Practice Problem Set: Solutions
BUSS386 Futures and Options

1 Value at Risk

Solution:
The standard deviation of the daily change per asset is $1,000. The portfolio variance is

1,000% + 1,000% + 2 x 0.3 x 1,000 x 1,000 = 2, 600, 000.

The portfolio’s daily standard deviation is /2,600,000 ~ $1,612.45.
Over 5 days: 1,612.45 x /5 ~ $3,605.55.
Since the 1% tail corresponds to 2.326 standard deviations, the 5-day 99% VaR is

2.326 x 3,605.55 ~ $8, 388.

2 Value at Risk

Solution:
Using the duration model:

Daily change SD = 5.2 x 6,000,000 x 0.0009 = $28, 080.

For 20 days: 28,080 x v/20.
The 90% quantile for a normal variable (1.282 SD) gives

VaR = 1.282 x 28,080 x v/20 ~ $160, 990.

Weaknesses: This method assumes only parallel shifts and linear price—yield relationships,
which may not hold in practice.

3 Value at Risk

Solution:
Portfolio variance:

(0.018 x 300,000)% + (0.012 x 500, 000)2 + 2 x 300,000 x 500,000 x 0.6 x 0.018 x 0.012,



which equals 104.04 (in thousands?).

SD = v/104.04 ~ 10.2 (in $1,000s).

1-day 97.5% VaR = 10.2 x 1.96 ~ $19, 990.

For 10 days: 19,990 x /10 ~ $63, 220.

Diversification benefit (difference between sum of individual VaRs and portfolio VaR) =
$7,438.

4 Interest Rate Conversion

Solution:
(a) Continuous compounding:

4In(1+ %) ~ 13.76% per annum.

(b) Annual compounding:

(1+ %)4 — 1~ 14.75% per annum.

5 Bond Pricing

Solution:
Discounting at 10.4% (semiannual):

4 4 104

~ 96.74.
1.052 + 1.0522 + 1.0523

Price =

Then solve for the 18-month zero rate R from

: I 04 9674
1.05  1.052  (1+R/2)3  ~ 7

giving R ~ 10.42%.

6 Par Yield

Solution:

Set PV of cash flows = 100 and solve for coupon c.
The par yield ~ 7.07%.

7 Forward Rates

Solution:
From zero rates, forward rates (approx):

Q2: 8.4%, Q3: 8.8%, Q4: 8.8%, Q5: 9.0%, Q6: 9.2%.



8 Forward Rate Agreements

Solution:
FRA-implied forward rate:

0.06 x 0.75 — 0.05 x 0.50
0.25

which exceeds the FRA rate of 7% = arbitrage opportunity.

~ 8%,

9 Forward Rate Agreements

Solution:
Convert semiannual rates to continuous compounding rates. For example, for 6 months,
e = (1+1m/m)™ = (14 4%/2)*. Solve it for r. = 2 x In(1 + 4%/2) = 3.96%.

Compute forward rate for 6-month period starting in 18 months: e'?1:5¢%5f = ¢2r2
f=567%.

The value FRA on $1m = $1m x 5.91% — $1m x 5.67% = $1, 250, where 5.91% is the
c.c. rate for 6% s.a. rate.

10 Bond Prices and Interest Rate

Solution:
Bootstrapping zero rates, then forward rates and par yields: results as in table.
Two-year bond with 7% coupon: price &~ 102.13, yield ~ 5.77%.

11 Duration

Solution:
Duration measures sensitivity of bond prices to yield changes.
Limitations: assumes small, parallel shifts and linearity.

12 Duration

Solution:
Five-year bond:

(a) Price = 8¢ 4 867022 4 8¢ 03 4 8704 1 108¢77%°  86.80.

(b) Duration ~ 4.256 years.
(c) A 0.2% yield decrease increases price by

86.80 x 4.256 x 0.002 ~ 0.74,

raising it to ~ 87.54.
(d) At 10.8% yield, recalculated price = 87.54, confirming duration estimate.
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13 Duration of Portfolios

Solution:

(a) Weighted average duration of Portfolio A = 5.95, same as B.

(b) For 0.1% yield increase, both fall ~ 0.59%.

(c) For 5% yield increase, A declines = 23.82%, B ~ 25.73%, showing A’s lower convexity.
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