavior.
  - For a risk-free asset,  $\mu = r$  and  $\sigma = 0$ . Hence,  $S_t = e^{rt}$ .
  - Ito process, log-normal diffusion process, geometric Brownian motion

## Examples – Part 1

- **Example 1: Arithmetic Brownian Motion (ABM)**

$$dX_t = \mu dt + \sigma dz_t$$

- Here  $\mu$  and  $\sigma$  are constants.
  - Suppose  $\mu = 0.02$ ,  $\sigma = 0.15$ , and time horizon  $T = 1$  year. If  $X_0 = 100$ , then the expected value is  $E[X_T] = 100 + 0.02 \times 1 = 100.02$ .
  - Variance is  $\sigma^2 T = 0.15^2 \times 1 = 0.0225$ . So the standard deviation is about  $\sqrt{0.0225} \approx 0.15$ .
  - This process can go negative; it models absolute changes rather than proportional changes.
- 
- **Example 2: Geometric Brownian Motion (GBM)**

$$dS_t = \mu S_t dt + \sigma S_t dz_t$$

- Suppose  $\mu = 0.08$ ,  $\sigma = 0.20$ , and  $S_0 = 50$ . Then under the model,  $S_t$  remains strictly positive.
- The log-return  $\ln(S_t/S_0)$  is normal. This is the model assumed in the Black–Scholes–Merton model.
- If we look at expected value:  $E[S_t] = S_0 e^{\mu t} = 50 e^{0.08 \times 1} \approx 54.17$  (for  $t = 1$  year) assuming no discounting.

## Examples – Part 2

- Example 3: Mean-Reverting Ornstein-Uhlenbeck (OU) Process

$$dY_t = \kappa(\theta - Y_t) dt + \sigma dz_t$$

- Let  $\kappa = 1.5$ ,  $\theta = 100$ ,  $\sigma = 10$ , starting value  $Y_0 = 120$ .
  - Interpretation: the process tends to revert toward long-term level  $\theta = 100$  with speed  $\kappa$ .
  - Over time the expected value moves:  
 $E[Y_t] = \theta + (Y_0 - \theta)e^{-\kappa t} = 100 + 20 e^{-1.5 t}$ . For  $t = 1$ :  
 $100 + 20e^{-1.5} \approx 100 + 20 \times 0.223 = 104.46$ .
  - Use case: modelling interest rates or commodity spreads which tend to bounce back toward an equilibrium.
- 
- Example 4: Geometric Mean-Reverting Process

$$dS_t = \kappa(\theta - \ln S_t) S_t dt + \sigma S_t dz_t$$

- Here the drift term drives  $\ln S_t$  toward  $\theta$ ; volatility is proportional to  $S_t$ .
- Suppose  $\kappa = 0.8$ ,  $\theta = \ln(80)$ ,  $\sigma = 0.25$ ,  $S_0 = 60$ .
- The process tends to revert to an equilibrium level around  $S \approx 80$ . Useful in modelling commodity prices with proportionate volatility and mean reversion.

## Examples – Part 3

- **Example 5: Cox–Ingersoll–Ross (CIR) Interest Rate Process**

$$dr_t = \kappa(\theta - r_t) dt + \sigma\sqrt{r_t} dz_t$$

- A canonical model for short-term interest rates (ensuring  $r_t \geq 0$ ).
- Let  $\kappa = 0.5$ ,  $\theta = 0.04$ ,  $\sigma = 0.1$ ,  $r_0 = 0.03$ .
- Over time the rate moves toward 0.04, and volatility is state-dependent:  $\sqrt{r_t}$ .
- Use case: pricing interest rate derivatives under stochastic rate models.

## Ito's Lemma

- Suppose  $x$  follows an Ito process:  $dx = a(x, t)dt + b(x, t)dz$
- Kiyoshi Ito (1915-2008) shows that a function of  $x$  and  $t$ ,  $G(x, t)$  (twice continuously differentiable) follows another Ito process:

$$dG = \left( \frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2 \right) dt + \frac{\partial G}{\partial x} b dz$$

- Apply a Taylor series expansion on  $G(x, t)$ :

$$dG \approx \frac{\partial G}{\partial x} dx + \frac{\partial G}{\partial t} dt + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} dx^2 + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} dt^2 + \frac{\partial^2 G}{\partial x \partial t} dx dt$$

- $dx^2 \approx b^2 dz^2 = b^2 \epsilon^2 dt^4$
- $E(b^2 \epsilon^2 dt) = b^2 dt$  and  $Var(\epsilon^2 dt) = 2dt^2 \approx 0$   
( $\because Var(\epsilon^2) = E(\epsilon^4) - E(\epsilon^2)^2 = 3 - 1 = 2$ ).
- Ignore higher order terms (e.g.  $dt^{1.5}, dt^2$ ).

$$dG \approx \frac{\partial G}{\partial x} dx + \frac{\partial G}{\partial t} dt + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2 dt$$

- Plug in  $dx = a(x, t)dt + b(x, t)dz$ .

---

<sup>4</sup> $dtdz = 0$  and  $(dz)^2 = dt$

## Ito's Lemma (cont'd)

- Why this matters for option pricing:
  - When we let  $G = \text{option value } V(S_t, t)$ , and  $S_t$  follows a geometric Brownian motion, applying Itô's Lemma lets us derive the partial differential equation that leads to the Black–Scholes Equation.
  - Understanding this term is central to moving from discrete-time models (binomial) to continuous time derivations.

## Applying Itô's Lemma to $S_t$

- Apply Ito's lemma on  $dS_t = \mu S_t dt + \sigma S_t dz_t$

$$dG = \left( \frac{\partial G}{\partial S} \mu S + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial S^2} \sigma^2 S^2 \right) dt + \frac{\partial G}{\partial S} \sigma S dz$$

- Now consider  $G = \ln S_t$ .

$$\frac{\partial G}{\partial S} = \frac{1}{S_t}, \quad \frac{\partial^2 G}{\partial S^2} = -\frac{1}{S_t^2}, \quad \frac{\partial G}{\partial t} = 0$$

- Therefore,

$$dG = \left( \mu - \frac{\sigma^2}{2} \right) dt + \sigma dz$$

- It follows a generalized Wiener process.

- $G_T - G_0 = \ln S_T - \ln S_0 \sim \phi \left( \left( \mu - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right)$
- That is,  $\ln S_T \sim \phi \left( \ln S_0 + \left( \mu - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right)$

## Key Consequences of Itô's Lemma for GBM

- Under this model  $dS_t = \mu S_t dt + \sigma S_t dz_t$ :
  - Continuously-compounded return  $dS_t/S_t$  is normally distributed (infinitesimal time).
  - Future stock price  $S_T$  has a log-normal distribution—implying  $S_T > 0$ .
- The same Brownian increment  $dz_t$  drives both the asset and any smooth function of it—for example  $\ln S_t$ .
- The log-normal assumption of  $S_T$  underlies the analytic closed-form formula for European option prices.

## Deriving the Black–Scholes PDE – Step 1

- Assume the underlying asset price follows

$$dS_t = \mu S_t dt + \sigma S_t dz_t.$$

- Let  $V = V(S_t, t)$  be the price of a European call option (a function of the asset price and time).
- Applying Itô's Lemma gives:

$$dV = \left( \frac{\partial V}{\partial S} \mu S_t + \frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S_t^2 \right) dt + \frac{\partial V}{\partial S} \sigma S_t dz_t.$$

- Long 1 unit of the call option and short  $\frac{\partial V}{\partial S}$  number of shares. (Why?)

$$\Pi = V - \frac{\partial V}{\partial S} S_t$$

and compute its differential:

$$d\Pi = dV - \frac{\partial V}{\partial S} dS_t = \left( \frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S_t^2 \right) dt$$

(The  $dz_t$  term cancels by design.)

## Deriving the Black–Scholes PDE – Step 2

- Because this equation does not involve  $dz$ , the portfolio must be riskless during time  $dt$ . Therefore,

$$\Pi = e^{rdt}$$

$$d\Pi = r\Pi dt$$

$$\begin{aligned} \left( \frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 \right) dt &= r \left( V - \frac{\partial V}{\partial S} S \right) dt \\ \Rightarrow \frac{\partial V}{\partial t} + rS \frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 &= rV \end{aligned}$$

- This is called the Black–Scholes–Merton differential equation.
- Solving the differential equation with the boundary conditions, e.g.,  $V = \max(S - K, 0)$  when  $t = T$ , gives a formula for a European call option.
  - Unfortunately, no exact analytic formula for the value of an American put option on a non-dividend-paying stock has been produced.

NB There is no  $\mu$ , the expected return!

# The BSM Differential Equation

$$\frac{\partial V}{\partial t} + rS \frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 = rV$$

- If  $V(S, T) = S_T$ , i.e., the stock itself,  $V(S, t) = S_t$
- If  $V(S, T) = K$ , i.e., constant, then  $V(S, t) = Ke^{-r(T-t)}$
- If  $V(S, T) = S_T - K$ , i.e., forward, then  $V(S, t) = S_t - Ke^{-r(T-t)}$
- Does  $V(S, 0) = S_0 N(d_1) - Ke^{-rT} N(d_2)$  satisfy the equation?
- The PDE above is so general that it can solve (mostly numerically) for  $V$  depending on the boundary conditions.

# The Black–Scholes PDE – Verification of Special Cases

$$\frac{\partial V}{\partial t} + r S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r V$$

- If  $V(S, T) = S_T$ , i.e., the underlying stock itself  $\rightarrow V(S, t) = S_t$ .
  - Then  $\frac{\partial V}{\partial t} = 0$ ,  $\frac{\partial V}{\partial S} = 1$ ,  $\frac{\partial^2 V}{\partial S^2} = 0$ .
  - Substituting:  $0 + r S \cdot 1 + \frac{1}{2} \sigma^2 S^2 \cdot 0 = r S = r V$ .
  - So the PDE holds.
- If  $V(S, T) = K$ , a constant payoff  $\rightarrow V(S, t) = K e^{-r(T-t)}$ .
  - Then  $\frac{\partial V}{\partial S} = 0$ ,  $\frac{\partial^2 V}{\partial S^2} = 0$ , and  $\frac{\partial V}{\partial t} = r K e^{-r(T-t)} = r V$ .
  - Substituting:  $r V + r S \cdot 0 + 0 = r V$ .
  - The PDE is satisfied.
- If  $V(S, T) = S_T - K$  (a forward payoff)  $\rightarrow V(S, t) = S_t - K e^{-r(T-t)}$ .
  - Then  $\frac{\partial V}{\partial S} = 1$ ,  $\frac{\partial^2 V}{\partial S^2} = 0$ ,  $\frac{\partial V}{\partial t} = -r K e^{-r(T-t)}$ .
  - Left side:  $-r K e^{-r(T-t)} + r S \cdot 1 + 0 = r V$ .
  - Again the PDE holds.

## Verification that the Call Price Satisfies the PDE

- It also holds for a European option on a non-dividend-paying stock. It's more complicated to verify, though.
- The PDE is extremely general. What changes between contracts (stock, bond, forward, option) is the *terminal condition* (and any boundary conditions). Once you know the terminal condition, you pick the corresponding solution that satisfies the PDE. Refer to standard derivations.

## Appendix 1: The BSM for dividend payout

## BSM with Continuous Dividend Yield: Derivation (1)

- Suppose the stock pays a continuous dividend yield  $q$ . Then, during  $dt$ , the stockholder receives a dividend

$$dD = q S \frac{\partial V}{\partial S} dt.$$

- The change in the value of the hedged portfolio is the sum of the change in portfolio value and the dividend income:

$$dW_t = d\Pi + dD.$$

- Using Itô's Lemma and the hedge ratio  $\frac{\partial V}{\partial S}$ , we have:

$$dW_t = \left( -\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + qS \frac{\partial V}{\partial S} \right) dt.$$

- Since the portfolio is instantaneously riskless, it must earn the risk-free rate  $r$ :

$$dW_t = r \Pi dt = r \left( -V + S \frac{\partial V}{\partial S} \right) dt.$$

## BSM with Continuous Dividend Yield: Derivation (2)

- Equating the two expressions for  $dW_t$  and rearranging gives:

$$\frac{\partial V}{\partial t} + (r - q)S \frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = rV.$$

- This is the **Black–Scholes–Merton PDE with dividends**. The dividend yield  $q$  reduces the drift of the stock under the risk-neutral measure.
- The corresponding risk-neutral stock price process is:

$$dS = (r - q)S dt + \sigma S dz.$$

- For a European call, solving the PDE gives the **Black–Scholes formula with dividends**:

$$c = S_0 e^{-qT} N(d_1) - K e^{-rT} N(d_2),$$

where

$$d_{1,2} = \frac{\ln(S_0/K) + (r - q \pm \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$$

## Appendix 2: From BSM PDE to BSM equation

## Step 1: The Black–Scholes PDE

- We start with the partial differential equation (PDE) for the option value  $V(S, t)$ :

$$\frac{\partial V}{\partial t} + r S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r V.$$

- Here:

- $S$  = underlying stock price at time  $t$ .
- $r$  = risk-free interest rate (continuous).
- $\sigma$  = volatility of the stock's returns.
- The terminal (boundary) condition is:

$$V(S, T) = \max(S - K, 0),$$

for a European call option with strike  $K$  and maturity  $T$ .

- This PDE comes from hedging + Itô's Lemma + no-arbitrage.

## Step 2: Change of Variables

- Solving the PDE directly is hard, so we perform a change of variables to simplify it. Typical transformations include:
  - $\tau = T - t$  (time to maturity).
  - $x = \ln(S/K)$  (log-stock variable).
  - Introduce a new function  $u(x, \tau) = e^{r\tau} V(S, t)$  so that the discount-term  $rV$  disappears.
- Under these changes, the PDE is transformed into a “heat equation” form (a simpler diffusion PDE), for which standard solutions are known.
- This step is therefore a mathematical trick to make the PDE solvable with known methods.

## Step 3: Solve the Transformed PDE

- Once in the “heat-equation” form, one applies known solution methods (e.g., separation of variables, Green’s functions) to find  $u(x, \tau)$ .
- Then we revert the change of variables:

$$V(S, t) = e^{-r(T-t)} u(\ln(S/K), T-t).$$

- The result is an expression involving the normal cumulative distribution function  $N(\cdot)$ .
- In returning to the original variables, we obtain the closed-form formula for a European call option:

$$C = S N(d_1) - K e^{-r(T-t)} N(d_2),$$

with

$$d_1 = \frac{\ln(S/K) + (r + \frac{1}{2} \sigma^2)(T-t)}{\sigma \sqrt{T-t}}, \quad d_2 = d_1 - \sigma \sqrt{T-t}.$$

## Step 4: Interpretation & Key Insights

- Notice that the expected stock return  $\mu$  does not appear in the final formula — only the risk-free rate  $r$  and volatility  $\sigma$ .
- Why? Because of risk-neutral valuation: in a hedged portfolio the expected return of the underlying becomes irrelevant.
- The formula therefore = discounted expected payoff under the “risk-neutral measure”.