

# Introduction to Derivatives

BUSS386. Futures and Options

Prof. Ji-Woong Chung

# Lecture Outline

- Overview of derivatives/markets
- Review: measures of return and risk
- Reading: Hull, Ch. 1.1–1.10 and 22.1–22.3

## What are derivatives?

- A derivative is a financial security (i.e., instrument, contract, asset) whose value depends on other underlying **variables**.
- Example: A contract to buy 50,000 barrels of crude oil on September 16, 2017, for \$50 per barrel.
- Example: An option contract that gives the holder the right, but not the obligation, to buy 100 shares of a company's stock at \$100 per share within the next three months.

## What are the underlying variables?

- Usually, the price of a traded assets (e.g, equities, bonds, currencies, commodities)
- or some properties of asset prices (e.g, volatility)
- or some events (e.g., default)
- or weather (e.g. temperature, rainfall), inflation ...

⇒ All variables should be measurable and observable.

# Type of derivatives

- Contract derivatives
  - Futures, forwards, swaps, options, warrants, callable bonds (embedded) etc.
  - The contract binds two counterparties to make a transaction at a future date. All profits and losses come from cash flows between the counterparties: zero-sum game
- Securitized or structured products
  - Securitization creates new derivative securities that receive and allocate the cash flows from the underlying pool to different classes of investors with different risk tolerance.
  - Collateralized mortgage obligations, asset-backed securities, etc.
- A contract derivative **transfers** risk from one of the counterparties to the other. A securitized derivative **redistributes** risk that is inherent in the underlying assets.

# History of derivatives

- Farmers and merchants have used derivatives for thousands of years.
  - 2000 B.C. in trade between India and the Arab Gulf
  - 300 B.C. olive growers in ancient Greece
- In the 12th century, European merchants used forward contract for the future delivery of their goods
- During Amsterdam's tulip mania in the 1630s, derivatives helps some merchants from price swings
- In the 17th century, Japan developed a forward market in rice.
- Modern forms:
  - The Chicago Board of Trade (CBOT) was established in 1848 to trade futures.
  - The Chicago Mercantile Exchange (CME) was founded in 1919. (CBOT and CME later merged to form the CME Group).
  - The Chicago Board Options Exchange (CBOE) introduced call options in 1973 and put options in 1977.
  - In Korea, forex derivatives began trading in 1968, and exchanges were established in 1996.

# Where to trade derivatives

## ① Exchange-traded market

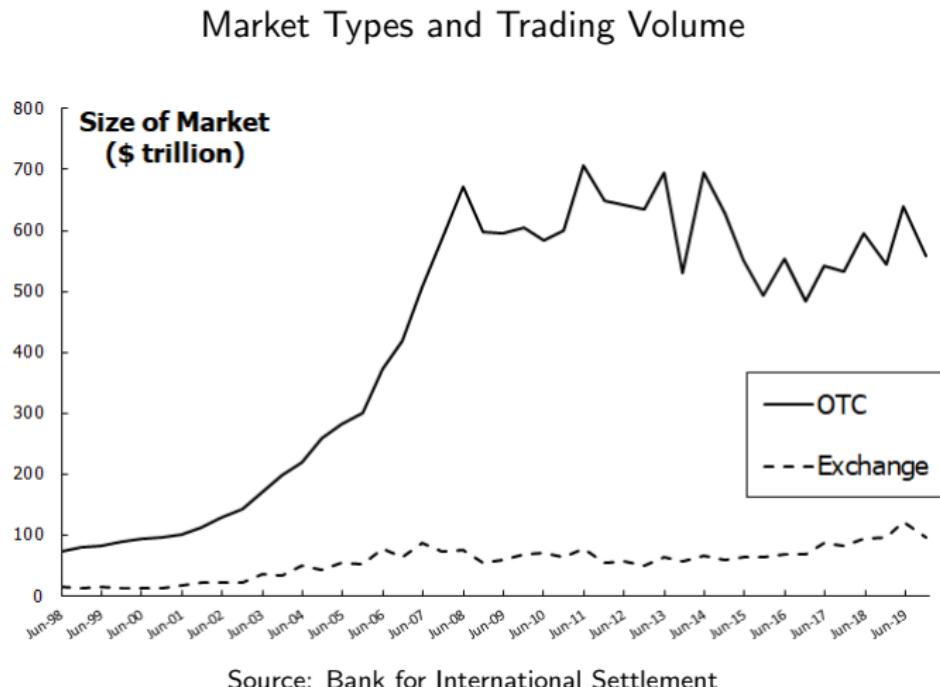
- Centralized Trading: All buy and sell orders are centralized in one place, either physically or electronically.
- Standardized Contracts: Contracts are standardized, ensuring uniformity and reducing the risk of counterparty default.
- Types of Derivatives: Futures and options are commonly traded.
- Examples: National Stock Exchange of India > B3 Brazil > CME > CBOE > Intercontinental Exchange US > NASDAQ > Borsa Istanbul > Zhengzhou Commodity Exchange > Dalian Commodity Exchange > Korea Exchange
- Liquidity: High concentration of trades creates liquidity, which in turn attracts more liquidity.

# Where to Trade Derivatives

## ② Over-the-counter market

- Decentralized Trading: There is no central place for collecting orders. Participants trade directly with each other or through a network of dealers.
- Customizable Contracts: Contracts are not standardized and can be tailored to meet the specific needs of the participants.
- Main Participants: Large institutions such as banks, hedge funds, and corporations.
- Types of Derivatives: Forwards, swaps, options, and other customized derivatives are traded.

# Where to Trade Derivatives



# What contributed to rapid growth?

"Necessity is the mother of invention" - Plato

- Deregulation, increased asset price volatility, and technological innovation
  - 1971: Currencies began to free float, leading to the introduction of currency futures in 1972.
  - 1973: The oil shock caused significant volatility in oil prices.
  - 1970s: Inflation and recessions resulted in volatile interest rates.
  - 1978: Deregulation of natural gas.
  - 1990s: Deregulation of electricity markets.

## Why are derivatives useful?

- Derivatives facilitate the transfer of risk from those who are exposed to it to those more willing to bear it, making them a powerful tool for risk management.
- While risk management often aims to reduce risk, it can also involve strategically assuming risks that offer potential benefits.
- By effectively redistributing risk, derivatives enable productive activities that might otherwise be deemed too risky to pursue.
- However, derivatives can be misused, which is why regulations exist to mitigate potential abuses and ensure market stability.

# Dangers of derivatives trading

- Without proper risk management, derivatives trading can lead to significant losses. Here are some notable examples:
  - Societe Generale (2008): Jerome Kerviel lost over \$7 billion by speculating on the future direction of equity indices.
  - UBS (2011): Kweku Adoboli lost \$2.3 billion by taking unauthorized speculative positions in stock market indices.
  - Shell (1993): A single employee in the Japanese subsidiary of Shell lost \$1 billion in unauthorized trading of currency futures.
  - Barings Bank (1995): Nick Leeson lost £827 million, leading to the bank's collapse.
  - Long-Term Capital Management (1998): The hedge fund lost \$4.6 billion due to high-risk arbitrage trading strategies.
  - AIG (2008): AIG faced a liquidity crisis due to losses on credit default swaps, leading to a \$182 billion government bailout.
- Risk management is a critically important task.
  - Define risk, set risk limit, perform various (created) scenario analysis.

## The OTC Market Prior to 2008

- The OTC market was largely unregulated.
- Banks acted as market makers, quoting bid and ask prices.
- Transactions between two parties were usually governed by master agreements provided by the International Swaps and Derivatives Association (ISDA).<sup>1</sup>
- Some transactions were cleared through central counterparties (CCPs), which act as intermediaries between the two sides of a transaction, similar to an exchange.

---

<sup>1</sup>The ISDA is a trade organization of participants in the market for over-the-counter derivatives. ISDA has created a standardized contract (the ISDA Master Agreement to govern derivative transactions, which helps to reduce legal and credit risks.

## Since 2008...

- OTC market has become more regulated. Objectives:
  - Reduce systemic risk
  - Increase transparency
- In the U.S. and other countries, collateral and clearing of trades through a central clearing house (CCP) are required for all standard OTC contracts.
- CCPs must be used to clear standardized transactions between financial institutions in most countries.
- All trades must be reported to a central repository

## The Lehman Bankruptcy

- Lehman Brothers filed for bankruptcy on September 15, 2008, marking the largest bankruptcy in U.S. history.
- Lehman was heavily involved in the OTC derivatives markets and faced financial difficulties due to high-risk activities and an inability to roll over its short-term funding.
- The firm had hundreds of thousands of outstanding transactions with approximately 8,000 counterparties.
- The process of unwinding these transactions has been challenging for both Lehman's liquidators and their counterparties.

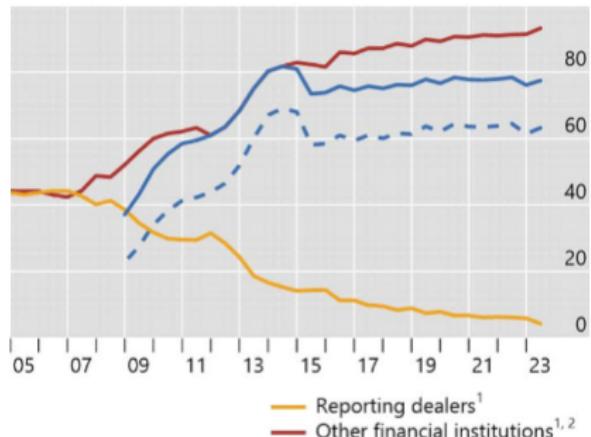
# Central Clearing

## Growth of central clearing

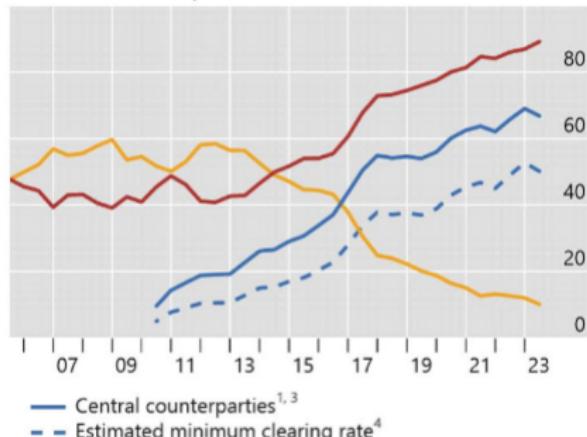
Notional amounts outstanding by counterparty, in per cent

Graph A.8

### Interest rate derivatives



### Credit default swaps



<sup>1</sup> As a percentage of notional amounts outstanding against all counterparties. <sup>2</sup> Including central counterparties but excluding reporting dealers. <sup>3</sup> For interest rate derivatives, data for CCPs prior to end-June 2016 are estimated by indexing the amounts reported at end-June 2016 to the growth since 2008 of notional amounts outstanding cleared through LCH's SwapClear service. <sup>4</sup> Proportion of trades that are cleared, estimated as  $(CCP / 2) / (1 - (CCP / 2))$ , where CCP represents the share of notional amounts outstanding that dealers report against CCPs. The CCP share is halved to adjust for the potential double-counting of inter-dealer trades novated to CCPs.

Sources: LCH.Clearnet Group Ltd; BIS OTC derivatives statistics (Table D7 and Table D10.1); BIS calculations.

Source: Bank for International Settlement

## Who trade derivatives?

Derivatives are traded by various market participants:

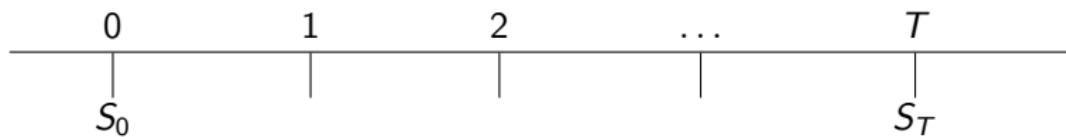
- Corporations: Hedge future cash flows and manage risks (e.g., fuel futures for airlines).
- Financial Institutions: Manage risks and offer risk management solutions (e.g., interest rate swaps).
- Hedge Funds: Achieve higher returns through leverage and complex strategies.
- Market Makers (Dealers): Provide liquidity and profit from bid-ask spreads.
- Financial Engineers: Design new derivative products to meet specific needs.

Each participant contributes to the market's depth and liquidity.

## Statistics: Review

# Investment and Risk

- When investing in financial assets, we are often uncertain about future value (risks).
- Stock investment



- At time 0, we are uncertain about the future return on stock,  $\left(\frac{S_T}{S_0} - 1\right)$ .

# Investment and Risk

- What if we want to compare a risky investment to a risk-free investment?

e.g. You are presented with the two investment projects. Which one would you choose?

| Project 1 |          | Project 2 |     |
|-----------|----------|-----------|-----|
| return    | fixed 5% | good      | bad |
|           |          | 10%       | 0%  |

- For decisions like this, we consider the probability of risky outcomes.

## Random Variables - Discrete

- Suppose that a random return  $R$  can take one of the following values.

|             |       |       |          |       |
|-------------|-------|-------|----------|-------|
| return      | $r_1$ | $r_2$ | $\cdots$ | $r_n$ |
| probability | $p_1$ | $p_2$ | $\cdots$ | $p_n$ |

- The expectation of the return is

$$E(R) = \sum_{i=1}^n r_i \times p_i$$

- The variance of the return is

$$\text{Var}(R) = \sum_{i=1}^n (r_i - E(R))^2 \times p_i$$

- The standard deviation is

$$\sigma(R) = \sqrt{\text{Var}(R)}$$

## Random Variables - Continuous

- Suppose that the return  $R$  is a continuous random variable that can take any value from  $(-\infty, \infty)$ .
- The probability density function  $f(r)$  is given.
- Using  $f(r)$ , we can calculate the probability of any event. For example, the probability that the return is lower than 0.05 is

$$\text{Prob}(R \leq 0.05) = \int_{-\infty}^{0.05} f(r) dr$$

- The expectation of the return is

$$E(R) = \int_{-\infty}^{\infty} r \times f(r) dr$$

## Normal Random Variables

- Consider a random variable  $R$  with the following probability density function

$$f(R) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(R-\mu)^2}{2\sigma^2}}.$$

We call  $R$  normally distributed with mean  $\mu$  and standard deviation  $\sigma$ . To simplify, we also express as follows:

$$R \sim N(\mu, \sigma^2)$$

- If we multiply  $R$  by  $a$  and add  $b$ , the result is also normally distributed

$$aR + b \sim N(a\mu + b, a^2\sigma^2)$$

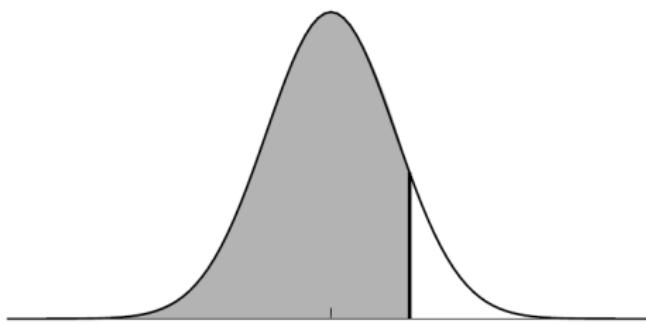
## Standard Normal Random Variables

- Consider a normal random variable  $R$  with  $\mu = 0$  and  $\sigma = 1$ . In other words,  $R \sim N(0, 1)$ . We call it a standard normal random variable.
- Suppose that we want to find the probability that  $R$  is lower than  $x$ . Graphically, this probability is the shaded area in the figure below:

---

Figure 14.3 Shaded area represents  $N(x)$ .

---



## Standard Normal Random Variables

- To find this probability, we calculate

$$\text{Prob}(R \leq x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{r^2}{2}} dr \equiv \Phi(x).$$

$\Phi(x)$  is called the cumulative probability distribution function for a standard normal random variable.

- For any  $x$ , the value of  $\Phi(x)$  can be found using the excel function, *norm.s.dist(x, TRUE)*.

## Standard Normal Random Variables

Ex.1 Suppose that  $R_1 \sim \phi(0, 1)$ . What is the probability that  $R_1$  is larger than 1?

Ex.2 Suppose that  $R_2 \sim \phi(0.1, 0.2)$ . What is the probability that  $R_2$  is equal to or smaller than 0.5?

## Risk Measures

# Risk Measures

- Companies need to assess and manage risks to prevent business failures.
- To have a sense of how risky a project or business is, we can refer to the probability distribution of possible outcomes.
- There are multiple risk measures
  - Standard Deviation
  - Value at Risk (VaR)
  - Expected Shortfalls
  - ...
- Different measures focus on different aspects of the distribution.

# Standard Deviation

- Standard deviation measures the level of uncertainty about the outcomes, or the dispersion of probability distribution.
- The larger standard deviation is, the riskier a project.

Ex. Consider the following two projects. Which is riskier?

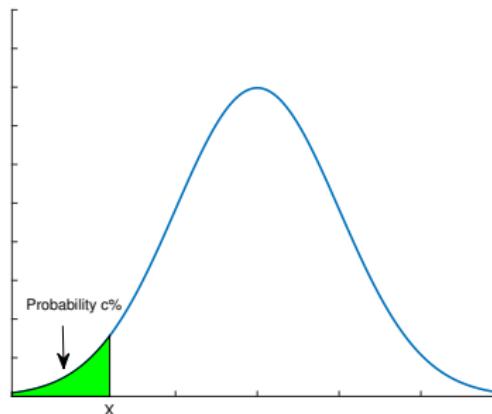
|             | Project 1 |     | Project 2 |      |
|-------------|-----------|-----|-----------|------|
|             | good      | bad | good      | bad  |
| return      | 10%       | 0%  | 0%        | -10% |
| probability | 0.5       | 0.5 | 0.5       | 0.5  |

- A disadvantage of the standard deviation is that it cannot distinguish between upside and downside movement.

## Value at Risk

- Value at Risk (VaR) represents the potential loss in value of a portfolio, given a certain probability over a specific time period.

E.g. With a 5% probability, our portfolio may experience a loss greater than the VaR amount over the next one month. I.e., There is a 95% probability that our loss will not exceed the VaR amount.



That is, we want to find  $X$  such that

$$\text{Prob}(R \leq X) = 0.05$$

# Value at Risk

- How can we find  $X$  satisfying  $\Pr(R \leq X) = 0.05$ , i.e., 95% VaR?
- In a special case when  $R \sim \phi(\mu, \sigma)$ , we can find  $X$  using the Excel function `norm.inv()`.<sup>2</sup>
  - For given  $1 - p$ , `norm.inv(1-p, \mu, \sigma)` is  $X$  that satisfies  $\Pr(R \leq X) = 1 - p$ .

$$\text{VaR at 5\%} = \text{norm.inv}(0.05, 0, 1) = -1.645$$

$$\text{VaR at 10\%} = \text{norm.inv}(0.1, 0, 1) = -1.282$$

---

<sup>2</sup>Closed-form:  $\text{VaR}(X) = \Phi^{-1}(1 - p)\sigma + \mu$

## Value at Risk - Example

Q. Suppose that we own a stock whose return is normally distributed with the mean 15% and the standard deviation 30%. What is a 5% loss on this stock?

**Answer:** Let  $X$  denote the 5% loss. Then,

$$\Pr(R \leq X) = \text{norm.inv}(0.05, 0.15, 0.30) = -34.3\%$$

## Value at Risk - Example

Q. A portfolio worth \$10 million has a 1-day standard deviation of \$200,000 and an approximate mean of zero. Assume that the change is normally distributed. What is the 1-day 99% VaR for our portfolio consisting of a \$10 million position? What is the 10-day 99% VaR?

**Answer:** `norm.s.inv(0.01) = -2.326`, meaning that there is a 1% probability that a normally distributed variable will decrease in value by more than 2.326 standard deviations.

Hence, 1-day 99% VaR is  $2.326 \times \$200,000 = \$465,300$ .

The 10-day 99% VaR is  $2.326 \times (\$200,000 \times \sqrt{10}) = \$1,471,300$ .

## Value at Risk - Multiple Stocks

- Consider a portfolio consisting of  $n$  different stocks.
- The return on the portfolio is

$$R_p = \sum_{i=1}^n w_i R_i$$

where  $w_i$  is the fraction of wealth invested in stock  $i$ .

- If each stock return is normally distributed, then the portfolio return is also normally distributed.

## Value at Risk - Example

Q. Consider a portfolio consisting of stock A and stock B. In the portfolio, \$5 million are invested in each of stock A and stock B. The return on each stock is normally distributed. Stock A has an expected return of 15% and a standard deviation of 30%. Stock B has an expected return of 18% and a standard deviation of 45%. The correlation between stock A and stock B is 0.4. What is the 90% VaR for the portfolio?

NB When  $X \sim \phi(\mu_x, \sigma_x^2)$  and  $Y \sim \phi(\mu_y, \sigma_y^2)$ , then  $X + Y \sim \phi(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2 + 2\rho\sigma_x\sigma_y)$

**Answer:** The expected return of the portfolio is:

$$\mu_p = 0.5 \times 0.15 + 0.5 \times 0.18 = 0.165 \text{ or } 16.5\%$$

- The standard deviation of the portfolio is:

$$\sigma_p = \sqrt{(0.5 \times 0.30)^2 + (0.5 \times 0.45)^2 + 2(0.5)(0.5)(0.4)(0.30)(0.45)} = 0.315$$

- The 90% VaR for the portfolio is:

$$\text{VaR}_{90\%} = \mu_p + \sigma_p \times \text{norm.s.inv}(0.10) = 0.165 + 0.315 \times (-1.282) = -0.239$$

- Therefore, the 90% VaR for the \$10 million portfolio is:

$$10,000,000 \times 0.239 = \$2,390,000$$

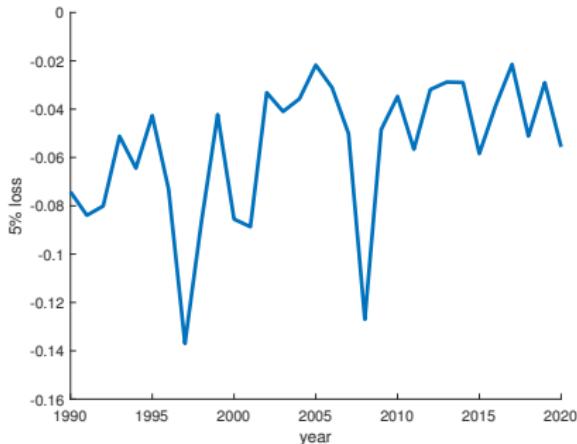
## Value at Risk - Historical Data

- We can also calculate the VaR using historical data without assuming a specific distribution.
- For example, let's consider 1-year-long historical data of daily returns for a stock price index.
- We aim to estimate the 5% VaR for the next day's return.
- To do this, we assume that the next day's return will be similar to one of the past year's returns.
- The 5% VaR is then the 5th percentile of these historical returns.

## Value at Risk - Some Issues I

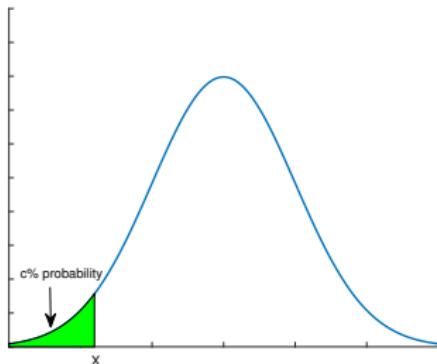
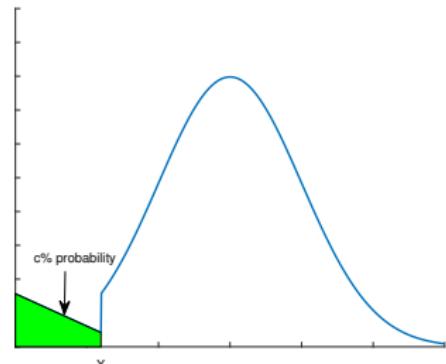
- VaR estimation is based on the assumption that the distribution of future return is the same as (at least similar to) the distribution of past return.
- This assumption may not hold in the real world.

VaR for Index (lowest 5% daily returns)



## Value at Risk - Some Issues II

- VaR specifies the **minimum** loss that will occur with a given probability.
- VaR tells nothing about the expected magnitude of the loss.
- Which is the better between the following two?



## Expected Shortfall

- Expected Shortfall is another measure to address the shortcoming of VaR.
  - It asks “If things get bad, what is the expected loss?”
- Suppose that we focus on the loss that will happen with 5% probability. Let  $V$  denote the 5% loss (VaR). Then,<sup>3</sup>

$$\text{Expected shortfall} = E(R|R \leq V)$$

---

<sup>3</sup>Under normal distribution:  $\text{Expected shortfall} = \mu - \sigma \frac{\phi((V-\mu)/\sigma)}{\Phi((V-\mu)/\sigma)}$

## Expected Shortfall

- Once historical data are given, we can compute the expected shortfall.
  - In Excel, use “averageif()”.

Ex. Let's use the 1-year-long data of daily returns on a stock index.

Q1. What is the expected shortfall with 5% probability?

Q2. What is the expected shortfall with 10% probability?

## Application: Bank Regulation

- VaR and ES are widely used in the financial industry to measure and manage risk.
- The Basel Committee on Banking Supervision (BCBS) provides global banking regulations.
  - 1996 Amendment: Required capital =  $k \times \text{VaR}(1\%, 10\text{days})$ , where  $k \geq 3$ .
  - Basel II (2007): Suggested VaR(0.1%, 1-year) for risk assessment.
  - Basel IV (2021): Recommended 97.5% expected shortfall (ES) for a comprehensive risk view.