

Black-Scholes-Merton Model

BUSS386. Futures and Options

Professor Ji-Woong Chung

Lecture Outline

- Black-Scholes-Merton Model
 - Log-Normal Property of Stock Prices
 - Derivation
 - Interpretation

BSM Model

Binomial Model vs. Black–Scholes–Merton (BSM) Model

- **Binomial model:** assumes the underlying asset price moves in discrete time-steps (up or down at each step).
- **BSM model:** built on continuous-time dynamics, modelling the asset price as evolving continuously.
- Although their approaches differ, they are closely connected: as the binomial time-steps shrink toward zero, the discrete model *converges* to the BSM formula for European-style options.
- When to use which:
 - Use the binomial model for flexibility (e.g., American options, early exercise, variable volatility).
 - Use the BSM model when assumptions (continuous trading, no early exercise, constant volatility) are reasonable and a closed-form solution is desired.

Black-Scholes-Merton Model

- The prices of European call and put options on non-dividend-paying stock are

$$c_0 = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p_0 = K e^{-rT} N(-d_2) - S_0 N(-d_1)$$

where

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T},$$

and $N(x)$ is the cumulative probability distribution function for a standard normal random variable.

BSM Model – Distribution of Future Stock Price

- A core assumption of the Black–Scholes–Merton model (BSM) is that the underlying stock price follows a log-normal distribution, i.e.

$$\ln S_T \sim N(m, s^2)$$

where $N(m, s^2)$ denotes a normal distribution with mean m and variance s^2 .¹

- We can also derive this log-normal result via the discrete-time binomial model:
 - As the time-step size tends to zero and the number of steps tends to infinity, the binomial distribution of stock-price paths converges to the continuous GBM model and hence to log-normal terminal distribution.
- Next, we will prove the log-normality of S_T .

¹Equivalently, S_T is log-normally distributed, which ensures $S_T > 0$ and aligns with modelling via Geometric Brownian Motion (GBM):

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

and thus

$$\ln S_T = \ln S_0 + \left(\mu - \frac{1}{2}\sigma^2\right) T + \sigma W_T.$$

Log-Normal Property of Stock Prices – Setup

- Consider a binomial tree for the stock price with n steps each of length $\Delta t = \frac{T}{n}$.
- At each step the stock either moves up by factor u or down by factor d .
- If there are j upward moves and $n - j$ downward moves, then at expiry

$$S_T(j) = S_0 u^j d^{n-j}.$$

(This sets the discrete-time framework from which we will pass to a continuous-time limit.)

Distribution of Terminal Moves

- What will happen if n becomes infinitely large? (This would be equivalent to making each step infinitesimally small).
- To see this, let's increase the number of steps n .

Distribution of j when $n = 10$ and $p = 0.5$

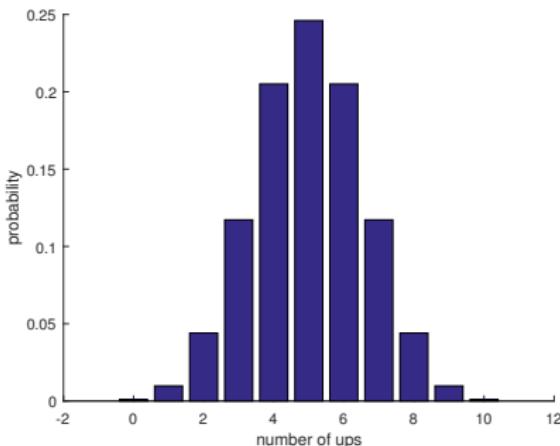
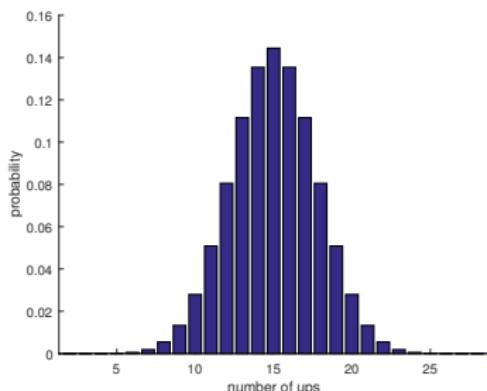
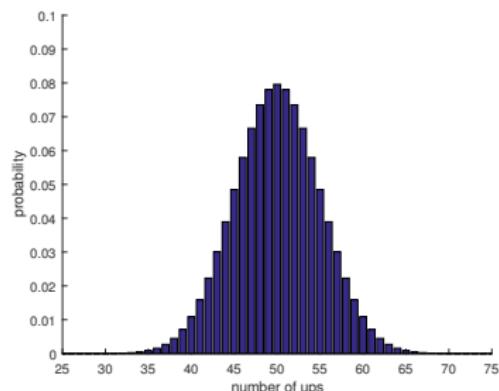


Illustration of Convergence

Distribution of j when $n = 30$ and $p = 0.5$



Distribution of j when $n = 100$ and $p = 0.5$



- As n grows large, the bar/histogram of j becomes more like a smooth bell curve. → The Central Limit Theorem
- Hence, as n approaches infinity, the number of upward movement will be normally distributed

$$j \sim N(np, \sqrt{np(1-p)}).$$

From Terminal Moves to Log Stock Price

- We now know the distribution of j . Next, let's find the distribution of $S_T(j)$.
- Using $u = e^{\sigma\sqrt{\Delta t}}$ and $d = e^{-\sigma\sqrt{\Delta t}}$,

$$\begin{aligned}S_T(j) &= S_0 u^j d^{n-j} \\&= S_0 e^{(\sigma\sqrt{\Delta t})j} e^{(-\sigma\sqrt{\Delta t})(n-j)} \\&= S_0 e^{(2\sigma\sqrt{\Delta t})j - n\sigma\sqrt{\Delta t}}\end{aligned}$$

- The log of stock price is

$$\ln S_T(j) = \ln S_0 + (2\sigma\sqrt{\Delta t})j - n\sigma\sqrt{\Delta t}$$

- As j is normally distributed, $\ln S_T$ is also normally distributed. Hence, $S_T(j)$ is log-normally distributed.

Mean and Variance of $\ln S_T$ (in limit)

- To further identify the distribution, let's find the mean and the standard deviation of $\ln S_T$.
- The mean of $\ln S_T$ is

$$\begin{aligned}E(\ln S_T) &= \ln S_0 + 2\sigma\sqrt{\Delta t}E(j) - n\sigma\sqrt{\Delta t} \\&= \ln S_0 + 2\sigma\sqrt{\Delta t}(np) - n\sigma\sqrt{\Delta t}\end{aligned}$$

Mean and Variance of $\ln S_T$ (in limit)

- To proceed, we use $p = \frac{e^{r\Delta t} - e^{-\sigma\sqrt{\Delta t}}}{e^{\sigma\sqrt{\Delta t}} - e^{-\sigma\sqrt{\Delta t}}}$ (i.e., risk-neutral probability). Here we use the Taylor series of e^x and also the fact $\Delta t \rightarrow 0$ as $n \rightarrow \infty$.²

$$\begin{aligned} p &\approx \frac{1 + r\Delta t - (1 - \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2)}{(1 + \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2) - (1 - \sigma\sqrt{\Delta t} + \sigma^2\Delta t/2)} \\ &= \left(\frac{1}{2} + \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma} \right) \end{aligned}$$

- Plugging this p into $E(\ln S_T)$ in the previous page, the mean becomes

$$E(\ln S_T) = \ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T$$

where we use the fact $\Delta t = \frac{T}{n}$.

² $e^{r\Delta t} \approx 1 + r\Delta t + \frac{1}{2}r^2\Delta t^2$ (set Δt as x), $e^{-\sigma\sqrt{\Delta t}} \approx 1 - \sigma\sqrt{\Delta t} + \frac{1}{2}\sigma^2\Delta t$ (set $\sqrt{\Delta t}$ as x).

Mean and Variance of $\ln S_T$ (in limit)

- The standard deviation of $\ln S_T$ is

$$\begin{aligned}\text{Std.Dev.}(\ln S_T) &= 2\sigma\sqrt{\Delta t} \times \sqrt{np(1-p)} \\ &= 2\sigma\sqrt{Tp(1-p)}.\end{aligned}$$

- Next, let's simplify the standard deviation. We find

$$\begin{aligned}p(1-p) &= \left(\frac{1}{2} + \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right) \left(\frac{1}{2} - \frac{(r - \sigma^2/2)\sqrt{\Delta t}}{2\sigma}\right) \\ &= \frac{1}{4} - \frac{(r - \sigma^2/2)^2}{4\sigma^2} \Delta t \approx \frac{1}{4}\end{aligned}$$

- Thus, the standard deviation of $\ln S_T$ becomes

$$\text{Std.Dev.}(\ln S_T) = \sigma\sqrt{T}.$$

Log-Normal Property of Stock Prices

- Combining the mean and the standard deviation, we conclude

$$\ln S_T \sim \phi \left(\ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right)$$

in the risk-neutral world.

Log-Normal Property of Stock Prices - Real probability

- Consider the real world where investors require the return α per annum on stock. Then, we can use the real probability p^* instead of p .

$$p^* = \frac{e^{\alpha\Delta t} - d}{u - d}$$

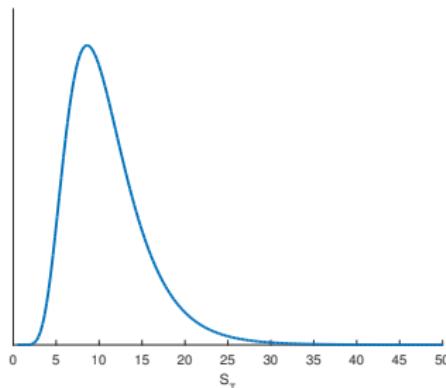
- Following the same logic as in the risk-neutral world, the real world distribution of stock price is

$$\ln S_T \sim \phi \left(\ln S_0 + \left(\alpha - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right)$$

Log-Normal Property of Stock Prices - Example

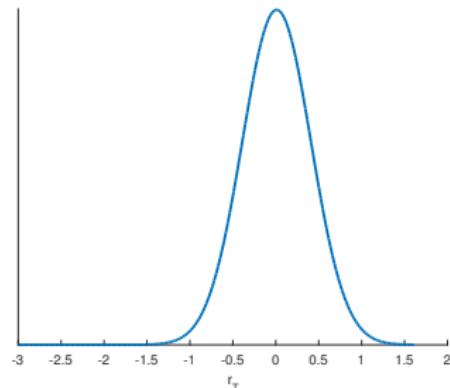
- Suppose that $S_0 = 10$, $r = 0.09$, $\sigma = 0.4$, and $T = 1$. Below are the probability density functions of S_T and r_T ($= \ln(S_T/S_0)$).

S_T



log-normal distribution

r_T



normal distribution

Probability of Option Exercise

- Using the distribution of future stock price under the risk-neutral measure, we can determine the probability of option exercise.
- Consider a European call with strike price K and expiration date T .
- What is the probability of option exercise,

$$\text{Prob}(S_T \geq K)$$

when S_T is log-normally distributed?

Probability of Option Exercise

- The probability is ...

$$\begin{aligned} \text{Prob}(S_T \geq K) &= \text{Prob}(\ln S_T \geq \ln K) \\ &= \text{Prob}\left(\frac{\ln S_T - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}} \geq \frac{\ln K - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \\ &= 1 - \text{Prob}\left(\frac{\ln S_T - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}} < \frac{\ln K - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \\ &\quad \underbrace{\left(\frac{\ln S_T - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right)}_{\sim \phi(0,1)} \\ &= 1 - N\left(\frac{\ln K - \ln S_0 - (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \\ &= N\left(\frac{-\ln K + \ln S_0 + (r - \sigma^2/2)T}{\sigma\sqrt{T}}\right) \equiv N(d_2) \end{aligned}$$

where $\phi(0, 1)$ is a standard normal random variable, and $N(x)$ is the cumulative distribution function of the standard normal.

Next

- Using the log-normal distribution of stock price, we can calculate the expected payoff of an option. This will lead us to the Black-Scholes-Merton formula.
- The exercise probability, $N(d_2)$, will be a part of the BSM result.

Math Review

Derivation of the BSM formula - Math Review

- In the derivation of the BSM formula, we need to compute the expected value of a function of random variable.
- This requires the understanding of a normal random variable and its probability density function.
- In addition, the calculation requires us to change variable in integration. This technique will be reviewed in the next slide.

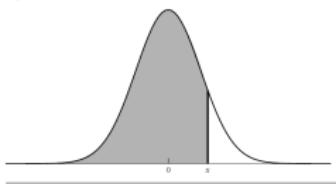
Math Review - Normal Distribution

- Recall that to define $N(x)$, we consider a standard normal random variable Z .
- For a certain value x , $N(x)$ is the probability that Z is lower than or equal to x .

$$N(x) \equiv \text{Prob}(Z \leq x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

- Graphically, $N(x)$ is the shaded area in the below figure.

Figure 14.3 Shaded area represents $N(x)$.



- In Excel, we can use the function “norm.s.dist(x, TRUE)” to compute $N(x)$.

Math Review - Change of variable in integration

- Suppose that we integrate function $f(y)$ with respect to y :

$$\int f(y)dy.$$

- In addition, y is a function of another variable x , $y = g(x)$.
- Then, we can rewrite the above integration with respect to x

$$\int f(y)dy = \int f(g(x))g'(x)dx.$$

- Intuitively, we change dy to $g'(x)dx$ based on the derivative

$$\frac{dy}{dx} = g'(x)$$

Math Review - Change of variable in integration

e.g. Y is a normal random variable with mean m and the standard deviation w . $f(Y)$ is a function of the variable. Then, the expectation of $f(Y)$ is

$$E[f(Y)] = \int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(y-m)^2}{2w^2}} dy$$

- Consider a new variable $z = \frac{y-m}{w}$. Then, $y = m + wz$ and $(dy) = w(dz)$. We can rewrite the above integration in terms of z :

$$\begin{aligned} \int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(y-m)^2}{2w^2}} dy &= \int_{-\infty}^{\infty} f(m + wz) \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{z^2}{2}} w(dz) \\ &= \int_{-\infty}^{\infty} f(m + wz) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \end{aligned}$$

Derivation of Black-Scholes-Merton Model

Black-Scholes-Merton Model - Assumptions

- The derivation of BSM option price is based on following assumptions.
 - The stock price follows a log-normal distribution.
 - The risk-free rate, r , is constant and the same for all maturities.
 - There are no dividends during the life of the derivative.
 - There are no transaction costs or taxes.
 - There are no arbitrage opportunities.

Black-Scholes-Merton Model - Derivation

- Using the present-value approach, the call price is

$$c_0 = e^{-rT} E [\max(S_T - K, 0)] .$$

when we compute the expected payoff under the risk-neutral probability \Rightarrow
Risk-neutral valuation

- Utilizing the log-normal distribution of S_T , we can compute the expected option payoff. Then, by discounting as above, we obtain the option price.

Black-Scholes-Merton Model - Derivation

- First, let's calculate $E[\max(S_T - K, 0)]$
- Note that S_T is log-normally distributed in the risk-neutral world.

$$\ln S_T \sim \phi \left(\underbrace{\ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T}_{\equiv m}, \underbrace{\sigma \sqrt{T}}_{\equiv w} \right)$$

- To simplify the notation, let V denote $\ln S_T$. So, $V \sim \phi(m, w)$. Then, the probability density function of V is

$$g(V) = \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(V-m)^2}{2w^2}}$$

- Let's use $g(V)$ to compute the expected payoff of the call.

Black-Scholes-Merton Model - Derivation

- The expected payoff is

$$\begin{aligned} E[\max(S_T - K, 0)] &= E[\max(e^V - K, 0)] \\ &= \int_{-\infty}^{\infty} \max(e^V - K, 0) g(V) dV \\ &= \int_{-\infty}^{\ln K} \underbrace{\max(e^V - K, 0)}_{=0} g(V) dV + \int_{\ln K}^{\infty} \underbrace{\max(e^V - K, 0)}_{=e^V - K} g(V) dV \\ &= \int_{\ln K}^{\infty} (e^V - K) g(V) dV \\ &= \underbrace{\int_{\ln K}^{\infty} e^V \cdot g(V) dV}_{\equiv A} - \underbrace{\int_{\ln K}^{\infty} K \cdot g(V) dV}_{\equiv B} \end{aligned}$$

- Let's calculate \mathbb{A} and \mathbb{B} separately and combine later.

Black-Scholes-Merton Model - Derivation

- Let's find \mathbb{B} first.

$$\begin{aligned}\mathbb{B} &= \int_{\ln K}^{\infty} K \cdot g(V) dV \\ &= K \int_{\ln K}^{\infty} g(V) dV \\ &= K \cdot \text{Prob}(V \geq \ln K) \\ &= K \cdot \text{Prob}\left(\underbrace{e^V}_{=S_T} \geq \underbrace{e^{\ln K}}_{=K}\right) \\ &= K \cdot N(d_2)\end{aligned}$$

where $d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}}$.

Black-Scholes-Merton Model - Derivation

- Next, let's find \mathbb{A} .

$$\mathbb{A} = \int_{\ln K}^{\infty} e^V \cdot g(V) dV = \int_{\ln K}^{\infty} e^V \cdot \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{(V-m)^2}{2w^2}} dV$$

- To simplify the calculation, define a new variable $Q = \frac{V-m}{w}$. Then, $V = m + wQ$, and $(dV) = w(dQ)$ in the change of variable in the integration.

$$\begin{aligned}\mathbb{A} &= \int_{\frac{\ln K - m}{w}}^{\infty} e^{m+wQ} \frac{1}{\sqrt{2\pi w^2}} e^{-\frac{Q^2}{2}} w \times dQ \\ &= \int_{\frac{\ln K - m}{w}}^{\infty} e^{m+wQ} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2}} dQ \\ &= \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ + m} dQ \\ &= \dots\end{aligned}$$

Black-Scholes-Merton Model - Derivation

$$\begin{aligned}\mathbb{A} &= \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ - \frac{w^2}{2} + \frac{w^2}{2} + m} dQ \\ &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Q^2}{2} + wQ - \frac{w^2}{2}} dQ \\ &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(Q-w)^2}{2}} dQ\end{aligned}$$

- To simplify, define a new variable $Y = Q - w$. Then, $Q = Y + w$ and $(dQ) = (dY)$ in the change of variable in the integration.

$$\begin{aligned}\mathbb{A} &= e^{m + \frac{w^2}{2}} \int_{\frac{\ln K - m - w^2}{w}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{Y^2}{2}} dY \\ &= e^{m + \frac{w^2}{2}} \times \text{Prob} \left(Y \geq \frac{\ln K - m - w^2}{w} \right) \\ &= \dots\end{aligned}$$

Black-Scholes-Merton Model - Derivation

$$\begin{aligned}\mathbb{A} &= e^{m+\frac{w^2}{2}} \times \left[1 - \text{Prob} \left(Y < \frac{\ln K - m - w^2}{w} \right) \right] \\ &= e^{m+\frac{w^2}{2}} \times \left[1 - N \left(\frac{\ln K - m - w^2}{w} \right) \right] \\ &= e^{m+\frac{w^2}{2}} \times N \left(\frac{-\ln K + m + w^2}{w} \right)\end{aligned}$$

Black-Scholes-Merton Model - Derivation

- $\ln \mathbb{A}$,

$$m + \frac{w^2}{2} = \ln S_0 + \left(r - \frac{\sigma^2}{2} \right) T + \frac{\sigma^2 T}{2} = \ln S_0 + rT$$
$$\frac{-\ln K + m + w^2}{w} = \frac{\ln S_0 - \ln K + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}$$

- Thus,

$$\begin{aligned}\mathbb{A} &= e^{m + \frac{w^2}{2}} \times N \left(\frac{-\ln K + m + w^2}{w} \right) \\ &= S_0 e^{rT} \times N \left(\underbrace{\frac{\ln S_0 - \ln K + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}}_{\equiv d_1} \right) \\ &= S_0 e^{rT} \times N(d_1)\end{aligned}$$

Black-Scholes-Merton Model - Derivation

- Now, let's combine \mathbb{A} and \mathbb{B} .

$$\begin{aligned} E[\max(S_T - K, 0)] &= \mathbb{A} - \mathbb{B} \\ &= S_0 e^{rT} \times N(d_1) - K \times N(d_2) \end{aligned}$$

- The current price of the call is

$$\begin{aligned} c_0 &= e^{-rT} E[\max(S_T - K, 0)] \\ &= e^{-rT} [S_0 e^{rT} \times N(d_1) - K \times N(d_2)] \\ &= S_0 N(d_1) - K e^{-rT} N(d_2) \end{aligned}$$

Black-Scholes-Merton Model - Derivation

- Once the call option is obtained, we can easily drive the put price using the put-call parity.

$$\begin{aligned}p_0 &= c_0 + Ke^{-rT} - S_0 \\&= S_0 N(d_1) - Ke^{-rT} N(d_2) + Ke^{-rT} - S_0 \\&= -S_0 [1 - N(d_1)] + Ke^{-rT} [1 - N(d_2)] \\&= -S_0 N(-d_1) + Ke^{-rT} N(-d_2)\end{aligned}$$

Black-Scholes-Merton Model

- The BSM model provides an analytic form that determines the option price as a function of the followings:
 - Current stock price S_0
 - Strike price K
 - Time to expiration T
 - Risk-free interest rate r
 - Volatility of underlying asset σ
- Through the BSM model, we can find the option price by simply inputting numbers into the option-pricing formula.

Black-Scholes-Merton Model - Result

- The prices of European call and put options on non-dividend-paying stock are

$$c_0 = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p_0 = K e^{-rT} N(-d_2) - S_0 N(-d_1)$$

where

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T},$$

and $N(x)$ is the cumulative probability distribution function for a standard normal random variable.

Black-Scholes-Merton Model - Example

- Q. There is a 6-month European call option on a stock whose current price is \$42. The strike price is \$40, and the risk-free interest rate is 10% per annum. The stock volatility is 20% per annum. What is the price of the option?

Answer:

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} = \frac{\ln(42/40) + (0.1 + 0.2^2/2)(0.5)}{0.2\sqrt{0.5}} = 0.7693$$

$$d_2 = d_1 - \sigma\sqrt{T} = 0.6278$$

$$\begin{aligned} c &= S_0 N(d_1) - K e^{-rT} N(d_2) \\ &= 42 \times N(0.7693) - 40 e^{-0.1 \times 0.5} \times N(0.6278) \\ &= 42 \times \text{norm.s.dist}(0.7693, \text{TRUE}) - 40 e^{-0.1 \times 0.5} \times \text{norm.s.dist}(0.6278, \text{TRUE}) \\ &= \$4.759. \end{aligned}$$

Black-Scholes-Merton Model - Example

- What if we use the binomial model for the previous question?
- Let's start with 10-step binomial model and increases the number of steps.

number of steps	option price
10	4.800
20	4.768
50	4.762
⋮	⋮
500	4.759
BSM price	4.759

- As the number of steps increases, the binomial price converges to the BSM price.

Black-Scholes-Merton Model – Example

Q. A European put option on a non-dividend-paying stock:

$$S_0 = \$60, \quad K = \$65, \quad T = 1 \text{ year}, \quad r = 5\% \text{ p.a.}, \quad \sigma = 30\% \text{ p.a.}$$

What is the theoretical price of this put option under the BSM model?

Black-Scholes-Merton Model - Another Example

- Q. Consider a derivative on a stock with the time to expiration T and the following payoff:

$$\begin{cases} 0 & \text{if } S_T < K_1 \\ K_1 & \text{if } K_1 \leq S_T < K_2 \\ 0 & \text{if } K_2 \leq S_T \end{cases}$$

where $K_2 > K_1$. What is the present value of the derivative? Provide an analytic expression of the price using $N(\cdot)$, the cumulative probability distribution function of a standard normal random variable.

Black-Scholes-Merton Model - Another Example

Answer: Let V denote $\ln S_T$. Then, V is normally distributed, i.e., $V \sim \phi(m, w)$. Let $g(V)$ denote the probability density function of V . To find the present value of the derivative, we first compute the expected option payoff:

$$\begin{aligned} E[\text{Payoff}] &= \int_{-\infty}^{\infty} \text{Payoff} \cdot g(V) dV \\ &= \int_{-\infty}^{\ln K_1} \text{Payoff} \cdot g(V) dV + \int_{\ln K_1}^{\ln K_2} \text{Payoff} \cdot g(V) dV \\ &\quad + \int_{\ln K_2}^{\infty} \text{Payoff} \cdot g(V) dV \\ &= \int_{-\infty}^{\ln K_1} 0 \cdot g(V) dV + \int_{\ln K_1}^{\ln K_2} K_1 \cdot g(V) dV + \int_{\ln K_2}^{\infty} 0 \cdot g(V) dV \\ &= K_1 \int_{\ln K_1}^{\ln K_2} g(V) dV \\ &= K_1 \cdot \text{Prob}(\ln K_1 \leq V \leq \ln K_2) \\ &= K_1 \cdot \text{Prob}(K_1 \leq S_T \leq K_2) \\ &= K_1 \cdot [\text{Prob}(K_1 \leq S_T) - \text{Prob}(K_2 \leq S_T)] \end{aligned}$$

Black-Scholes-Merton Model - Another Example

Answer (cont'd):

$$= K_1 \cdot \left[N \left(\frac{\ln(S_0/K_1) + \left(r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) - N \left(\frac{\ln(S_0/K_2) + \left(r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) \right].$$

Next, multiplying by the discount factor, we obtain the present value as follows:

$$f_0 = e^{-rT} K_1 \cdot \left[N \left(\frac{\ln(S_0/K_1) + \left(r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) - N \left(\frac{\ln(S_0/K_2) + \left(r - \frac{\sigma^2}{2} \right) T}{\sigma\sqrt{T}} \right) \right].$$

BSM Formula: Interpretation

- Under the Black–Scholes–Merton model, a call option can be viewed as being replicated by a portfolio of the underlying stock and a risk-free bond.
- In particular:

$$\Delta_c = \frac{\partial C}{\partial S} = N(d_1) > 0,$$

meaning that $N(d_1)$ is the number of shares of stock held in the replicating portfolio for the call.

$$\Delta_p = \frac{\partial P}{\partial S} = -N(-d_1) < 0,$$

meaning for a put the equivalent position is short stock.

- The term $K e^{-rT} N(d_2)$ represents the present-value of the amount borrowed (or short-bond position) in the replicating portfolio for a call.
- Hence the call price is simply the cost of the replicating portfolio at time 0:

$$c_0 = \Delta_c S_0 - B = S_0 N(d_1) - K e^{-rT} N(d_2).$$

Extending the BSM model

The BSM for dividend payout

- Suppose the underlying pays continuous dividend q .
 - Dividend should, for the purposes of option valuation, be defined as the reduction in the stock price.
- Replace the stock price S in the formula by Se^{-qT} ³

$$c = S_0 e^{-qT} N(d_1) - K e^{-rT} N(d_2)$$

, where $d_1 = \frac{\ln(S_0/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}$ and $d_2 = d_1 - \sigma\sqrt{T}$. (called Merton model)

- Delta = $e^{-qT} N(d_1)$
- Put-Call parity: $p + S_0 e^{-qT} = c + K e^{-rT}$
 - Given the price of puts and calls, we can solve this for the “implied dividend yield q ”.

³For sketch of proof, go to the slide, “The BSM for dividend payout: Derivation” .

Options on Futures – Call and Put Payoffs

- **Call on a futures contract:**
 - Right to enter a long futures position at the strike price K .
 - On exercise, the payoff = $\max(F_T - K, 0)$, where F_T is the futures price at expiry.
- **Put on a futures contract:**
 - Right to enter a short futures position at strike K .
 - Payoff = $\max(K - F_T, 0)$.
- These payoffs are analogous to vanilla options on assets, but the underlying is a futures contract instead of owning the asset.

Option on Futures – Example

- On August 15, a trader holds a September futures-call option on copper.
 - Strike price $K = 320$ cents per pound.
 - One futures contract represents 25,000 pounds of copper.
 - The current (most recent settlement) futures price for September delivery is $F = 330$ cents/pound.
 - The quoted “spot” (closing) price just before exercise is 331 cents/pound.
- If the option is exercised today, then:
 - The payoff from the option part is

$$25,000 \times (330 - 320) = 250,000 \text{ cents} = \$2,500$$

- Immediately after exercise the trader receives the long futures contract (i.e., obligation to buy 25,000 pounds at 330).
- If the trader decides to close out the futures position immediately (i.e., offset it), there is an additional gain equal to

$$25,000 \times (331 - 330) = 25,000 \text{ cents} = \$250.$$

- Therefore the total payoff on exercise = $\$2,500 + \$250 = \$2,750$, which equals

$$25,000 \times (F - K) = 25,000 \times (331 - 320) \text{ cents} = \$2,750.$$

Options on Futures – Key Features & Advantages

- Advantages of futures-based options
 - Futures contracts often trade on highly liquid exchanges, making the underlying option more liquid and easier to hedge.
 - Exercise of a futures option does not require physical delivery of the underlying asset — instead the holder enters a futures position and may immediately offset it.
 - The option and the futures contract typically trade on the same exchange, which can reduce margin/clearing costs and simplify operational logistics.
- Equivalence for European style: If the option expires when the futures contract matures (i.e., $F_T = S_T$), then a European futures option is equivalent to a European spot option.
- Market scope
 - Common underlying futures for these options include: agricultural commodities (e.g., wheat, corn), energy (e.g., crude oil, natural gas), precious metals (e.g., gold, silver), interest-rate futures, and volatility indexes (e.g., VIX futures).
 - Many listed futures options are American style, allowing exercise at any time before expiry, especially in commodity markets.

Options on Futures: Black-76 (BSM Variant)

- The underlying is a futures contract, so S in the equation is the futures price, call it F .
 - Remember $F_0 = S_0 e^{rT}$. As time passes, e^{rT} shrinks at the rate of r like dividend yield q . (assume Futures = Forward here).
- Replace the stock price S in the formula by the discounted value of the futures price F : Fe^{-rT}

$$c = Fe^{-rT} N(d_1) - Ke^{-rT} N(d_2) = e^{-rT} [FN(d_1) - KN(d_2)]$$

$$\text{, where } d_1 = \frac{\ln(F/K) + (\sigma^2/2)T}{\sigma\sqrt{T}} \text{ and } d_2 = d_1 - \sigma\sqrt{T}$$

- Delta = $e^{-rT} N(d_1)$
- Put-Call parity: $p + Fe^{-rT} = c + Ke^{-rT}$

Options on Futures – The Black '76 Model

- The model originates from Fischer Black's 1976 paper, "The Pricing of Commodity Contracts", where he extended the Black–Scholes–Merton model to options written on futures/forwards.
- Key features of the model:
 - You avoid separate modelling of convenience yields, storage costs or asset-income flows, because these are embedded in the forward/futures price.
 - The underlying is a forward/futures price (rather than owning the physical asset), which simplifies the replication and hedging.
 - Provided interest rates are deterministic (and hence forwards \approx futures), this substitution is valid.
 - The forward/futures price is assumed to follow a log-normal distribution, similar to the BSM setup.
 - The model has wide applicability beyond commodity futures—e.g., interest-rate caps/floors, bond options, swaptions.
- Caveats:
 - The formula produces a European-style option value. For American-style options on futures, one must use alternative methods (e.g., binomial tree, finite difference).
 - If interest rates or cost-of-carry vary stochastically, the equivalence between forwards & futures may break, and more complex models are needed.

The BSM for currency option

- The price of the underlying is the exchange rate (in \$ per unit of FX). The underlying pays interest at the foreign riskless rate, so set $q = r_F$. The riskless rate r is the domestic rate (Garman-Kohlhagen Model).
- Replace the stock price S in the formula by $Se^{-r_F T}$

$$c = S_0 e^{-r_F T} N(d_1) - Ke^{-rT} N(d_2)$$

$$, \text{ where } d_1 = \frac{\ln(S_0/K) + (r - r_F + \sigma^2/2)T}{\sigma\sqrt{T}} \text{ and } d_2 = d_1 - \sigma\sqrt{T}$$

- Delta = $e^{-r_F T} N(d_1)$
- Put-Call parity: $p + S_0 e^{-r_F T} = c + Ke^{-rT}$
- Using the Black's model: $c = e^{-rT} [FN(d_1) - KN(d_2)]$, where F is the futures price on currency.

Alternative Derivation I

Review

- This derivation is also based on the Binomial Tree model in the risk-neutral world.
 - The final stock price: $S_0 u^j d^{n-j}$.
 - The payoff from a European call option: $\max(S_0 u^j d^{n-j} - K, 0)$
 - The probability of j upward and $n - j$ downward steps: $\frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}$
 - The expected payoff: $\sum_{j=0}^n \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$
 - The option value: $c = e^{-rT} \sum_{j=0}^n \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$

Review: Binomial Tree Derivation

- We begin from the multi-step binomial model in the risk-neutral world.
 - Final stock price after n steps:

$$S_T(j) = S_0 u^j d^{n-j}$$

- Payoff of a European call:

$$\max(S_0 u^j d^{n-j} - K, 0)$$

- Probability of exactly j upward moves (and $n - j$ downward):

$$\Pr(j) = \frac{n!}{j! (n-j)!} p^j (1-p)^{n-j}$$

- Expected (risk-neutral) payoff:

$$\sum_{j=0}^n \frac{n!}{j! (n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$$

- Present value (call price):

$$c = e^{-rT} \sum_{j=0}^n \frac{n!}{j! (n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$$

Alternative Formulation of Call Price

Payoff positive if $S_0 u^j d^{n-j} > K \Rightarrow \ln\left(\frac{S_0}{K}\right) > -j \ln(u) - (n-j) \ln(d)$

With $u = e^{\sigma\sqrt{T/n}}$, $d = e^{-\sigma\sqrt{T/n}}$

$$\Rightarrow \ln\left(\frac{S_0}{K}\right) > n\sigma\sqrt{\frac{T}{n}} + 2j\sigma\sqrt{\frac{T}{n}}$$

$$\Rightarrow j > \frac{n}{2} - \frac{\ln(S_0/K)}{2\sigma\sqrt{T/n}}$$

Thus: $c = e^{-rT} \sum_{j>\alpha} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} \max(S_0 u^j d^{n-j} - K, 0)$,

$$\text{where } \alpha = \frac{n}{2} - \frac{\ln(S_0/K)}{2\sigma\sqrt{T/n}}$$

Write $c = e^{-rT} (S_0 U_1 - K U_2)$,

$$\text{with } U_1 = \sum_{j>\alpha} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j} u^j d^{n-j},$$

$$U_2 = \sum_{j>\alpha} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}$$

Increasing the Number of Steps: Convergence to BSM

As $n \rightarrow \infty$, $j \sim B(n, p) \rightarrow \phi(np, \sqrt{np(1-p)})$.

$$\text{Since } U_2 = \Pr(j > \alpha), \quad U_2 = \Pr\left(\frac{j - np}{\sqrt{np(1-p)}} > \frac{\alpha - np}{\sqrt{np(1-p)}}\right) = N\left(\frac{np - \alpha}{\sqrt{np(1-p)}}\right)$$

$$\Rightarrow U_2 = N\left(\frac{\ln(S_0/K)}{2\sigma\sqrt{T}p(1-p)} + \frac{\sqrt{n}(p - \frac{1}{2})}{\sqrt{p(1-p)}}\right)$$

$$\text{Recall } p = \frac{e^{rT/n} - e^{-\sigma\sqrt{T/n}}}{e^{\sigma\sqrt{T/n}} - e^{-\sigma\sqrt{T/n}}},$$

and by Taylor expansion: $e^{rT/n} \approx 1 + r(T/n)$, $e^{\pm\sigma\sqrt{T/n}} \approx 1 \pm \sigma\sqrt{\frac{T}{n}} + \frac{1}{2}\sigma^2(T/n)$.

$$\text{Hence } p(1-p) \rightarrow \frac{1}{4} \text{ and } \sqrt{n}(p - \frac{1}{2}) \rightarrow \frac{(r - \frac{1}{2}\sigma^2)\sqrt{T}}{2\sigma}.$$

$$\Rightarrow U_2 = N\left(\frac{\ln(S_0/K) + (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right)$$

Final Step: From Binomial to Black–Scholes

$$U_1 = \sum_{j>\alpha} \frac{n!}{j!(n-j)!} (u p)^j (d(1-p))^{n-j}.$$

$$\text{Let } p^* = \frac{p u}{p u + (1-p) d}, \quad 1 - p^* = \frac{(1-p) d}{p u + (1-p) d}.$$

$$\Rightarrow U_1 = (p u + (1-p) d)^n \sum_{j>\alpha} \frac{n!}{j!(n-j)!} (p^*)^j (1-p^*)^{n-j}.$$

$$\text{Because } p u + (1-p) d = e^{rT}, \Rightarrow U_1 = e^{rT} \sum_{j>\alpha} \frac{n!}{j!(n-j)!} (p^*)^j (1-p^*)^{n-j}.$$

$$\text{So in the limit as } n \rightarrow \infty, \quad U_1 = e^{rT} N\left(\frac{\ln(S_0/K) + (r + \frac{1}{2}\sigma^2) T}{\sigma \sqrt{T}} \right).$$

$$\Rightarrow c = S_0 N(d_1) - K e^{-rT} N(d_2).$$

Alternative Derivation II

Overview of Option-Pricing Derivations

- The previous binomial-tree derivation sets up a discrete framework:
 - The underlying asset and a risk-free bond are combined to build a portfolio that exactly replicates the option payoff at each node.
 - By enforcing no-arbitrage (the replicating portfolio must earn the risk-free rate), we derive the fair option price.
- In contrast, the Black–Scholes–Merton model (BSM) uses a continuous-time framework:
 - The option and the underlying asset are dynamically hedged to create a riskless position.
 - Since this hedged position must grow at the risk-free rate, we obtain a partial differential equation whose solution gives the option price.
- Key point: Although the approaches differ (discrete vs. continuous), both rely on the same principle of constructing a riskless arbitrage-free portfolio and enforcing that it returns the risk-free rate.

Underlying Assumptions of the BSM Model

- Options are European
- “Perfect” markets – no transactions costs, no taxes, no constraints on short selling with full use of the proceeds, no indivisibilities, etc.
- No limits on borrowing or lending at a known risk free rate of interest
- The price of the underlying asset follows a “lognormal diffusion” process
- The return volatility of the underlying asset is known
- No dividends or cash payouts from the underlying asset prior to option maturity

Asset Price Process in Continuous Time

- The model assumes the underlying asset price S_t follows a *geometric Brownian motion*:

$$dS_t = \mu S_t dt + \sigma S_t dz_t \implies \frac{dS_t}{S_t} = \mu dt + \sigma dz_t.$$

- Explanation of components:
 - dS_t : instantaneous change in the price at time t .
 - μ : the drift (average continuously-compounded rate of return).
 - dt : an infinitesimal increment of time.
 - σ : volatility (annualised standard deviation of returns).
 - dz_t : increment of a standard Brownian motion (mean 0, variance dt).
- Key assumptions behind this model:
 - μ and σ are constant over time.
 - The process has independent increments (no memory, Markov property) and is continuous in time.
 - The asset can be traded continuously without transaction costs or liquidity constraints.

Key Definitions

- A process $\{z(t) : t \geq 0\}$ is called a Brownian motion (Wiener process) if:
 - ① $z(0) = 0$.
 - ② It has continuous paths and independent increments: for $0 \leq s < t$, the increment $z(t) - z(s)$ is independent of the past and distributed $N(0, t - s)$.
 - ③ Over a very small time interval Δt , one can think informally:

$$dz_t \approx \epsilon \sqrt{\Delta t}, \quad \epsilon \sim N(0, 1).$$

For example, if $\Delta t = 0.01$ and $\epsilon = 1.5$, then $dz_t \approx 1.5 \times \sqrt{0.01} = 0.15$.

- A Generalised Wiener process is of the form:

$$dS_t = \mu dt + \sigma dz_t,$$

where μ and σ are constants.

- Example: Suppose $\mu = 0.05$, $\sigma = 0.2$. Over a small $\Delta t = 0.25$ years, one might approximate:

$$dS_t \approx 0.05 \times 0.25 + 0.2 \times dz_t.$$

If $dW_t = 0.1$, then $dX_t \approx 0.0125 + 0.02 = 0.0325$.

Key Definitions (cont'd)

- An Itô process has the more general form:

$$dS_t = \mu(S_t, t) dt + \sigma(S_t, t) dz_t,$$

where the drift and volatility can depend on the current state and time.

- Example: Suppose an asset price satisfies:

$$dS_t = \mu S_t dt + \sigma S_t dz_t$$

with $\mu = 0.08$, $\sigma = 0.25$, $S_0 = 100$. Then S_t follows a geometric Brownian motion.

The Process for a Stock Price

- $dS_t = \mu dt$?
 - There is no uncertainty.
 - $S_t = \mu t$, i.e., stock price grows by μ . \Rightarrow Not realistic!
- $dS_t = \mu dt + \sigma dz$?
 - There is uncertainty, dz .
 - But stock price can take a negative value!
- $dS_t/S_t = \mu dt + \sigma dz$
 - The most widely used model of stock price behavior.
 - For a risk-free asset, $\mu = r$ and $\sigma = 0$. Hence, $S_t = e^{rt}$.
 - Ito process, log-normal diffusion process, geometric Brownian motion

Examples – Part 1

- **Example 1: Arithmetic Brownian Motion (ABM)**

$$dX_t = \mu dt + \sigma dz_t$$

- Here μ and σ are constants.
 - Suppose $\mu = 0.02$, $\sigma = 0.15$, and time horizon $T = 1$ year. If $X_0 = 100$, then the expected value is $E[X_T] = 100 + 0.02 \times 1 = 100.02$.
 - Variance is $\sigma^2 T = 0.15^2 \times 1 = 0.0225$. So the standard deviation is about $\sqrt{0.0225} \approx 0.15$.
 - This process can go negative; it models absolute changes rather than proportional changes.
-
- **Example 2: Geometric Brownian Motion (GBM)**

$$dS_t = \mu S_t dt + \sigma S_t dz_t$$

- Suppose $\mu = 0.08$, $\sigma = 0.20$, and $S_0 = 50$. Then under the model, S_t remains strictly positive.
- The log-return $\ln(S_t/S_0)$ is normal. This is the model assumed in the Black–Scholes–Merton model.
- If we look at expected value: $E[S_t] = S_0 e^{\mu t} = 50 e^{0.08 \times 1} \approx 54.17$ (for $t = 1$ year) assuming no discounting.

Examples – Part 2

- Example 3: Mean-Reverting Ornstein-Uhlenbeck (OU) Process

$$dY_t = \kappa(\theta - Y_t) dt + \sigma dz_t$$

- Let $\kappa = 1.5$, $\theta = 100$, $\sigma = 10$, starting value $Y_0 = 120$.
 - Interpretation: the process tends to revert toward long-term level $\theta = 100$ with speed κ .
 - Over time the expected value moves:
 $E[Y_t] = \theta + (Y_0 - \theta)e^{-\kappa t} = 100 + 20 e^{-1.5 t}$. For $t = 1$:
 $100 + 20e^{-1.5} \approx 100 + 20 \times 0.223 = 104.46$.
 - Use case: modelling interest rates or commodity spreads which tend to bounce back toward an equilibrium.
-
- Example 4: Geometric Mean-Reverting Process

$$dS_t = \kappa(\theta - \ln S_t) S_t dt + \sigma S_t dz_t$$

- Here the drift term drives $\ln S_t$ toward θ ; volatility is proportional to S_t .
- Suppose $\kappa = 0.8$, $\theta = \ln(80)$, $\sigma = 0.25$, $S_0 = 60$.
- The process tends to revert to an equilibrium level around $S \approx 80$. Useful in modelling commodity prices with proportionate volatility and mean reversion.

Examples – Part 3

- **Example 5: Cox–Ingersoll–Ross (CIR) Interest Rate Process**

$$dr_t = \kappa(\theta - r_t) dt + \sigma\sqrt{r_t} dz_t$$

- A canonical model for short-term interest rates (ensuring $r_t \geq 0$).
- Let $\kappa = 0.5$, $\theta = 0.04$, $\sigma = 0.1$, $r_0 = 0.03$.
- Over time the rate moves toward 0.04, and volatility is state-dependent: $\sqrt{r_t}$.
- Use case: pricing interest rate derivatives under stochastic rate models.

Ito's Lemma

- Suppose x follows an Ito process: $dx = a(x, t)dt + b(x, t)dz$
- Kiyoshi Ito (1915-2008) shows that a function of x and t , $G(x, t)$ (twice continuously differentiable) follows another Ito process:

$$dG = \left(\frac{\partial G}{\partial x} a + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2 \right) dt + \frac{\partial G}{\partial x} b dz$$

- Apply a Taylor series expansion on $G(x, t)$:

$$dG \approx \frac{\partial G}{\partial x} dx + \frac{\partial G}{\partial t} dt + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} dx^2 + \frac{1}{2} \frac{\partial^2 G}{\partial t^2} dt^2 + \frac{\partial^2 G}{\partial x \partial t} dx dt$$

- $dx^2 \approx b^2 dz^2 = b^2 \epsilon^2 dt^4$
- $E(b^2 \epsilon^2 dt) = b^2 dt$ and $Var(\epsilon^2 dt) = 2dt^2 \approx 0$
($\because Var(\epsilon^2) = E(\epsilon^4) - E(\epsilon^2)^2 = 3 - 1 = 2$).
- Ignore higher order terms (e.g. $dt^{1.5}, dt^2$).

$$dG \approx \frac{\partial G}{\partial x} dx + \frac{\partial G}{\partial t} dt + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2 dt$$

- Plug in $dx = a(x, t)dt + b(x, t)dz$.

⁴ $dtdz = 0$ and $(dz)^2 = dt$

Ito's Lemma (cont'd)

- Why this matters for option pricing:
 - When we let $G = \text{option value } V(S_t, t)$, and S_t follows a geometric Brownian motion, applying Itô's Lemma lets us derive the partial differential equation that leads to the Black–Scholes Equation.
 - Understanding this term is central to moving from discrete-time models (binomial) to continuous time derivations.

Applying Itô's Lemma to S_t

- Apply Ito's lemma on $dS_t = \mu S_t dt + \sigma S_t dz_t$

$$dG = \left(\frac{\partial G}{\partial S} \mu S + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial S^2} \sigma^2 S^2 \right) dt + \frac{\partial G}{\partial S} \sigma S dz$$

- Now consider $G = \ln S_t$.

$$\frac{\partial G}{\partial S} = \frac{1}{S_t}, \quad \frac{\partial^2 G}{\partial S^2} = -\frac{1}{S_t^2}, \quad \frac{\partial G}{\partial t} = 0$$

- Therefore,

$$dG = \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dz$$

- It follows a generalized Wiener process.

- $G_T - G_0 = \ln S_T - \ln S_0 \sim \phi \left(\left(\mu - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right)$
- That is, $\ln S_T \sim \phi \left(\ln S_0 + \left(\mu - \frac{\sigma^2}{2} \right) T, \sigma^2 T \right)$

Key Consequences of Itô's Lemma for GBM

- Under this model $dS_t = \mu S_t dt + \sigma S_t dz_t$:
 - Continuously-compounded return dS_t/S_t is normally distributed (infinitesimal time).
 - Future stock price S_T has a log-normal distribution—implying $S_T > 0$.
- The same Brownian increment dz_t drives both the asset and any smooth function of it—for example $\ln S_t$.
- The log-normal assumption of S_T underlies the analytic closed-form formula for European option prices.

Deriving the Black–Scholes PDE – Step 1

- Assume the underlying asset price follows

$$dS_t = \mu S_t dt + \sigma S_t dz_t.$$

- Let $V = V(S_t, t)$ be the price of a European call option (a function of the asset price and time).
- Applying Itô's Lemma gives:

$$dV = \left(\frac{\partial V}{\partial S} \mu S_t + \frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S_t^2 \right) dt + \frac{\partial V}{\partial S} \sigma S_t dz_t.$$

- Long 1 unit of the call option and short $\frac{\partial V}{\partial S}$ number of shares. (Why?)

$$\Pi = V - \frac{\partial V}{\partial S} S_t$$

and compute its differential:

$$d\Pi = dV - \frac{\partial V}{\partial S} dS_t = \left(\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S_t^2 \right) dt$$

(The dz_t term cancels by design.)

Deriving the Black–Scholes PDE – Step 2

- Because this equation does not involve dz , the portfolio must be riskless during time dt . Therefore,

$$\Pi = e^{rdt}$$

$$d\Pi = r\Pi dt$$

$$\begin{aligned} \left(\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 \right) dt &= r \left(V - \frac{\partial V}{\partial S} S \right) dt \\ \Rightarrow \frac{\partial V}{\partial t} + rS \frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 &= rV \end{aligned}$$

- This is called the Black–Scholes–Merton differential equation.
- Solving the differential equation with the boundary conditions, e.g., $V = \max(S - K, 0)$ when $t = T$, gives a formula for a European call option.
 - Unfortunately, no exact analytic formula for the value of an American put option on a non-dividend-paying stock has been produced.

NB There is no μ , the expected return!

The BSM Differential Equation

$$\frac{\partial V}{\partial t} + rS \frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} \sigma^2 S^2 = rV$$

- If $V(S, T) = S_T$, i.e., the stock itself, $V(S, t) = S_t$
- If $V(S, T) = K$, i.e., constant, then $V(S, t) = Ke^{-r(T-t)}$
- If $V(S, T) = S_T - K$, i.e., forward, then $V(S, t) = S_t - Ke^{-r(T-t)}$
- Does $V(S, 0) = S_0 N(d_1) - Ke^{-rT} N(d_2)$ satisfy the equation?
- The PDE above is so general that it can solve (mostly numerically) for V depending on the boundary conditions.

The Black–Scholes PDE – Verification of Special Cases

$$\frac{\partial V}{\partial t} + r S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r V$$

- If $V(S, T) = S_T$, i.e., the underlying stock itself $\rightarrow V(S, t) = S_t$.
 - Then $\frac{\partial V}{\partial t} = 0$, $\frac{\partial V}{\partial S} = 1$, $\frac{\partial^2 V}{\partial S^2} = 0$.
 - Substituting: $0 + r S \cdot 1 + \frac{1}{2} \sigma^2 S^2 \cdot 0 = r S = r V$.
 - So the PDE holds.
- If $V(S, T) = K$, a constant payoff $\rightarrow V(S, t) = K e^{-r(T-t)}$.
 - Then $\frac{\partial V}{\partial S} = 0$, $\frac{\partial^2 V}{\partial S^2} = 0$, and $\frac{\partial V}{\partial t} = r K e^{-r(T-t)} = r V$.
 - Substituting: $r V + r S \cdot 0 + 0 = r V$.
 - The PDE is satisfied.
- If $V(S, T) = S_T - K$ (a forward payoff) $\rightarrow V(S, t) = S_t - K e^{-r(T-t)}$.
 - Then $\frac{\partial V}{\partial S} = 1$, $\frac{\partial^2 V}{\partial S^2} = 0$, $\frac{\partial V}{\partial t} = -r K e^{-r(T-t)}$.
 - Left side: $-r K e^{-r(T-t)} + r S \cdot 1 + 0 = r V$.
 - Again the PDE holds.

Verification that the Call Price Satisfies the PDE

- It also holds for a European option on a non-dividend-paying stock. It's more complicated to verify, though.
- The PDE is extremely general. What changes between contracts (stock, bond, forward, option) is the *terminal condition* (and any boundary conditions). Once you know the terminal condition, you pick the corresponding solution that satisfies the PDE. Refer to standard derivations.

Appendix 1: The BSM for dividend payout

BSM with Continuous Dividend Yield: Derivation (1)

- Suppose the stock pays a continuous dividend yield q . Then, during dt , the stockholder receives a dividend

$$dD = q S \frac{\partial V}{\partial S} dt.$$

- The change in the value of the hedged portfolio is the sum of the change in portfolio value and the dividend income:

$$dW_t = d\Pi + dD.$$

- Using Itô's Lemma and the hedge ratio $\frac{\partial V}{\partial S}$, we have:

$$dW_t = \left(-\frac{\partial V}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + qS \frac{\partial V}{\partial S} \right) dt.$$

- Since the portfolio is instantaneously riskless, it must earn the risk-free rate r :

$$dW_t = r \Pi dt = r \left(-V + S \frac{\partial V}{\partial S} \right) dt.$$

BSM with Continuous Dividend Yield: Derivation (2)

- Equating the two expressions for dW_t and rearranging gives:

$$\frac{\partial V}{\partial t} + (r - q)S \frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = rV.$$

- This is the **Black–Scholes–Merton PDE with dividends**. The dividend yield q reduces the drift of the stock under the risk-neutral measure.
- The corresponding risk-neutral stock price process is:

$$dS = (r - q)S dt + \sigma S dz.$$

- For a European call, solving the PDE gives the **Black–Scholes formula with dividends**:

$$c = S_0 e^{-qT} N(d_1) - K e^{-rT} N(d_2),$$

where

$$d_{1,2} = \frac{\ln(S_0/K) + (r - q \pm \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$$

Appendix 2: From BSM PDE to BSM equation

Step 1: The Black–Scholes PDE

- We start with the partial differential equation (PDE) for the option value $V(S, t)$:

$$\frac{\partial V}{\partial t} + r S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r V.$$

- Here:

- S = underlying stock price at time t .
- r = risk-free interest rate (continuous).
- σ = volatility of the stock's returns.
- The terminal (boundary) condition is:

$$V(S, T) = \max(S - K, 0),$$

for a European call option with strike K and maturity T .

- This PDE comes from hedging + Itô's Lemma + no-arbitrage.

Step 2: Change of Variables

- Solving the PDE directly is hard, so we perform a change of variables to simplify it. Typical transformations include:
 - $\tau = T - t$ (time to maturity).
 - $x = \ln(S/K)$ (log-stock variable).
 - Introduce a new function $u(x, \tau) = e^{r\tau} V(S, t)$ so that the discount-term rV disappears.
- Under these changes, the PDE is transformed into a “heat equation” form (a simpler diffusion PDE), for which standard solutions are known.
- This step is therefore a mathematical trick to make the PDE solvable with known methods.

Step 3: Solve the Transformed PDE

- Once in the “heat-equation” form, one applies known solution methods (e.g., separation of variables, Green’s functions) to find $u(x, \tau)$.
- Then we revert the change of variables:

$$V(S, t) = e^{-r(T-t)} u(\ln(S/K), T-t).$$

- The result is an expression involving the normal cumulative distribution function $N(\cdot)$.
- In returning to the original variables, we obtain the closed-form formula for a European call option:

$$C = S N(d_1) - K e^{-r(T-t)} N(d_2),$$

with

$$d_1 = \frac{\ln(S/K) + (r + \frac{1}{2} \sigma^2)(T-t)}{\sigma \sqrt{T-t}}, \quad d_2 = d_1 - \sigma \sqrt{T-t}.$$

Step 4: Interpretation & Key Insights

- Notice that the expected stock return μ does not appear in the final formula — only the risk-free rate r and volatility σ .
- Why? Because of risk-neutral valuation: in a hedged portfolio the expected return of the underlying becomes irrelevant.
- The formula therefore = discounted expected payoff under the “risk-neutral measure”.